碳纳米管表面分子印迹聚合物制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)由于其独特的性能和极大的比表面积,在分子印迹领域显示出广阔的应用前景。但目前,关于CNTs表面分子印迹聚合物的研究才刚起步,主要通过CNTs表面自由基共聚合接枝分子印迹聚合物(MIPs)。不过在聚合反应体系中,“溶液聚合”现象无法避免以及存在聚合物膜不均匀等缺点,严重影响了表面分子印迹聚合物的印迹效率。本论文分别采用原子转移自由基聚合(ATRP)和可逆加成-断裂链转移(RAFT)聚合反应,在多壁碳纳米管(MWNTs)表面接枝MIPs,以期得到具有优异印迹效率的印迹聚合物材料。具体内容如下:
     (1)MWNTs表面接枝茶碱分子印迹聚合物。利用酸氧化后MWNTs表面的羧基与2-溴代异丁酸乙二醇酯之间的反应,合成ATRP引发剂修饰的碳纳米管(MWNT-Br)。以MWNT-Br为大分子引发剂、丙烯酸羟乙酯(HEMA)为功能单体,双丙烯酸乙二醇酯(EGDMA)为交联剂,在模板分子茶碱存在下,通过ATRP反应在MWNTs上接枝茶碱分子印迹聚合物膜(MWNT-TMIPs)。采用透射电镜(TEM)对合成的MWNT-TMIPs进行表征,结果显示MWNTs表面接枝上了一层均匀的印迹聚合物膜,膜厚约为5 nm。采用静态吸附的方法对所合成的MWNT-T-MIPs印迹效率进行了评价,结果表明MWNT-TMIPs对茶碱分子具有较高的印迹吸附量和选择性吸附能力。吸附动力学研究表明,MWNT-TMIPs对茶碱分子具有快速的初始吸附速度,在60 min内基本达到吸附平衡,明显优于溶液聚合方法合成的MIPs。
     (2)MWNTs表面接枝Nα-叔丁氧基-L-色氨酸(n-Boc-Trp-OH)分子印迹聚合物。首先利用过量的乙二醇对羧基化的MWNTs进行修饰合成出表面含有羟基的MWNTs(MWNT-OH),再利用小分子RAFT试剂S,S’-双(2-甲基-2-丙酸基)三硫代碳酸酯与MWNT-OH反应,合成RAFT试剂修饰的MWNTs(MWNT-RAFT)。采用傅立叶红外光谱(FTIR)、热重分析(TGA)、X射线光电子能谱(XPS)对合成的MWNT-RAFT进行表征。结果表明,MWNTs表面RAFT试剂的接枝量为71μmol/g。以MWNT-RAFT为链转移剂、丙烯酰胺(AM)为功能单体、N,N-二亚甲基双丙烯酰胺(MBA)为交联剂、n-Boc-Trp-OH为模板分子,通过RAFT聚合在MWNTs表面接枝MIPs,并对聚合条件进行了初步探索。
In recent years, carbon nanotubes (CNTs) have been the subject of intense interests due to their exceptional thermal stability, remarkable mechanical and electronic properties. These properties as well as extremely high surface-to-volume ratio of CNTs make them excellent support candidates in preparing molecularly imprinted polymers (MIPs). Grafting of MIPs film onto the surfaces of CNT support would endow MIPs with large surface area. The most common method for grafting MIPs on the surface of CNTs is surface-confined radical copolymerization. However, bulk polymerization can not be avoided and relatively low controllability of the reaction make the grafted MIPs have heterogeneous networks in some microdomain, these would be harmful to the recognition ability of the MIPs. In this paper, MIPs are successfully grown from the surface of muti-walled carbon nanotubes (MWNTs) via atom transfer radical polymerization (ATRP) and reversible addition-fragmentation transfer (RAFT) polymerization. The main contents are as follows:
     (1) Controlled fabrication of theophylline imprinted polymers on MWNTs via ATRP. Theophylline imprinted polymers are synthesized on the surface of multiwalled carbon nanotubes via ATRP using brominated multiwalled carbon nanotubes as an initiator. The nanotube-based initiator is prepared by directly reacting acyl chloride-modified MWNTs with 2-hydroxylethyl-2'-bromoisobutyrate. The grafting copolymerization of 2-hydroxyethyl-2-methyl-2-propenoate and ethylene glycol dimethacrylate in the presence of template theophylline lead to thin molecularly imprinted polymer films coating MWNTs. The thickness of molecularly imprinted polymer films prepared in this study is about 5 nm as determined by transmission electron microscopy. The adsorption properties, such as adsorption dynamics, special binding and selective recognition capacity, of the as-prepared molecularly imprinted polymer films are evaluated. The results demonstrate that the composite of MIPs and MWNTs not only possess a rapid dynamics but also exhibit a good selectivity toward theophylline, compare to caffeine.
     (2) Sythesis of Nα-(tert-butoxycarbonyl)-L-tryptophan imprinted polymers on the surface of MWNTs via RAFT polymerization. Nα-(tert-Butoxycarbonyl)-L-tryptophan imprinted polymers are synthesized on the surface of MWNTs via RAFT polymerization. The RAFT agent functionalized MWNTs are prepared by directly reacting hydroxyl-modified MWNTs with S,S’-bi(2-methyl-2-propcarboxyl) trithiocarbonate. The grafting copolymerization of acrylamide and N,N’- methylenebis(acrylamide) in the presence of Nα-(tert-butoxycarbonyl)-L-tryptophan lead to molecularly imprinted polymer coating MWNTs. Preliminary exploration of the grafting condition has been studied.
引文
[1] Vlatakis G, Andersson L I, Muller R. Drug assay using antibody mimics made by molecular impringting[J]. Nature, 1993, 361(6413):645-647.
    [2] Wulff G, Lauer M, Bohnke H. Rapid proton transfer as cause of an unusally large neighboring group effect[J]. Angew. Chem. Int. Ed., 1984, 23(1):741-742.
    [3]周文辉. RAFT分子印迹技术初步研究[硕士学位论文].青岛:国家海洋局第一研究所, 2003.
    [4] Bossi A, Piletsky S A, Piletska E V, et al. Surface-grafted molecularly imprinted polymers for protein recognition[J]. Anal. Chem., 2001, 73(21):5281-5286.
    [5] Shea K J, Sasaki D Y. On the control of microenvironment shape of functionalized network polymers prepared by template polymerization[J]. J. Am. Chem. Soc., 1989, 111(9):3442-3444.
    [6] Sellergren B. Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials[J]. TrAC, Trends Anal. Chem., 1997, 16(6):310-320.
    [7] Mosbach K, Haupt K. Some new developments and challenges in non-covalent molecular imprinting technology[J]. J. Mol. Recognit., 1998, 11(1-6):62-68.
    [8] Wulff G, Sarhan A. The use of polymers with enzyme-analongue structures for the resolution of racemates[J]. Angew. Chem. Int. Ed., 1972, 11(4):341-343.
    [9] Anderson L I, O'Shannessy D J, Mosbach K. Molecular recognition in synthetic polymers:preparation of chiral stationary phases by molecular imprinting of amino acid amides[J]. J. Chromatogr. A, 1990, 513:167-179.
    [10] Wulff G, Minarik M. Template imprinted polymers for HPLC separation of racemates[J]. J. Chromatogr. A, 1990, 13(15):2987-3000.
    [11] Wulff G, Vesper W. Preparation of chromatographic sorbents with chiral cavities for racemic resolution[J]. J. Chromatogr. A, 1978, 167(1):171-186.
    [12] Yu C, Mosbach K. Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers[J]. J. Org. Chem., 1997, 62(12):4057-4063.
    [13] Sellergren B, Ekberg B, Mosbach K. Molecular imprinting of amino acid derivatives in macroporous polymers[J]. J. Chromatogr. A, 1985, 347(1):1-10.
    [14] Kees E, Christine B, Majors R E. Seletive sorbents for solid-phase extraction based on molecularly imprinted polymers[J]. LC-GC., 2001, 19:942-954.
    [15] Tan Y G, Zhou Z L, Wang P, et al. A study of a bio-mimetic recognition material for the BAW sensor by molecular imprinting and its application for the determination of paracetamol in the human serum and urine[J]. Talanta, 2001, 55(2):337-347.
    [16] Dickert F L, Besnbook H, Tortschanoff M. Molecular imprinting through vander waals interaction: fluorescence detection of PAHs in water[J]. Adv. Mater., 1998, 10(2):149-151.
    [17] Whitcombe M J, Esther M, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol[J]. J. Am. Chem. Soc., 1995,117(1):7105-7111.
    [18] Piletsky S A, Piletskaya E V, Yano K, et al. A biomimetic receptor system for sialic acid based on molecular imprinting[J]. Anal. Lett.,1996, 29(2):157-170.
    [19] Wullf G, Vesper W. Preparation of chromatographic sorbents with chiral cavities for racemic resolution[J]. J. Chromatorg. A, 1978, 167:171-186.
    [20] Lei J D, Tan T M. Chiral separation of naproxen on molecular imprinted polymers[J]. Mod. Chem. Ind., 2001, 21(8):29-33.
    [21]李晓桃,蒋光光,史月华等. L-卡尼丁分子压印聚合物作为手性分离色谱固定相的研究[J].分析化学, 2002, 30(4):388-391.
    [22]苏立强,刘学良,王俊德.分子烙印聚合物固定相分离咖啡因和茶碱的研究[J].高等学校化学学报, 2001, 22(7):1122-1124.
    [23] Sellergen B. Dorect drug determination by selective sample enrichment on an imprinted polymer[J]. Anal. Chem., 1994, 66(1):1578-1582.
    [24]郭洪声,何锡文.药物头孢氨苄分子模板聚合物水中结合性质的研究[J].分析化学, 2000, 28(10):1214-1219.
    [25] Panasyuk T L, Mirsky V M, Piletsky S A, et al. Electropolymerized molecularly imprinted polymers as receptor layer in capacitive chemical sensors[J]. Anal. Chem., 1999, 71(20):4609-4613.
    [26] Wulff G, Sch?nfeld R. Polymerizade amidines-adhesion mediateors and binding sites for molecular imprinting[J]. Adv. Mater., 1998, 10(12):957-959.
    [27] Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors[J]. Chem. Rev., 2000, 100(7):2495-2504.
    [28] Asanuma H, Hishiya T, Komiyama M. Tailor-Made receptors by molecular imprinting[J]. Adv. Mater., 2000, 12(14):1019-1030.
    [29] Henry O Y F, Cullen C D, Piletsky S A. Optical interrogation of molecularly imprinted polymers and development of MIP sensors: a review[J]. Anal. Bioanal. Chem., 2005, 382(4):947-956.
    [30] Nemoto K, Kubo T, Nomachi M, et al. Simple and effective 3D recognition of domoic acid using a molecularly imprinted polymer[J]. J. Am. Chem. Soc., 2007, 129(44):13626-13632.
    [31] Ye L, Peter A G C, Mosbach K. Molecular imprinting on microgel spheres[J]. Anal. Chim. Acta, 2001, 435(1):187-196.
    [32] Gao D M, Zhang Z P, Wu M H, et al. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles[J]. J. Am. Chem. Soc., 2007, 129(25):7859-7866.
    [33] Yamazaki T, Yilmaz E, Mosbach K, et al. Towards the use of molecularly imprinted polymers containing imidazoles and bivalent metal complexes for the detection and degradation of organophosphotriester pesticides[J]. Anal. Chim. Acta, 2001, 435(1):209-214.
    [34] Yilmaz E, Haupt K, Mosbach K. The use of immobilized templates-a new approsch in molecular imprinting[J]. Angew. Chem. Int. Ed., 2000, 39(12):2115~2120.
    [35] Yilmaz E, Ramstrom O, Moller P, et al. A facile method for preparing molecularly imprinted polymer spheres using spherical silica templates[J]. J. Mater. Chem., 2002, 12(5):1577~1581.
    [36] Quaglia M, De-Lorenzi E, Sulitzky C, et al. Surface initiated molecularly imprinted polymer films: a new approach in chiral capillary electrochromatography[J]. Analyst, 2001, 126(9): 1495~1498.
    [37] Sulitzky C, Rückert B, Hall A J, et al. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators[J]. Macromolecules, 2002, 35(1):79-91.
    [38] Shamsipur M, Fasihi J, Ashtari K. Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion[J]. Anal. Chem., 2007, 79(18):7116-7123.
    [39] Zu B Y, Pan G Q, Guo X Z, et al. Preparation of molecularly imprinted polymer microspheres via atom transfer radical precipitation polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2009, 47(13):3257-3270.
    [40] Lu C H, Zhou W H, Han B et al. Surface-imprinted core-shell nanoparticles for sorbent assays[J]. Anal. Chem., 2007, 79(14):5457-5461.
    [41] Titirici M M, Sellergren B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization[J]. Chem. Mater., 2006, 18(7):1773-1779.
    [42] Wang H J, Zhou W H, Yin X F, et al. Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations[J]. J. Am. Chem. Soc., 2006, 128(50):15954-15955.
    [43] Li Y, Zhou W H, Yang H H, et al. Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization: a selective sorbent for theophylline[J]. Talanta, 2009, 79(2):141-145.
    [44] Pilesky S A, Matuschewski H, Schedler U, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water[J]. Macromolecules, 2000, 33(8):3092-3098.
    [45] Ceolin G., Navarro-Villoslada F, Moreno-Bondi M C, et al. Accelerated development procedure for molecularly imprinted polymers using membrane filterplates[J]. J. Comb. Chem., 2009, 11(4):645-652.
    [46] Ou J J, Li X, Feng S, Dong J, et al. Preparation and evaluation of a molecularly imprinted polymer derivatized silica monolithic column for capillary electrochromatography and capillary liquid chromatography[J]. Anal. Chem., 2007, 79(2):639-646.
    [47] Li Y, Li X, Chu J, et al. Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions[J]. Environ. Pollut., 2010, 158(6):2317-2323.
    [48] Li Y, Yin X F, Chen F R, et al. Synthesis of magnetic molecularly imprinted polymer nanowires using nanoporous template[J]. Macromolecules, 2006, 39(13):4497-4499.
    [49] Li Y, Yang H H, You Q H, et al. Protein recognition via surface molecularly imprintedpolymer nanowires[J]. Anal. Chem. 2006, 78(1):317-320.
    [50] Kindschy L M, Alocilja E C. A molecularly imprinted polymer on indium tin oxide and silicon[J]. Biosens. Bioelecton., 2005, 20(10):2163-2167.
    [51] Xie C G, Liu B H, Zhang Z P, et al. Molecular Imprinting at walls of silica nanotubes for TNT recognition[J]. Anal. Chem., 2008, 80(2):437-443.
    [52] Lu N, Chen S, Wang H T, et al. Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity[J]. J. Solid State Chem., 2008, 181(10):2852-2858.
    [53] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
    [54] Ebbesen T W, Lezee H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586):54-56.
    [55] Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes—the route toward applications[J]. Science, 2002, 297(5582):787-792.
    [56] Lee E, Park D W, Kim B S, et al. Molecularly imprinted polymers immobilized on carbon nanotube[J]. Colloids Surf., A, 2008, 313-314:202-206.
    [57] Kan X W, Zhao Zhu J J, et al. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition[J]. J. Phy. Chem. C., 2008, 112(13):4849-4854.
    [58] Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube[J]. Biosens. Bioelecton., 2009, 25(3):587-591.
    [59] Choong C L, Bendall J S, Milne W I, Carbon nanotube array: a new MIP platform[J]. Biosens. Bioelecton., 2009, 25(3):652-656.
    [60] Zhang M S, Huang J R, Chen X, et al. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes[J]. Talanta, 2010, 81(1-2):162–166.
    [1] Zu B Y, Pan G Q, Guo X Z, et al. Preparation of molecularly imprinted polymer microspheres via atom transfer radical precipitation polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2009, 47(13):3257-3270.
    [2] Zu B Y, Zhang Y, Guo X Z, et al. Preparation of molecularly imprinted polymers via atom transfer radical“bulk”polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 2010, 48(3):532-541.
    [3] Li X, Husson S M. Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study[J]. Biosens. Bioelectron., 2006, 22(3):336–348.
    [4] Wei X L, Li X, Husson S M. Surface molecular imprinting by atom transfer radical polymerization[J]. Biomacromolecules, 2005, 6(2):1113-1121.
    [5] Wei X L, Husson S. M. Surface-grafted, molecularly imprinted polymers grown from silica gel for chromatographic separation[J]. Ind. Eng. Chem. Res., 2007, 46(7):2117–2124.
    [6] Wang H J, Zhou W H, Yin X F, et al. Template synthesized molecularly imprinted polymernanotube membranes for chemical separations[J]. J. Am. Chem. Soc., 2006, 128(50):15954-15955.
    [7] Kan X W, Zhao Zhu J J, et al. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition[J]. J. Phy. Chem. C., 2008, 112(13):4849-4854.
    [8] Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube[J]. Biosens. Bioelecton., 2009, 25(3):587-591.
    [9] Hong C Y, You Y Z, Pan C Y. Functionalized multi-walled carbon nanotubes with poly(N-(2-hydroxypropyl)methacrylamide) by RAFT polymerization[J]. J. Polym. Sci. Part. A: Polym. Chem., 2006, 44(8):2419–2427.
    [10] Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes[J]. Acc. Chem. Res., 2002, 35(12):1105-1113.
    [1] Titirici M M, Sellergren B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization[J]. Chem. Mater., 2006, 18(7):1773-1779.
    [2] Lu C H, Zhou W H, Han B et al. Surface-imprinted core-shell nanoparticles for sorbent assays[J]. Anal. Chem., 2007, 79(14):5457-5461.
    [3] Li Y, Zhou W H, Yang H H, et al. Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization: a selective sorbent for theophylline[J]. Talanta, 2009, 79(2):141-145.
    [4] Choong C L, Bendall J S, Milne W I, Carbon nanotube array: a new MIP platform[J]. Biosens. Bioelecton., 2009, 25(3):652-656.
    [5] Kan X W, Zhao Zhu J J, et al. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition[J]. J. Phy. Chem. C., 2008,112(13):4849-4854.
    [6] Lee H Y, Kim B S. Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube[J]. Biosens. Bioelecton., 2009, 25(3):587-591.
    [7] Lai J T, Filla D, Shea R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents [J]. Macromolecules, 2002, 35(18):6754-6756.
    [8] Niyogi S, Hamon M A, Hu H, et al. Chemistry of single-walled carbon nanotubes[J]. Acc. Chem. Res., 2002, 35(12):1105-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700