脉动热管非可视化运行状态判定及其热输运特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过建立脉动热管性能测试试验台,研究分析了脉动热管不同流型流态对应的工质温度振荡曲线特征,并对脉动热管的运行状态进行了判定与分析。结合流型的变化,研究了变充液率、倾角、加热/冷却流体质量流量,对脉动热管的热输运特性的影响。进而,通过对单一工质添加纳米微粒的途径,研究了脉动热管热输运特性的强化方法。
     本文首先对脉动热管管内工质的受力进行了初步分析,通过对热电偶合理的布置,实现了对工质受热后的流型流态的非可视化判定:通过温度信号的输出,在不同加热范围和充液率下发现了泡状流、弹状流、塞状流及环状流,并结合所测量的温度值进行了工质流型的机理性分析。进一步结合绝热段温度测点采集值的特征及变化,以及各热电偶布置点的温度采集值特征对脉动热管的运行状态进行了非可视化的判定,并得出判定脉动热管启动和稳定运行的判据。为判定单元式脉动热管的运行及工作状态提供了新的依据,为热管应用于制冷、空调、热能回收等热输运设备寻找最佳传热效率和相应的运行工况提供了有效的实际判定方法。
     在脉动热管热输运性能的试验研究中,通过改变脉动热管工质的充液率、放置倾角、加热流体进口温度及加热/冷却流体冲刷脉动热管外管壁的流速等,对影响脉动热管运行的几种因素进行了研究。研究发现,当脉动热管启动后,热传输功率随着充液率、倾斜角度的增大而增大;充液率较小、倾斜角度较小时,脉动热管可以在较低的加热流体进口温度下启动。
     最后,在添加纳米微粒的试验中发现,在单一工质中添加纳米微粒可以大幅度的提高脉动热管的单位面积热传输功率,降低脉动热管的热阻。并且在一定条件下,可以较大幅度的降低脉动热管起振所需的加热流体进口温度,在实现强化传热的同时,还可以降低对加热/冷却介质温差的要求。为进一步应用脉动热管于低温差热输运(例如:空调热回收)装置探索了有用的途径。
Pulsating heat pipe(PHP)‘performance test rig was established to investigate the relationship between the flow patterns and the characteristics of oscillating curves of temperature, and the operation state of PHP was analyzed and judged through non-visual method. By combining with the change of the flow pattern, the factors which affected the thermal transport properties of PHP, such as fill ration, inclination angle, the mass flow rate of heating/cooling fluid were studied in this paper. Furthermore, the heat transfer enhancement of PHP was studied by adding nano-particles into PHP working fluid.
     First, the force of PHP working fluid was preliminary analyzed. Then, through the proper arrangement of thermocouples, the method of determining PHP operating states of PHP by means of non-visualization was obtained: through the output of the temperature sample signal, the bubble flow, slug flow, pushing flow, annular flow was found, and the mechanism was analyzed, which are associated with the temperature measurement values. Further, a new way was used for the first time to determine the PHP’s work states, which includes how to determinate both the start-up stage and the steady stage by the means of non-visualization that is relied on the temperature values of interface between the heating section and cooling section of PHP. This lays a foundation for PHPs’practical used in refrigeration, air conditioning, heat recovery equipment to determine the optimum operating state.
     The influence of some factors on the thermal transport performance of PHP has been researched. The factors include the working fluid within different fill ratio, inclination angle of PHP heat exchanger and the mass flow rate without heating medium in the heat section and cooling medium in the cooling section. The experimental results show that when the PHPs startup, the heat transfer quantity is increased with fill ratio of working fluid and inclination angles; PHP could startup at a lower heating temperature when the fill ratio and inclination angle at a lower value.
     Finally, in order to improve the heat transfer capacity of PHP, a kind of nano-particles A was added into a pure working fluid to form a miture.. Experiments with the mixed working fluid found that the heat resistance decreases and the heat transfer capacity increases. Moreover, the inlet temperature of heating medium is significantly reduced under a certain conditions. Therefore, adding nano-particles into the working fluid of PHP could enhance heat transfer and improve the thermal transport performance of PHP, and at the same time reduced the difference of heating and cooling medium temperature. It lays a foundation for the further research the performance of PHP used in low-temperature differential thermal transport, for example: air-conditioning heat recovery devices.
引文
[1]姚寿广,马哲树,罗林.电子电器设备中高效热管散热技术的研究现状及发展.[J].华东船舶工业学院学报(自然科学版),2003,17(4):9一12.
    [2]魏兵.直流式空调系统节能设计的讨论与分析.[J].节能技术,2004,22(1):26‐28.
    [3]秦伶俐,李洪芳.转轮式全热交换器——一种高效的热回收装置.[J].上海水产大学,200090
    [4] H Akachi. Looped Capillary Heat Pipe. Japanese Patent. No. Hei6‐97147.1994
    [5] Chai BenYin,Li XuanYou,Zhou XiaoDong。Experimental study on energy thrift in a fluidized bed dryer with self‐excited mode oscillating‐flow heat pipe (SEMOS heat pipe)
    [6] Charoensawan P,Khandekar S,Groll M,etal. Themofluid dynamic study of flat plate closed‐loop pulsating heat pipes.[J]. Micro‐scale thermophysical 2002, 6(4): 303‐317
    [7]曹小林,席战利,周晋,etal.脉动热管运行可视化及传热与流动特性的实验研究.[J].热能动力工程,Vol.19, No.4, Jul,2004
    [8]商福民,冼海珍,刘登瀛等.采用不等径结构自激振荡流热管实现强化传热.[J].动力工程,Vol.28,No.1,Feb. 2008
    [9]周岩,曲伟.脉动热管的毛细管结构和尺度效应实验研究.[J].工程热物理学报,Vol.28,No.4,Jul. 2007
    [10]杨蔚原,张正芳,马同泽.脉动热管运行的可视化试验研究.中国工程热物理学会传热传质学学术会议论文集.济南.中国工程热物理学会.2000.202一204
    [11]商福民,刘登瀛,冼海珍,etal.不等径结构自激振荡流热管强化传热实验研究.[J].
    [12]尹大燕,贾力。振荡热管管内流型对传热性能的影响[J]。应用基础与工程科学学报,Vol 15, No.3, 2007
    [13]傅烈虎。脉动热管传热性能实验研究[J]。制冷,2008年6月,第27卷第2期。
    [14]徐吉荣,王瑞祥,丛伟等。脉动热管实验台的搭建及可视化实验研究[J]。流体机械,2007年第35卷第6期。
    [15]傅烈虎.脉动热管传热性能实验研究.[J].制冷, Vol.27, No.2, Jun,2008
    [16] Mustafa Ozdemir. An experimental study on an oscillating loop heat pipe consisting of three interconnected columns[J]. Heat Mass Transfer(2007) 43:527‐534
    [17] Groll M,Khandekar S. Pulsating heat pipes: progress and prospects. Proceeding of 3rd International Conference on Energy and Environment. Shanghai, China. 2003
    [18]曲伟,马同泽.新型热管的研究进展和应用现状.[M].第九届全国热管会议.昆明,中国,中国工程热物理学会热管专业组.2004
    [19] Akachi H, Miyazaki Y. Stereo‐type heat lane heat sink. 10th International Heat Pipe Conference., Stuttgart, Germany, 1997
    [20] H Akachi, Pola ek F. Thermal control of IGBT modules in traction drives by pulsating heat pipes. 10th International Heat Pipe Conference, Stuttgart, Germany, 1997
    [21] H. Akachi, US Patent, Patent Number 4921041, 1990.
    [22] H. Akachi, US Patent, Patent Number 5219020, 1993.
    [23] H. Akachi, US Patent, Patent Number 5490558, 1996.
    [24]韩洪达,杨洪海,尹世永等.脉动热管用于空调系统排风余热(冷)回收初探.[J].暖通空调, 2009年第39卷第5期.
    [25] Miyazaki Y,Akachi H.Heat transfer characteristics of looped capillary heat pipe[C]. 5th International Heat Pipe Symposium, Melbourne,Australia,1996.
    [26] Miyazaki Y.Oscillatory flow in the oscillating heat pipe[C]//11th International Heat Pipe Conference,Tokyo,Japan,1999.
    [27]马永锡,张红.低于临界通道弯数振荡热管的传热特性.[J].北京化工大学学报,Vol.32,No.4,2005.
    [28] X.M.Zhang,J.L.Xu,and Z.Q.Zhou. EXPERIMENTAL STUDY OF A PULSATING HEAT PIPE USING FC‐72,ETHANOL,AND WATER AS WORKING FLUIDS[J]. Experimental Heat Transfer. 17:1, 47‐67.
    [29] Charoensawan P,Khandekar S,Groll M,et al. Closed loop pulsating heat pipes: Part A. Parametric experimental investigation J. Applied Thermal Engeering,2003,23(16):2009‐2020.
    [30]胡建军,徐进良。汞‐水混合工质脉动热管实验研究[J]。化工学报,Vol.59, No.5,May 2008
    [31]曹小林,王伟,陈杰,等.环路型脉动热管的工质流动和传热特性实验研究[J].热科学与技术,2007(1):56‐59.
    [32] Akachi H,Polasek F,Stulc P. Pulsating heat pipe C//Andrews J. Proceeding of closed‐end and closed‐loop oscillating heat pipe symposium. Melbourne: Pergamon Elsevier, 1996:208‐217
    [33]曹小林,王伟,陈杰。脉动热管的研究综述。
    [34] Khandekar S,Schneider M,Groll M. Mathematical Modeling of Pulsating Heat Pipe: State of the Art and Future Challenges. In: Proceedings of 5th ISHMT/ASME International Heat and Mass Transfer Conference. Calcutta, India, 2002.15—19
    [35]傅烈虎,王瑞祥,李青冬,吴业正.基于中心复合设计的平板型脉动热管传热性能研究.[J].西安交通大学学报,Vol.42,No.9,Sep.2008
    [36] Khandekar S,Charoensawan P,Groll M,et al . Closed loop pulsating heat pipes part b: visualization and semi‐empirical modeling. Applied Thermal Engineering, 2003, 23(16): 2021‐2033
    [37]崔晓钰,翁建华,M. Groll。基于神经网络的振荡热管传热性能建模[J]。化工学报,Vol.54, No.9, September.2003
    [38] Khandekar S,Cui X,Groll M. Thermal performance modeling of pulsating heat pipes by artificial neural network. 12th International Heat Pipe Conference, Moscow, Russia. 2002.
    [39] Kalogirou S A, Bojic M. Artificial Neural Networks for the Prediction of the Energy Consumption of a Passive Solar Building. Energy, 2000, 25:479—491 [4039] R.T.Dobson,T.M. Harms,Lumped parameter analysis of closed and open oscillatory heat pipes, inProceedings of the 11th International Heat Pipe Conference, Tokyo, Japan, 1999. 137‐142
    [41] M. Hosoda,S. Nishio,R. Shirakashi. Meandering closed‐loop heat‐transport tube (propagation phenomena of vapor plug), in: Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, March 15‐19, San Diego, CA,1999
    [42] T.N. Wong, B.Y. Tong, S.M. Lim, K.T. Ooi. Theoretical modeling of pulsating heat pipe, in: proceeding of the 11th International Heat Pipe Conference, Tokyo, Japan, 1999
    [43] Yuwen Zhang,Amir Faghri. Heat transfer in a pulsating heat pipe with open end. International Journal of Heat and Mass Transfer 45 (2002) 755‐764
    [44]杨洪海,Khandekar Sameer,Groll Manfred。单回路闭式脉动热管内流型的模拟研究。Fluid Machinery. Vol.35, No.12, 2007
    [45] Swanepoel G, Taylor A, Dobson R. Theoretical modeling of pulsating heat pipes. 6th International Heat Pipe Symposium, Chiang Mai, Thailand, 2000
    [46] Huseyin Yapici, Nesrin Kayatas, Gamze Basturk. Study on transient local entropy generation in pulsating fully developed laminar flow through an externally heated pipe. Heat Mass Transfer(2006) 43: 17‐35
    [47] Choi S U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles, In: Springer D A, Wang H.P. Developments and Applications of Non‐Newtonian Fluids. New York, ASME FED‐Vol.231/MD‐Vol.66,1995.6‐12
    [48]商福民,刘登瀛,冼海珍.etal.自激振荡流热管内Cu‐水纳米流体的传热特性.[J].动力工程,Vol.27,No.2,Apr. 2007.
    [49]商福民,刘登瀛,冼海珍.etal.振荡热管内不同形态纳米颗粒流动及传热特性.[J].化工学报,Vol.58,No.9, Sep,2007
    [50]李启明,彭晓峰,王补宣.纳米流体振荡热管内部流动和传热特性.中国工程热物理学会传热传质学术会议论文集. 2007.917‐920
    [51]冯剑超,曲伟.纳米流体脉动热管的性能实验.[J].中国科学院研究生院学报,Vol.26, No.1, Jan,2009
    [52]冯剑超.纳米流体脉动热管的传热性能研究.[M].中国科学院工程热物理研究所. May,2008
    [53]李俊明.判别流型的新方法及环流与波状流下的混合制冷剂凝结换热.[D].西安交通大学,1994.1
    [54] M Schneider, S Khandekar. Visualization of thermofluiddynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipe. 6th International Heat Pipe Symposium. Chiang Mai, Thailand. 2000.235‐247
    [55]黄祖洽,丁鄂江.表面浸润和浸润相变[M].上海:上海科学技术出版社,1994,2-5.
    [56]曲伟.毛细管内薄液膜界面特性的理论分析和脉动热管性能的实验研究[R].中国科学院工程热物理研究所.
    [57]冯剑超.纳米流体脉动热管的传热性能研究[D].中国科学院工程热物理研究所. 2008,5
    [58] Xuan Y. , Li Q. Heat Transfer Enhancement of Nanofluids.[J]. Heat Fluid Flow. 2000,21:58‐64.
    [59]李强,宣益民.纳米流体热导率的测量.[J].化工学报,2003,54(1):41‐46.
    [60] Eaetman J. A., Choi S. etal. Anomalously increased effective thermal conductivities of ethylene glycol‐based nanofluids containing copper nanoparticles. [J]. Appl. Phys. Lett. 2001,78(6):718‐720
    [61]宣益民,李强.纳米流体强化传热研究[J].工程热物理学报. 2007,21(4):466‐470.
    [62]李强,宣益民.纳米流体强化导热系数机理初步分析[J].热能动力工程. 2002,17(102):568‐571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700