A3钢涂镀防护层的制备及相关性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属材料是现代社会中使用最广泛的工程材料,在人类的文明与发展方面起着十分重要的作用。我国的金属腐蚀情况是很严重的,特别是我国对金属腐蚀的保护工作与发达的工业国家相比还有一段距离。金属腐蚀在造成经济损失的同时,也造成了资源和能源的浪费——由于所报废的设备或构件有少部分是不能再生的,可以重新冶炼再生的部分在冶炼过程中也会耗费大量的能源,因此对金属防护研究是利国利民的选择。
     针对国内外钢铁的腐蚀防护现状,本论文工作分为两个部分。第一部分是基于电沉积过程中的“外延生长”和“诱导成核”等理论,采用电化学方法和纳米晶前驱诱导物来制备纳米晶Ni-TiN薄膜材料,制备出性能优良的纳米薄膜材料,在实验室前期研究的基础上继续开拓一种全新的纳米材料制备方法。第二部分是采用亚麻籽油制备双酚A环氧树脂添加剂,利用其碳碳双键、酰胺键和羟基与环氧树脂中的环氧键发生交联,提高环氧涂层的交联度并增加涂层的防护性能。
     论文首先研究了Ni-TiN电沉积的主要工艺参数(主盐金属离子、硼酸和添加剂的浓度、pH值、温度、电镀电流密度和搅拌速度等)对纳米晶Ni-TiN薄膜的结构和性能的影响规律;最终优化出一套制备纳米晶Ni-TiN薄膜的稳定、可靠的电沉积工艺。在上述基础上,采用SEM、TEM、AFM和XRD等技术对在优化工艺下制备的Ni-TiN纳米复合薄膜的表面形貌和结构进行了表征,同时对纳米晶Ni-TiN复合薄膜和传统多晶纯镍镀层的微观硬度、耐蚀性能和热稳定性等进行了对比研究。结果表明,纳米晶Ni-TiN复合薄膜表面平整、其连续的Ni基体相和离散的TiN添加相均具有纳米结构,复合薄膜的晶粒平均粒径为70-80 nm;由于TiN纳米粒子的共沉积,使得镍镀层晶粒得到细化,这提高了镀层的性能,纳米复合镀层的优点得到体现。中试表明,该纳米晶Ni-TiN复合薄膜的电镀工艺稳定,有良好的实际应用前景。
     论文的第二部分采用亚麻籽油制备了双酚A环氧树脂添加剂,利用合成的添加剂中各官能团与双酚A环氧树脂发生交联反应,制备出了改性的环氧树脂涂层。采用CHI电化学工作站、电化学阻抗(EIS)和热重分析仪对涂层性能进行了测试,并研究了涂层中添加剂的量对涂层性能的影响规律,确定其最佳用量值;同时,将改性的环氧树脂涂层与其他油气田用重防腐涂料对油田用钢的防护性能进行了对比研究。结果表明,加入添加剂后,涂层的防腐和热稳定性能显著提高;涂层的综合性能随添加剂量的增加而提高,但混合的添加剂量超过一定数值后,改性环氧涂层的性能开始下降;通过与其他重防腐涂料的对比研究发现,本论文制备的改性环氧涂层的孔隙率相对较高,这影响了其防腐性能的进一步提升,也为我们下一步的研究提供了方向。
Metal has been the most widely used material in this modern society, which plays an important pole in the civilization and development of the human. Corrosion of metals is very serious in China. What is worse, the technology of protection of metal is far from that of the developed countries. Corrosion of metals not only caused economic losses, but also made the wasting of resources and power. Therefore, the research of protection of metal is an activity that benefits the nation and the people.
     Based on the theories of "epitaxial growth" and "derivational nucleation", this dissertation tries to adopt a modification method based on traditional composite electroplating technique and a few of nano-TiN particle predecessors has been developed to fabricate the holistically nanostructured Ni-TiN films. The research not only has value in theory, but also has an expansive applied foreground. Meanwhile, N,N-bis(2-hydroxyethyl) linseed amide(HELA) which was prepared by linseed oil was used as modifier for conventionally available epoxy resin(DGEBA) to improve the performance of resin by cross-linked reaction between them.
     Firstly, this paper studied the influences of principal technological parameters on the microstructure of eletrodeposited Ni-TiN nanocomposite film. Such as:the concentration of metal ion and boric acid, current density, pH value, temperature, solution agitation speed and so on. We optimized a steady technics ultimately. Secondly, the microstructure and feature of the optimized nanostuctured Ni-TiN composite film was characterized by scanning transmission electron microscopy (SEM), atomic force microscope (AFM), transmission electron microscope (TEM) and X-ray(XRD).It can be clearly seen that the optimized nanostuctured Ni-TiN composite film is composed of the nanoparticles with the average grain sizes in the nanometer range, which proves that the as-obtained nanostuctured Ni-TiN composite film is substantially nanostructured in character, and the average diameter of Ni grains of the composite coatings is approximately equal to 70-80nm. Third, the anti-corrosion properties, hardness and thermostability of Ni-TiN nanocomposite films were also investigated and compared with the traditional polycrystalline Ni coatings. The results show that, compared with the traditional polycrystalline Ni film, Ni-TiN nanocomposite coatings display much better corrosion resistance, higher film hardness, and thermal stability. In addition, the hardness and anti-corrosion of Ni-TiN
     nanocomposite coatings decreases slightly with the increase of electroplating current density, which may be due to the synergism of hydrogen evolution and faster nucleation/growth rate of nickel crystallites.
     On the other hand, due to hydrogen bonding and chemical reaction between the epoxy resin and HELA, the modified epoxy was prepared in this paper. DGEBA/HELA blends were further treated with triethylenetetramine as curing agent to evaluate their thermostability and other performance as corrosion protective coating materials. DGEBA/HELA coatings showed good thermostability and corrosion resistance behavior. The investigations confirmed the dual role of HELA as environment-friendly, reactive-modifier and mild curing agent for epoxy resins. Compared with other anti-corrosive paints, we found that total porosity of modified epoxy coating was relatively high, which influenced the performance of coating and gave us the next research direction to improve the property of DGEBA/HELA coatings.
引文
[1]柯伟.中国腐蚀调查报告.北京:化学工业出版社,2003.2-8.
    [2]虞兆年.防腐蚀涂料和涂装.北京:化学工业出版社,2002,222-225.
    [3]叶康民.金属腐蚀与防护概论.北京:高等教育出版社,1993,154-165.
    [4]龚敏.金属腐蚀理论及腐蚀控制.北京.化学工业出版社,2009.
    [5]黄永昌编,金属腐蚀与防护原理·上海:上海交通大学出版社,1989.
    [6]侯保荣等著·海洋腐蚀环境理论及其应用·北京:科学出版社,1999.
    [7]李金桂,赵闺彦主编.腐蚀和腐蚀控制手册.北京:国防工业出版社,1988.
    [8]托马晓夫著.金属腐蚀及其保护的理论.北京:机械工业出版社,1965.
    [9]左景伊著.应力腐蚀破裂.西安:西安交通大学出版社,1985.
    [10]肖纪美编.应力作用下的金属腐蚀.北京:化学工业出版社,1990.
    [11]王受谦,杨淑贞.防腐蚀涂料与涂装技术.北京:化学工业出版社,2002.
    [12]林玉珍,杨德钧.腐蚀和腐蚀控制原理.第一版.北京.中国石化出版社,2007,1-7.
    [13]Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature,1997,6644(388):756-758.
    [14]Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applide Physics Letters,1998,25(72): 3270-3272.
    [15]Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications[J]. Chemphyschem,2000, 1(1):18-52.
    [16]Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials,2003,5(15):464-466.
    [17]Park H, Park J, Lim AKL, et al. Nanomechanical oscillations in a single-C-60 transistor[J]. Nature,2000,6800(407):57-60.
    [18]Wang XD, Summers CJ, Wang ZL. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J].Nano letters,2004,3(4):423-426.
    [19]Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery[J]. Colloids and Surfaces B-Biointerfaces,1999,1-4(16):3-27.
    [20]Vitos L, Ruban AV, Skriver HL, et al. The surface energy of metals[J]. Surface Scince,1998, 1-2(411):186-202.
    [21]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002.
    [22]李荣久,茹红强,孙旭东.陶瓷.金属复合材料.北京:冶金工业出版社,2002.
    [23]郭鹤桐,张三元.复合镀层.天津:天津大学出版社,1991.
    [24]蒋斌,徐滨士,董世运.纳米复合镀层的研究现状.材料保护,2002,35(6):1-3.
    [25]王为,郭鹤桐.纳米复合镀技术.化学通报.2003,3:178-183.
    [261邓姝皓,龚竹青,陈文汩.电沉积纳米晶体材料的研究现状与发展.电镀与涂饰,2001,4:35-39.
    [27]Muller B, Ferkel H. Al2O3-nanoparticle distribution in plated nickel composite films. Nanostructured Materials,1998,8(10):1285-1288.
    [28]Wu H E, Wu X J, Ge M Y, et al. Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives. Composites Science and Technology,2007, 6(67):1113-1120.
    [29]Shrestha N K, Takebe T, Saji T. Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings. Diamond&Related Materials,2006,10(15):1570-1575.
    [30]姚寿山,李戈扬,胡文彬.表面科学与技术.北京:机械工业出版社,2005.
    [31]李宁,屠振密.化学镀实用技术.北京:化学工业出版社,2004.
    [32]A.Simos, U.S. Patent 2,571,722 (1949).
    [33]H B Temam, A Chala, S Rahmane, et al.Microhardness and corrosion behavior of Ni-SiC Electrodeposited coatings. Plasma Processes and Ploymers,2004,4:618-621.
    [34]M R Vaezi, S K Sadrnezhaad, L Nikzad. Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,315:176-182.
    [35]董世运,徐滨士,马世宁.纳米颗粒复合刷镀层性能研究及其强化机制探讨.中国表面工程,2003,16(3):17-21.
    [36]Ranganatha S, Venkatesha TV, Vathsala K. Development of electroless Ni-Zn-P/nano-TiO2 composite coatings and their properties. Applied Surface Scinec,2010,24(256):7377-7383.
    [37]Zhang Y, Peng X, Wang F. Developmeng and oxidation at 800℃ of a novel electrodeposited Ni-Cr nanocomposite film. Materials Letters,2004,58(6):1134-1138.
    [38]朱立群,李卫平.电沉积Ni-W晶态合金复合镀层研究.功能材料,1999,30(1):85-87.
    [39]Song Y Q, He D H, Xu B Q. Effects of preparation methods of ZrO2 support on catalytic performances of Ni/ZrO2 catalysts in methane partial oxidation to syngas. Applied Catalysis A-general,2008,1(338):19-28.
    [40]Zhou M, Tacconi N, Rajeshwar K. Preparation and characterization of nanocrystalline composite(nanocomposite) films of titanium dioxide and nicker by occlusion electrodeposition. Journal of Electranalytical Chemistry,1997,1-2(421):111-120.
    [41]庞启财.防腐蚀涂料涂装和质量控制.北京:化学工业出版社,2003.
    [42]王德中.环氧树脂的生产及应用.北京:化学工业出版社,2001.
    [43]孙曼灵.环氧树脂应用原理与技术.北京:机械工业出版社,2002.
    [44]李国莱,张慰盛,管从胜.重防腐涂料.北京:化学工业出版社,1999.
    [45]Shieh J Y, Wang C S. Synthesis and properties of Novel phosphours-containing Hardener for Epoxy Resins. Journal of Applied Polymer Science,2000,78:1636-1644.
    [46]李清秀,张炜,周红卫.环氧树脂的韧性固化剂的合成.复旦学报(自然科学版),1997,36(4):469-475.
    [47]彭长征,佘湘平,佘万能.三芳基硫鎓六氟锑酸盐引发环氧树脂阳离子光固化的研究.功能高分子学报,1997,10(3):393-398.
    [48]赵玉庭,姚希曾.复合材料基体与界面.上海:华东化工学院出版社,1992.
    [49]田军,薛群基.端羟基聚二甲基硅氧烷改性环氧树脂.材料研究学报,1997,2(11):209-211.
    [50]Takao Lijima, Masao Tomoi, Takuya Tochimoto. Toughening of epoxy resins by modification with aromatic polyesters. J. Appl. Polym. Sci.,1991,43(3):463-474.
    [51]石胜伟,曹有名.环氧树脂增韧改性新方法.现代化工,1999,19(6):14-18.
    [52]D. Ratna, G. P. Simon. Thermal and mechanical properties of a Hydroxyl-functional dendritic HyperbranchedPolymer and trifunctional epoxy resin blends. Polym Eng Sci,2001, 41(10):1815-1822.
    [53]任天斌,黄艳霞.自乳化型水性环氧树脂固化剂的制备及性能.建筑材料报,2006,9(3):317-322.
    [54]石磊,刘伟区.新型水性环氧树脂涂料的研制.涂料工业,2006,36(9):11-14.
    [55]Kim K B, Shin H J. Modification of waterborne polyurethane by forming latexinter penetrating polymer networks with acrylic rubber. Colloid Polymer Science,2002, (280): 716-724.
    [56]Williams N, Warfield G B. Aqueous Coating Compositions Containing Polyurethane-Acrylic Hybrid Polymer Dispersions. US Patent 20040254292 (2004).
    [1]陈天玉.镀镍工艺基础.北京:化工工业出版社,2006.
    [2]丁桢祥,张允诚,杨信仰,郑瑞庭.北京:化工工业出版社,2006.
    [3][美]王中林等著,曹茂盛,李金刚译.纳米材料表征.化学工业出版社,北京,2005.
    [1]B.S. Xu, H.D. Wang, S.Y. Dong, B. Jiang, W.Y. Tu. Eletrodepositing nickel silica nano-composites coatings [J]. Eletrochemistry communications,2005,7:572-575.
    [2]B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction,3rd Edn., Englewood Cliffs: Prentice-Hall,2001:399-403.
    [3]李铁藩.金属晶界在高温氧化中的作用[J].中国腐蚀与防护学报,2002,22:180-183.
    [4]S.Zhang, D. Sun, Y. Q. Fu and H. J. Du, Recent advances of superhard nanocomposite coatings:a review [J]. Surf. Coat. Technol.2003,167:113-119.
    [5]王立平等.脉冲电流密度对电沉积纳米晶镍织构和硬度的影响[J].电镀与精饰,2005,27(3):40-42.
    [6]李照美等.脉冲电沉积纳米晶镍在金刚石工具制造中的应用研究[J].中国表面工程,2005,18(5):43-46.
    [7]J.P. Celis, J.R. Roos, C. Buelens. A matematical model for the electrolytic codeposition of particles with a metallic matrix [J]. J.Electrochem.Soc,134 (6) (1987) 1402-1408.
    [1]M. Srividhya, M.S. Lakshmi, B.S.R. Reddy, Macromol. Chemistry of siloxane amide as a new curing agent for epoxy resins:Material characterization and properties [J]. Chem. Phys. 2005(206):2501-2511.
    [2]E. Sharmin, L. Imo, S.M. Ashraf, S. Ahmad. Acrylic-melamine modified DGEBA-epoxy coatings and their anticorrosive behavior [J]. Prog.Org.Coat.2004(50):47-54.
    [3]S. Ahmad, S.M. Ashraf, A. Hasnat. Studies on ambient cured polyurethane modified epoxy coatings synthesized from a sustainable resource [J]. Progress in Crystal Growth and Characterization of Materials.2002(45):83-88.
    [4]S. Ahmad, A.P. Gupta, E. Sharmin, M. Alam, S.K. Pandey. Synthesis, characterization and development of high performance siloxane-modified epoxy paints [J]. Prog. Org. Coat. 2005(54):248-255.
    [5]S. Ahmad, S.M. Ashraf, E. Sharmin, A. Mohomad, M. Alam. Synthesis, formulation, and characterization of siloxane-modified epoxy-based anticorrosive paints [J]. J. Appl. Polym. Sci.2006(1000):4981-4991.
    [6]M. Akay, J.C. Cracknell. Epoxy-Resin Polyethersulfone Blends [J]. J. Appl. Polym. Sci.1994 (52):663-688.
    [7]D.J. Hourston, J.M. Lane. The Toughening of Epoxy-Resins with Thermoplastics.1. Trifunctional Epoxy-Resin Polyetherimide Blends [J]. Polymer 1992(33):1379-1383.
    [8]H.C. Hsia, C.C.M. Ma, M.S. Li, D.S.J. Chen. Glycidyl-Terminated Polyurethane Modified Epoxy-Resins Mechanical-Properties, Adhesion Properties, and Morphology [J]. J. Appl. Polym. Sci.1994(52):1137-1151.
    [9]李国莱,张慰盛,管从胜.重防腐涂料.北京:化学工业出版社,1999.
    [10]F.L. Jin, S.J. Park. Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils [J]. Polym. Int.2008 (57):577-583.
    [11]J. Creus, H. Mazille, H. Idrissi. Porosity evaluation of protective coatings onto steel, through electrochemical techniques [J]. Surf. Coat. Technol.2000 (130):224-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700