水介质中C_(60)纳米晶体颗粒的光化学反应活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术的迅速发展在带给人类生产和生活巨大变化的同时,其潜在的环境负效应也引起了人们的广泛关注。纳米材料可以通过点源或非点源的途径释放进入到水环境中,其累积浓度随着纳米材料市场的逐渐增大、生产费用的逐渐降低和新产品的不断研发而逐渐增大。富勒烯(fullerene)是被广泛应用在物理化学、材料科学和生物医学等领域的碳纳米材料之一。在种类繁多的富勒烯家族中,C_(60)由于其奇特的物理、化学特性和结构的稳定性,是目前世界各国研究的一种新型纳米材料,其环境安全性日益受到关注。本论文依托国家自然科学基金课题(No. 20907030),以C_(60)为模型碳纳米材料,研究了其在水介质中的光化学反应活性特征,为深入认识其在环境中的迁移转化特性及生物生态效应提供理论依据。
     论文主要针对水介质中C_(60)所形成的C_(60)纳米晶体颗粒(nC_(60))的光化学反应活性进行了三个方面的研究工作:1.采用甲苯置换法及水溶液长期搅拌法制备nC_(60),并通过透射电子显微镜、动态光散射、和Zeta电位等手段对制备的nC_(60)进行表征;2.探究水介质中nC_(60)的光化学反应活性特征,以及表面活性剂,包括非离子表面活性剂TX-100、TX-405,阳离子表面活性剂CTAB和阴离子表面活性剂SDS及天然有机物(腐植酸)对nC_(60)的光化学反应活性诱导特性和诱导机制,并探索了扩散状态对nC_(60)光化学反应活性产生的影响;3.研究了水介质中nC_(60)对过氧化氢和超氧阴离子自由基参与反应的作用以及环境因素对此作用的影响。
     论文研究结果表明:1.采用甲苯置换法和水溶液长期搅拌法能够成功制备出nC_(60)。表征结果显示,水介质中nC_(60)呈负电性,表面电位为-46mV,平均粒径约为115nm;2.对nC_(60)的光化学反应活性特征及诱导特性的研究表明,水介质中nC_(60)失去了其在分子态时所具有的光化学反应活性,而非离子表面活性剂TX-100能够诱导其恢复光化学反应活性,且诱导作用与其对nC_(60)的包裹、再分散作用有关;3.在光照条件下,水介质中nC_(60)能够对过氧化氢和超氧阴离子自由基参与的反应产生促进作用,且此作用会受到pH、光照等环境条件和nC_(60)浓度的影响。
     本课题研究发现了水介质中C_(60)纳米晶体颗粒能够被其共存物质诱导而恢复光化学反应活性,同时对某些氧自由基参与的反应有促进作用,对深入理解其在环境中的生物毒性及迁移转化归趋机制具有重要意义。
While the rapid development of nanotechnology brings tremendous change to industrial production, as well as daily life of people, much attention has been paid to its potential negative effect on the environment. Nanomaterials are being discharged from point sources and nonpoint sources into water environment with the expansion of raw material market, the decline of production cost, and the development of new products, resulting in a continuously rising cumulative concentration of nanomaterials in water environment. Fullerenes have been found to have a wide application in the field of physical chemistry, material science and biomedicine so on. C_(60) is one member of fullerenes. As a novel nanomaterial, C_(60) has attracted worldwide attention because of its special physical, chemical properties, and its surprisingly stable structure, along with concerns over its environmental security. This research, supported by National Natural Science Foundation of China (No.20907030), focusing on photochemical properties of nanoscale C_(60) in water, so as to contribute to further academic study on its transport and transformation fate, and biological and ecological effect.
     The thesis consists of three main contents with respect to photochemical properties of C_(60) nanocrystallines (nC_(60)) derived from C_(60) in water. First, son/nC_(60) and aqu/nC_(60) were prepared via toluene solvent- exchange method and stirring method in the aqueous solution, respectively. The prepared nC_(60) was characterized by TEM and zetasizer. Second, photochemical properties of nC_(60) aggregates with no coexisting agents, nC_(60) aggregates dispersed in surfactants (including anion surfactant SDS, cation surfactant CTAB, and non-ion surfactants TX-100 and TX-405), and nC_(60) aggregates dispersed in natural organic matter(humic acid)were evaluated. The mechanism of restoration of photochemical properties and the effect of dispersion status of nC_(60) aggregates on the photochemical properties were explored and analysed. Third, this study evaluated the effect of nC_(60) aggregates in water on reactions involving H_2O_2 or superoxide radicals, and probed in reaction mechanisms.
     The following conclusions have been drawn from this research: First, nC_(60) could be prepared via toluene solvent-exchange method or stirring method in the aqueous solution. nC_(60) aggregates were verified to be negatively charged, with surface potential of -46mv, and Z-average of 115nm. Second, nC_(60) aggregates in water were found to be photochemical inert, losing photochemical reactivity that C_(60) molecules would ever possess. However, photochemical reactivity of nC_(60) aggregates could be restored by TX-100, which could encapsulate and disperse nC_(60) aggregates. Third, nC_(60) aggregates in water was found to have stimulative effect on reactions involving H_2O_2 or superoxide radicals, under UV irradiation, and this effect could be influenced by pH, irradiation intensity, and concentration of nC_(60) in water.
     In conclusion, this subject study has demonstrated that photochemical reactivity of nC_(60) aggregates in water can be restored by certain coexisting agents. And, nC_(60) aggregates are liable to have stimulative effect on reactions involving certain reactive oxygen species. Such findings would profoundly facilitate understanding of biotoxicity and fate of transformation and transport of nC_(60) aggregates.
引文
[1]曹新,赵振华.纳米科技时代-奇迹、财富与未来[M].北京:经济科学出版社, 2001.
    [2]林道辉,冀静,田小利等.纳米材料的环境行为与生物毒性[J].科学通稿, 2009, 54(23): 3590-3604.
    [3]Figovsky, O., Beilin, D., Blank, N. Advanced environment friendly nanotechnologyes. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, 19-30.
    [4]方云,杨澄宇,陈明清等.纳米技术与纳米材料(I)——纳米技术与纳米材料简介[J].日用化学工业, 2003, 33(1):55-59.
    [5]Inventories of consumer products-Analysis[EB/OL]. [2010-11-02]. http://www.nanotechproject.org/ inventories/consumer/analysis_draft/.
    [6]Tagmatarchis, N., Shinohara, H. Fullerenes in medical chemistry and their biological applications[J]. Mini-Reviews in Medical Chemistry, 2001, 1: 339-348.
    [7]Cravino, A., Sariciftci, N.S. Double-cable polymers for fullerene based organic optoelectronic applications[J]. Journal of Material Chemistry, 2002, 12: 1931-1943.
    [8]Guldi, D.M., Martín N. Fullerenes: From synthesis to optoelectronic properties[M]. Dordrecht, The netherlands, Kluwer Academic Publisher, 2002.
    [9]?sawa, E. Perspectives of fullerene nanotechnology[M]. Berlin, Germany, Springer, 2002.
    [10]川合知二(陆求实译).图解纳米技术的应用[M].上海:文汇出版社, 2004.
    [11]严庆丰,钱凯先,李文铸.富勒烯C60生物学研究进展及其物理化学基础[J].生命科学研究与应用, 1996, 231-234.
    [12]Hauler, R.E., Smalley, R.E., Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion[J]. Journal of Physical Chemistry, 1990, 94(24): 8634-8636.
    [13]晏晓敏,石宝友,王东升等.纳米富勒烯(nC60)的生态毒性效应[J].化学进展,2008, 20: 422-428.
    [14]Murayama, H., Tomonoh, S., Alford, J.M., et al. Fullerene production in tons and more: From science to industry [J]. Fullerenes, Nanotubes, Carbon Nanostruct., 2004, 12: 1-9.
    [15]Mcneely, G. http ://www. samlltimes. Com/articles/article.display. cfm ? article. id = 269050 &p = 109 [Z], 2007-06-22.
    [16]郑元昌.日本开发富勒烯的生产方法[J].化工成产与技术, 2002, 9(3): 39.
    [17]黄红霞,黄可龙,刘素琴.储氢技术及其关键材料研究进展[M]. 2008,化工新型材料, 36(11): 27-29.
    [18]韩汝珊.一个新的足球烯家族[M].北京:湖南教育出版社, 2004.
    [19]张昭.面向21试剂课程教材—无机精细化工工艺学第二版[M].化学工业出版社, 2005, 11-14.
    [20]张立德,牟季美.纳米材料学[M].沈阳:辽宁科学技术出版社, 1994.
    [21]Schinzi, R.F., et al. Antimicrobiol. Agents and Chemotherapy, 1993, 37:1707.
    [22]Sijkesma, R., Srdanov, G., Wudl, F., et al. Synthesis of a fullerene derivative for the inhibition ofHIV enzymes[J]. Journal of American Chemical Society, 1993, 115: 6510.
    [23]纪莉景,胡同乐,曹克强.纳米技术及其在生物和环保领域的应用前景[J].河北农业大学学报, 2002, 25sup: 199-201.
    [24]宗占国.现代科学技术导论第二版[M] .高等教育出版社, 2004, 370-374.
    [25]张莉莉,蒋惠亮,陈明清,方云,陆路德.纳米技术与纳米材料(Ⅷ)——无机纳米材料在传统产业中的应用[J].日用化学工业, 2004, 34(2): 123-126.
    [26]Li, W. et al. Water Soluble C60-Liposome and the Biological Effect of C60 to Human Cervix Cancer Cells[J]. Chinese Physics Letters, 11: 207.
    [27]肖瑜.中国富勒烯的研究进展[J].广西科学, 2003, 10 (2) : 113-116.
    [28]沈海军,刘根林.新型碳纳米材料:碳富勒烯[M].上海:国防工业出版社, 2008.
    [29]Harold, K.. C60 and carbon: a postbuckminsterfullerene perspective[J]. International Journal of Mass Spectrometry, 2000, 200: 253–260.
    [30]Klaine, S.J., Alvarez, P.J.J., Batley, G.E., et al. Nanomaterials in the Environment: Behavior, Fate, Bioavailablity, and Effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825-1851
    [31]Ruoff R.S., Tse D.S., Malhotra R.,et al.Solubility of C60 in a variety of solvents[J]. The Journal of Physical Chemistry, 1993:3379-3383.
    [32]Alargova, R.G., Deguchi, S., Tsujii, K. Stable colloidal dispersions of fullerenes in polar organic solvents[J]. Journal of the American Chemical Society, 2001, 123: 10460-10467.
    [33]汤鸿霄.环境纳米污染物与微界面水质过程[J].环境科学学报, 2003, 23(2).
    [34]Brant, J.A., Labille, J., Bottero, J.Y., et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry[J]. Langmuir, 2006, 22: 3878-3885.
    [35]Espinasse, B., Hotze, E.M., Wiesner, M.R. Transport and retention of colloidal aggregates of C60 in porous media: Effects of organic macromolecules, ionic composition, and preparation method[J]. Environ ental Science & Techonology, 2007, 41: 7396-7402.
    [36]徐磊,段林,陈威.碳纳米材料的环境行为及其对环境中污染物迁移归趋的影响.应用生态学报, 2009, 20(1): 205-212.
    [37]Deguchi, S., Alargova, R.G., Tsujii, K. Stable dispersions of fullerenes, C60 and C70, in water: Preparation and characterization[J]. Langmuir, 2001,17: 6013-6017.
    [38]Andrievsky, G.V., Klochkov, V.K., Karyakina, E.L., et al. Studies of aqueous colloidal solutions of fullerene C60 by electron microscopy[J]. Chemical Physics Letters, 1999, 300: 392-396.
    [39]Kai, L.C., Menachem, E. Aggregation and Deposition Kinetics of Fullerene (C60 ) Nanoparticles[J]. Langmuir, 2006, 26:10994-11001.
    [40]Li, H., Jia, X., Li, Y., et al. A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C60 in water[J]. Journal of Physical Chemistry, 2006, 110:68- 74.
    [41]Zhang, B., Cho, M., Hughes, J.B., et al., Translocation of C60 from aqueous stable colloidal aggregates into surfactant micelles[J]. Environmental Science & Technology, 2009, 43(24): 9124-9129.
    [42]Moore, V.C., Strano MS, Haroz EH, et al. Individually suspended single-walled carbon nanotubes in various surfactants[J]. Nano Letters, 2003, 3:1379-1382.
    [43]Girifalco, L.A., Hodak, M., Lee, R.S. Carbon nanotubes, buckyballs, ropes, and a universalgraphitic potential[J].Physical Review, 2000, 62: 13104-13110.
    [44]Lin, D, Xing, B.S. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions[J]. Environmental Science & Technology, 2008, 42: 5917-5923.
    [45]Karajanagi SS, Yang H, Asuri P, et al. Protein-assisted solubilization of single-walled carbon nanotubes[J].Langmuir, 2006, 22:1392-1395.
    [46]Sayes, C.M., Marchione, A.A., Reed, K.L., et al. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles[J].Nano Letters, 2007, 7: 2399-2406.
    [47]Usenko, C., Harper S, Tanguay R. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish[J]. Toxicology and Applied Pharmacology, 2008, 229: 44-55.
    [48]高健,王韬,王文兴.中国城市大气超细颗粒物浓度及粒径分布研究[C]//中国气象学会2006年年会“大气成分与气候、环境变化”分会场论文集, 2006.
    [49]Wichmann, H.E., Cyrys, J., Stolzel, M., et al.Sources and elemental composition of ambient particles[A]//Wichmann, H.E., Schlipkoter, H.W., Fulgraff, G. Fortschritte in der Umweltmedizin [C].Erfurt, Germany: Ecomed Publishers.
    [50]白伟,张程程,姜文君等.纳米材料的环境行为及其毒理学研究进展[J], 2009, 4(2): 174-182.
    [51]Biswas, P., Wu, C.Y. Critical review:nanoparticles and the environment[J]. Journal of Air&Waste Management Association, 2005 , 55: 1411-1418.
    [52]Utsunomiya, S., Jensen, K.A., Keeler, G.J., et al. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere [J]. Environmental Science & Technology, 2004, 38(8):2289-2297.
    [53]Preining, O. The physical nature of very, very small particles and its impact on their behavior[J]. Journal of Aerosol Science, 1998, 29(5-6): 481-495.
    [54]Park, K., Kim, J.-S., Park, S.H. Measurements of Hygroscopicity and Volatility of Atmospheric Ultrafine Particles during Ultrafine Particle Formation Events at Urban, Industrial, and Coastal Sites [J]. Environmental Science & Technology, 2009, 43:6710-6716.
    [55]李国栋,熊翔,黄伯云.纳米粉体大气环境团聚机理及无团聚纳米粉体的制备[J].中南大学学报(自然科学版),2004, 35(4): 527-531.
    [56]Thomas, K.D., Arianne, M.N., Matthew, T.S., et al. Nanoparticle Characteristics Affecting Environment Fate and Transport through soil[J]. Environmental Toxicology and Chemistry, 2009, 28(6):1191-1199.
    [57]Lecoanet, H.F., Bottero, J.Y., Wiesner, M.R. Laboratory assessment of the mobility of nanomaterials in porous media[J]. Environmental Science & Technology, 2004, 38(19): 5164-5169.
    [58]Lecoanet, H.F., Wiesner, M.R. Velocity effects on fullerene and oxide nanoparticle deposition in porous media[J]. Environmental Science & Technology,2004, 38(16): 4377-4382.
    [59]Cheng, X., Kan, A.T., Tomson, M.B. Naphthalene adsorption and desorption from aqueous C60 fullerene[J]. Journal of Chemical & Engineering Data, 2004, 49: 675-683.
    [60]Cheng, X.K., Kan, A.T., Tomson, M.B.. Study of C60 transport in porous media and the effect of sorbed C60 on naphthalene transport[J].Journal of Materials Research, 2005, 20(12): 3244-3254.
    [61]Wang, Y., Li, Y., Pennell, K.D. Influence of Electrolyte Species and Concentration on TheAggregation and Transport of Fullerene Nanoparticles in Quartz Sands[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1860-1867.
    [62]Corredor, E., Testillano, P.S., Coronado, M.-J., et al. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification[J]. BMC Plant Biology, 2009, 9, art.no.45.
    [63]Heymann, D., Solubility of C60 and C70 in seven normal alcohols and their deduced solubility in water[J]. Fullerene Science and Technology, 1996,4: 509-515.
    [64]Heymann, D., Solubility of C60 and C70 in water[J].Lunar Planet Science, 1996, 27: 543-544.
    [65]Ying, Q.C., Zhang, J., Liang, D.H., et al. Fractal Behavior of Functionalized Fullerene Aggregates. I. Aggregation of Two-Handed Tetraaminofullerene with DNA[J]. Langmuir, 2005, 21 (22): 9824- 9831.
    [66]Rudalevige, T., Francis, A.H., Zand, R. Spectroscopic Studies of Fullerene Aggregates[J]. Journal of Physical Chemistry A, 1998, 102 (48):9797-9802.
    [67]Sun, Y. P., Ma, B., Bunker, C. E., et al. All-Carbon Polymers (Polyfullerenes) from Photochemical Reactions of Fullerene Clusters in Room-Temperature Solvent Mixtures[J]. Journal of American Chemical Society, 1995, 117(51):12705-12711.
    [68]Nath, S., Pal, H.,Palit, D.K., et al. Steady-State and Time-Resolved Studies on Photoinduced Interaction of Phenothiazine and 10-Methylphenothiazine with Chloroalkanes[J]. Journal of Pyscical Chemistry, 1998, 102(50):10158-10164.
    [69]Andrievsky, G.V., Kosevich, M.V., et al. On the production of aqueous colloidal solution of fullerenes [J]. Journal of the Chemical Society, Chemical Communications, 1995, 12: 1281-1282.
    [70]Fortner, J.D., Lyon, D.Y., et al. C60 in water: nanocrystal formation and microbial response[J]. Environmental Science & Technology, 2005, 39: 4307-4316.
    [71]Deguchi, S., Mukai, S-a., et al. Facile generation of fullerene nanoparticles by hand-granding[J]. Advanced Materials, 2006, 18: 729-732.
    [72]Duncan, L.K., et al. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge[J]. Environmental Science & Technology, 2008, 42: 173-178.
    [73]Brant, J.,Lecoanet, H.,Hotze, M.,et al. Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures[J]. Environmental Science & Technology, 2005, 39(17): 6343-6351.
    [74]Sayes, C.M., Gobin, A.M., Ausman, K.D., et al. Nano-C60 cytotoxicity is due to lipid peroxidation [J]. Biomaterials, 2005, 26:75-95.
    [75]Lyon, D.L., Adams, L .A., et al. Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size[J]. Environmental Science & Technology, 2006, 40: 4360-4366.
    [76]Andrievsky, G.V., Klochkov, V.K., Bordyuh,et al.Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy[J]. Chemical Physics Letters, 2002, 364:8-17.
    [77]Wei, X.W.,Wu, M.,Qi, L.,Zheng, X. Selective solution-pahse generation and oxidation reaction of C60n-(n) 1,2) and formation of an aqueous colloidal solution of C60[J]. Journal of Chemical Society, Perkins Trans.1997, 2:1389-1393.
    [78]Avdeev, M.V.,Khokhryakov, A.A.,Tropin, T.V., et al. Structural features of molecular-colloidalsolutions of C60 fullerenes in water by small-angle neutron scattering[J]. Langmuir , 2004, 20:4363-4368.
    [79]Scrivens, W.A.,Tour, J.M., Creek, K.E., et al. Synthesis of 14 C-labeled C-60, its suspension in water, and its uptake by human keratinocytes[J].Journal of American Chemical Society, 1994, 116 (10): 4517-4518.
    [80]Brant, J., Lecoanet, H.,Wiesner, M.R., Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems[J]. Journal of Nanoparticle Research, 2005, 7(4-5):545-553.
    [81]Dhawan, A., Taurozzi, J.S., Pandey, A.K..Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity[J]. Environmental Science & Technology, 2006, 40 (23): 7394-7401.
    [82]Yamakoshi, Y.N., Yagami, T., Fukuhara, K.,et al. Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests[J]. Journal of the Chemical Society, Chemical Communications, 1994, 4: 517- 518.
    [83]Bensasson, R.V., Bienvenue, E., Dellinger, M.,et al. C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation[J]. Journal of Physical Chemistry, 1994, 98: 3492-3500.
    [84]Service, R.F. American Chemical Society meeting. Nanomaterials show signs of toxicity[J]. Science, 2003, 300(5617): 243.
    [85]Brumfiel, G. Nanotechnology: a little knowledge[J].Nature, 2003, 424(6946): 246-248
    [86]Colvin, V.L. The potential environmental impact of engineered nanomaterials[J]. Nature Biotechnology, 2003, 21(10):1166-1170.
    [87]Zhao, Y.L., Nalwa, H.S. Nanotoxicology[M].Los Angeles, California, CA: American Scientific publishers, 2006.
    [88]Renwick, L.C., Brown, D., Clouter, A., et al.Increased inflammation and altered macrophage chemotactic response caused by two ultrafine particle types [J]. Occupational and Environmental Medicine, 2004, 61(5): 442-447.
    [89]Keith, M. Tiny air particles may get into the blood[J].Circulation, 2002,105:411-414.
    [90]Giles, J. Nanoparticles in the brain[J]. Nature, 2004, Jan,9( Internet edition).
    [91]Oberd?rster, E. Manufactured nanomaterials(Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass[J]. Environmental Health Perspective, 2004, 112(10): 1058-1062.
    [92]EPA. Impact of manufacyured nanomaterials on human health [OL]. http://alpha.ddm.uci.edu/ zotmail/archive/2004.
    [93]Risom, L., Moller, P., Loft, S. Oxidative stress-induced DNA damage by particulate air pollution [J]. Mutation Research, 2005, 592:119-137.
    [94]Oberd?rster, E., Zhu, S.Q., et al. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow[J]. Marine Environmental Research, 2006, 62: S5-S9.
    [95]朱小山,朱琳,郞宇鹏等.人工纳米材料富勒烯(C60)低剂量长期暴露对鲫鱼的氧化伤害[J].环境科学, 2008a, 29(4):855-861.
    [96]Henry, T.B., Menn, F.M., Fleming, J.T., et al. Attributing effects of aqueous C60 nano-aggregates to tetrahydrofuran decomposition products in larval zebrafish by assessment of gene expression[J]. Environmental Health Perspectives, 2007, 115(7): 1059-1065.
    [97]Shinohara, N., Matsumoio, T., Gamo, M., et al. Is Lipid Peroxidation Induced by the Aqueous Suspension of Fullerene C60 Nanoparticles in the Brains of Cyprinus carpio? [J] Environmental Science and Technology, 2009,43 (3): 948-953.
    [98]Oberd(?)rster, G., Sharp, Z., Atudorei, V., et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats[J]. Journal of Toxicology and Environmental Health A, 2002, 65:1531-1543.
    [99]Garcia-Garcia, E., Andrieux, K., Gil, S., Kima, H.R., et al. A methodology to study intracellular distribution of nanoparticles in brain endothelial cells[J]. International Journal of Pharmaceutics, 2005, 298:310-314.
    [100]Gurr, J.R., Wang, A.S.S., Chen, C.H., et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells[J]. Toxicology, 2005, 213:66-73 and references therein.
    [101]Stone, V., Shaw, J., Brown, D.M., et al. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function[J]. Toxicology In Vitro, 1998, 12: 649-659
    [102]Singal, M., Finkelstein, J.N. Amourphous silica particles promote inflammatory gene expression through the redox sensitive transcription factor, AP-1, in alveolar epithelial cells[J]. Experimental Lung Research, 2005, 31:581-597.
    [103]Kreyling, W.G., Semmler, M., Erbe, F., et al.Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low[J]. Journal of Toxicology and Environmental Health, 2002, A65:1513-1530.
    [104]Kukowska-Latallo, J.F., Candido, K.A., Cao, Z., et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer[J]. Cancer Research, 2005, 65: 5317-5324.
    [105]Kato, T., Yashiro, T., Murata, Y., et al. Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries[J]. Cell and Tissue Research, 2003, 311(1):47-51.
    [106]Juvin, P., Fournier, T., Boland, S., et al. Diesel particles are taken up by alveolar type II tumor cells and alter cytokine secretion Arch[J]. Environmental Health, 2002, 57:53-60.
    [107]Peters, A., Veronesi, B., Calderon-Garciduenas, L.,et al.Translocation and potential neurological effects of fine and ultrafine particles. A critical update[J]. Particle and Fibre Toxicology, 2006, 3:13.
    [108]Rothen-Rutishauser, B.M., Schurch, S., Haenni, B., et al. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques[J]. Environmental Science & Technology, 2006, 40:4353-4359.
    [109]Nemmar, A., Hoylaerts, M.F., Hoet, P.H.M., et al.Ultrafine particles affect experimental thrombosis in an vivo hamster model[J]. American Journal of Respiratory and Critical Care Medicine, 2002, 166:998- 1004.
    [110]Oberdorster, G., Sharp, Z., Atudorei, V., et al. Translocation of inhaled ultrafine particles to the brain[J]. Inhalation Toxicology, 2004, 16:437-445.
    [111]Borm, P.J.A., Robbins, D., Haubold, S.,et al. The potential risks of nanomaterials: a review carriedout for ECETOC (review) [J]. Particle and Fibre Toxicology, 2006, 3:11.
    [112]Oberd?rster, G., Oberd?rster, E., Oberd?rster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles[J]. Environmental Health Perspective, 2005,113:823-839 and supplemental material found at http://www.ehponline.org/members/2005/7339/7339.html.
    [113]Liu, J., Wong, H.L., Moselhy, J., et al. Targeting colloidal particulates to thoracic lymph nodes[J]. Lung Cancer, 2006, 51(3):377-386.
    [114]Lockman, P.R., Koziara, J.M., Mumper, R.J., et al. Nanoparticle syrface charges alter blood-brain barrier integrity and permeability[J]. Journal of Drug Targeting, 2004, 12:635-641.
    [115]Long, T.C., Tajuba, J., Sama, P., et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro[J]. Environmental Health Perspectives, 115(11): 1631-1637.
    [116]Tsuchiya, T., Oguri, I., Yamakoshi, Y.N., et al. Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo[J]. FEBS Letters, 1996, 393:139-145.
    [117]Sayes, C.M., Fortner, J.D., Guo, W. The differential cytotoxicity of water-soluble fullerenes[J]. Nanoletters, 2004, 4(10):1881-1887.
    [118]Calderón-Garcidue?as, L., Maronpot, R.R., Torres-Jardon, R., et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration[J]. Toxicological Pathology, 2003, 31:524-538.
    [119]Moore, M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?[J]. Environmental International, 2006, 32(8):967-976.
    [120]Shin, J.-S., Abraham, S.N. Caveolae-not just craters in the cellular landscape[J].Science, 2001, 293(5934):1447–8.
    [121]Van der Goot, F.G., Gruenberg, J. Oiling the wheels of the endocytic pathway[J]. Trends in Cell Biology, 2002, 12(7): 296–299.
    [122]Ringwood, A.H., Hoguet, J., Keppler, C.J., et al. Linkages between cellular biomarker responses and reproductive success in oysters[J]. Marine Environmental Research, 2004, 58:152–155.
    [123]Ringwood, A.H., Levi-Polyachenko, N., Carroll, D.L. Fullerene Exposures with Oysters: Embryonic, Adult, and Cellular Responses[J]. Environmental Science and Technology, 2009, 43(18):7136-7141.
    [124]Kashiwada, S. Distribution of Nanoparticles in the See-through Medaka (Oryzias latipes) [J]. Environmental Health Perspectives, 2006, 114(11): 1697-1702.
    [125]Ma, T., Wan, X., Huang, Q., et al. Biomarker responses and reproductive toxicity of the effluent from a Chinese large sewage treatment plant in Japanese medaka (Oryzias latipes)[J]. Chemosphere, 2005, 59:281–288.
    [126]Lovern, S.B., Strickler, J.R., Klaper, R. Behavioral and Physiological Changes in Daphnia magna when Exposed to Nanoparticle Suspensions(Titanium Dioxide, Nano-C60, and C60HxC70Hx)[J]. Environmental Science and Technology, 2007, 41(12):4465-4470.
    [127]Foote, C.S. Photophysical and photochemical properties of fullerenes [J].Topics in Current Chemistry: Electron-Transfer I, 1994, 169:347-363.
    [128]Sun, Y.P., Lawson, G.E, Bunker, C.E., et al. Preparation and characterization of fullerene-styrene copolymers [J]. Macromolecules., 1996,29 (26):8441-8448.
    [129]Abogast, J.W., Darmanyan, A.P., et al. Photophysical properties of C60[J]. Journal of Physical Chemistry-US, 1991, 95: 11-12.
    [130]Arbogast, J.W., Foote, C.S., Kao, M. Electron transfer to triplet fullerene C60 [J]. Journal of American Chemical Society, 1992,114:2277-2279.
    [131]Brezova?, V., Stasko, E., Rapta, P., et al. Fullerene anion formation by wlectron transfer from amino donor to photoexcited C60. Electron Paramagnetic Resonance Study [J]. Journal of Pyscical Chemistry, 1995, 99:16234-16241.
    [132]Wasielewski, M.R., O 'Neil, M.P., Lykke, K.R., et al. Triplet states of fullerenes C60 and C70. Electron paramagnetic resonance spectra, photophysics, and electronic structures [J]. Journal of American Chemical Society, 1991, 113: 2774-2776.
    [133]Arbogast, J.W., Foote, C.S. Photophysical propertyes of C70 [J]. Journal of American Chemical Society, 1991, 113: 8886-8889.
    [134]Hung, R.R., Grabowski, J.J. A precise determination of the triplet energy of carbon (C60) by photoacoustic calorimetry [J]. Journal of Pyscical Chemistry, 1991, 95:6073-6075.
    [135]Nakanishi, I., Fukuzumi, S., et al. DNA cleavage via superoxide anion formed in photoinduced electron transfer from NADH to r-cyclodextrin-bicapped C60 in an oxygen-saturated aqueous solution[J]. Journal of Pyscical Chemistry, 2002, 106: 2372-2380.
    [136]Markovic, Z., Todorovic-Markovic, B., et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes[J]. Biomaterials, 2007, 28: 5437-5448.
    [137]Lee, J., Fortner, J. D., et al. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation[J]. Environmental Science & Technology, 2007, 41: 2529-2535.
    [138]Yamakoshi, Y., Sueyoshi, S., et al. ?OH and O2?- generation in aqueous C60 and C70 solution by photoirradiation: An EPR study[J]. Journal of American Chemical Society, 1998, 120: 12363-12363.
    [139]Yamakoshi, Y., Umezawa, N., et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2?- versus O21[J]. Journal of American Chemical Society, 2003, 125: 12803-12809.
    [140]Guldi, D.M., Prato, M. Excited-state properties of C60 fullerene derivatives [J]. Accounts of Chemical Research, 2000,33(10):695-703.
    [141]Kamat, P.V., Bedja, I., Hotchnandani S. Photoinduced charge transfer between carbon and semiconductor clusters-one-electron reduction of C60 in colloidal TiO2 semiconductor suspensions [J]. Journal of Pyscical Chemistry-US, 1994, 98(37): 9137-9142.
    [142]Krusic, P.J., Wasserman, E., Parkinson, P.B.A., et al. Electron spin resonance study of the radical reactivity of C60 [J]. Journal of American Chemical Society,1991, 113(16): 6274-6275.
    [143]Sension, R. J., Szarka, A.Z., Smith, G.R., et al. Ultrafast photoinduced electron transfer to C60 [J]. Chemical Physics Letters, 1991, 185:179-183.
    [144]Hwang, K.C., Mauzerall, D. Vectorial electron transfer from an interfacial photoexcited porphyrin to ground state C60 and C70 and from ascorbate to triplet C60 and C70 in a lipid bilayer [J]. Journal of American Chemical Society,1992,114:9705-9706.
    [145]Kamat, P.V. Photoinduced charge transfer between fullerenes (C60 and C70) and semiconductor znocolloids [J]. Journal of American Chemical Society, 1991,113:9705-9707.
    [146]Stasko, A., Brezová, V., Biskupic, S., et al. EPR study of fullerene radicals generated in photosensitized TiO2 suspensions [J]. Journal of Physical Chemistry-US, 1995, 125:12803-12809.
    [147]Irie, K., Nakamura, Y., Ohigashi, H., et al. Photocytotoxicity of water-soluble fullerene derivatives [J]. Bioscience Biotechnology & Biochemistry, 1996, 60:1359-1361.
    [148]Miyata, N.,Yamakoshi, Y.,Nakanishi, I. Reactive species responsible for biological actions of photoexcited fullerenes [J]. Yakugaku Zasshi, 2000, 120(10): 1007-1016.
    [149]Orfanopoulos, M., Kambourakis, S. Chemical evidence of singlet oxygen production from C60 and C70 in aqueous and other polar media [J]. Tetrahedron Letter, 1995,36 (3):435–438.
    [150]Lee, J., Kim, J.H., Effect of encapsulating agents on dispersion status and photochemical reactivity of C60 in the aqueous phase [J]. Environmental Science & Technology, 2008, 42(5):1552-1557.
    [151]Hotze, E.M., Labille, J., Alvarez, P., et al. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water [J]. Environmental Science & Technology, 2008, 42(11): 4175-4180.
    [152]李炜,赵峰,陈春英等.碳纳米材料的细胞生物效应[J].化学进展,21(2/3):430-435.
    [153]Lyon, D.Y., Alvarez, P.J.J. Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation [J]. Environmental Science & Technology, 2008, 42(21): 8127-8132.
    [154]Lyon, D.Y., Brunet, L., Hinkal, G.W., et al. Antibacterial activity of fullerene water suspensions (nC60 )is not due to ROS-mediated damage [J]. Nano Letter., 2008, 8 (5):1539-1543.
    [155]Hood, E. Fullerenes and fish brains: nanomaterials cause oxidative stress[J]. Environmental Health Perspective, 2004, 112: A568.
    [156]Oberd?rster, E., Zhu, S., et al. Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerence (C60) on aquatic organisms[J]. Carbon, 2006, 44: 1112-1120.
    [157]Zhu, X.S., Zhu, L., et al. Developmental toxicity in zebrafish (Danio Rerio) embryos after exposure to manufactured nanomaterials: buchminsterfullerene aggregates (nC60) and fullerol[J]. Environmental Toxicology & Chemistry, 2008, 26: 976-979.
    [158]Wong-Ekkabut, J., Baoukina, S.,Triampo, W., et al. Computer simulation study of fullerene translocation through lipid membranes [J]. Nature Nanotechnology, 2008, 3:363-368.
    [159]Xie, B., Xu, Z. H., Guo, W.H., et al. Impact of natural organic matter on the physico-chemical properties of aqueous C60 nanoparticles[J]. Environmental Science & Technology, 2008, 42:2853-2859.
    [160]Chang, X.J. Effects of carboxylic acids on nC60 aggregate formation [J]. Environmental Pollution, 2009, 157(4):1072-1080.
    [161]Chang, W.Y., McClain, C. J., Liu, M. C., et al. Effects of 2(RS)-n-propylthiazolidine-4(R)- carboxylic acid on 4-hydroxy-2-nonenal-induced apoptotic T cell death[J]. Journal of Nutritional Biochemistry, 2008, 19: 184-192.
    [162]Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., et al. Reactivity of HO2/O2- radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1985, 14: 1041-1100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700