有序介孔材料的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展,环境问题的日益突显,传统的微孔材料由于较小的孔径及孔容,使其在涉及大分子的环境污染治理中受到了限制。近年来出现的介孔材料不仅具有孔道大小均一、结构排列整齐有序、孔径可以在2~50nm范围内连续调节等重要特征,并且以其高的比表面积、较大的孔容使得这类材料在吸附、催化、药物缓释等涉及大分子的分离、反应领域具有广阔的应用前景而备受人们关注。目前在介孔材料研究领域,面临的主要挑战是来自生产实际的需要,现有的介孔材料还不能完全满足多数应用的要求,并且高质量的介孔材料的制备过程大多比较繁琐、能耗较大,同时由于其结构的复杂性,使其微细结构及形成机理尚不明确,进而影响其结构调控和构效关系预测。因此,开发介孔材料的简单绿色合成方法、揭示其微细结构及形成机理、预测其构效关系、拓展其应用领域等成为介孔材料研究领域的人们课题。鉴于此,本文选取几种典型的介孔材料,就其合成工艺、合成机理、改性及其在吸附、催化方面的应用进行深入研究,为这些介孔材料的实用化提供理论和技术基础。
     第一,本文采用P123(PEO20PPO70PEO20)为模板剂,TEOS为硅源试剂,在强酸性条件下制备合成出中微双孔分子筛SBA-15,考察模板剂与硅源的摩尔比、离子导向剂、水浴老化温度以及共溶剂N,N-二甲基酰胺(DMF)对中微双孔分子筛SBA-15的孔结构参数,介孔有序性以及形貌等方面的影响。通过优化合成条件,得到制备高质量的中微双孔分子筛SBA-15的最佳合成条件。
     随后,以Gaussian链的形式对三嵌段共聚物P123(PEO20PPO70PEO20)及正硅酸四乙酯(TEOS)进行粗粒化描述,采用介观动力学(MesoDyn)方法模拟了介孔分子筛SBA-15形成过程中模板剂P123与硅源试剂TEOS的协同自组装过程,探讨了P123/TEOS超分子聚集结构对于SBA-15独特的二维六方结构形成过程的影响;同时还通过向体系引入稳恒剪切力来代替实际搅拌外力,模拟再现了SBA-15分子筛的六角介观相的形成过程。借鉴微孔分子筛的研究经验,利用介观模拟方法揭示介孔分子筛的形成过程和机理是本文的创新之处。
     第二,本文采用微波辐射晶化法,利用沸石纳米粒子的自组装分两步合成出Beta-MCM-41型中微双孔分子筛,成功地将微孔沸石的初级和次级结构单元引入到介孔分子筛MCM-41的孔壁中,从而在MCM-41有限的孔壁空间中形成了部分微孔结构,且合成的Beta-MCM-41型分子筛具有较大的比表面积和孔容,且孔径均一。用微波法取代传统能耗大、时间长的水热法快速合成新型Beta-MCM-41中微双孔分子筛,也是本文的新意之处。
     随后,本文分别用Beta、MCM-41、SBA-15、Beta-MCM-41四种分子筛及γ-Al2O3作为载体,通过等体积浸渍法制备了含15%Mo、3%Co和3%Ni的催化剂,在间歇高压加热反应釜内初步考察了六种催化剂对含二苯并噻吩(DBT)的模拟油品的催化加氢脱硫的活性。通过绘制六种催化剂的反应动力学曲线,得出六种催化剂的催化活性大小为:Co-Mo-Ni-Beta-MCM-41> Co-Mo-Ni-MCM-41> Co-Mo-Ni-γ-Al2O3> Co-Mo-Ni-SBA-15>商业Co-Mo-Al2O3> Co-Mo-Ni-Beta。新型Beta-MCM-41中微双孔分子筛显示出较好的燃油加氢脱硫性能,且其加氢脱硫反应为一级动力学反应。
     第三,本文利用呋喃甲醇和蔗糖为碳源前驱体、以SBA-15为硬模板成功合成出了两种介孔碳CMK-5和CMK-3,并用过硫酸铵和硫酸的混合液对介孔碳CMK-5进行改性,得到具有与CMK-5相同的介孔六方相结构、但具有更强表面酸性的的介孔碳CMK-5-COOH;用三嵌段聚合物F127、正硅酸四乙酯TEOS和蔗糖在浓硫酸的催化作用下通过一步EISA自组装得到大孔径、大孔容和高比表面积的介孔碳FMC。测定三种染料分子在商业活性炭和上述四种介孔碳上的吸附等温线表明,三种染料分子在五种吸附剂上的吸附都属于优惠型吸附,且在介孔碳上的吸附均优于商业活性炭。羧基化的CMK-5-COOH对碱性染料的吸附能力得到进一步的提高,而用简单一步法自组装法合成的FMC对Acidic/azo类染料甲基橙有很好的吸附能力,约为商业活性炭的3.5倍。用蔗糖取代制作工艺繁杂的酚醛树脂醇溶液作为碳源前驱体,一步自组装合成介孔碳是亦是本文的新意之处。
With the development of modern industry, the environmental problems become more and more serious. The practical applications of the traditional microporous materials on macromolecular pollutants treatment are becoming more restricted because of their small pore size and small pore volume. Recently, Mesoporous materials have attracted much more attention due to some advantages, such as their uniform pore structure, their ordered pore arrangement, as well as their controllable pore size in the range of 2 to 50 nm, their high surface area and pore volume, which are expected to be widely used in the fields involving macromolecules, such as adsorption, separation, catalysis, drug control-release and et al. At present, the main challenge mesoporous materials must face is from the practical applications. The existing mesoporous materials still could not satisfy the all requirements from the practical applications, while the time-consuming preparation process of high quality meosporous materials leads to high energy consumption. Simultaneously, the fine structure and the formation mechanism of mesoporous materials are still ambiguous as a result of their complicated structure, which have a serious impediment to the structure regulation of mesoporous materials and the structure-properties relationship forecast. Therefore, developing simple, green synthetic methods used for the preparation of mesoporous materials, revealing their fine structure and the formation mechanism of mesoporous materials, forecasting the structure-properties relationship of mesoporous materials and broadening the application areas have become the hot topics among the mesoporous materials area. In view of all mentioned above, in this paper, the synthesis process, the formation mechanism, the modification technology and the adsorption/catalysis properties of several kinds of typically mesoporous materials are investigated in order to provide theory and technology support for the practical application of these mesoporous materials.
     First of all, the micro-mesoporous molecular sieve SBA-15 is prepared under the strong acidic condition by using P123 (PEO20PPO70PEO20) and TEOS as the template and silicon source reagent respectively. The effect of the molar ratio of P123 to TEOS, the types of the ion induced agent, ageing temperature and the types of co-solvent (DMF) on the structure properties, the degree of order of mesopores and morphology of the micro-mesoporous sieve SBA-15 have been investigated. Finally, the optimal synthesis condition of high quality micro-mesoporous molecular sieve SBA-15 is obtained through the experiments.
     Afterward, the Gaussian chain is employed to roughly describe the triblock copolymer P123 and TEOS. Mesoscale Dynamics simulation method (MesoDyn) is performed to investigate the super-molecular self-assembly process between the template (triblock copolymer P123) and the silica source (TEOS) during the formation of micro-mesoporous silica SBA-15, and the 2D hexagonal mesophase formation process of SBA-15 is also studied by introducing the steady shear instead of the stirring in the actual experiments. Moreover, the effects of super-molecular aggregates (P123/TEOS) on the formation of SBA-15 are analyzed too. In this paper, Mesoscale Dynamic simulation method is employed to investigate the formation process and the formation mechanism of the mesoporous molecular sieve SBA-15 by reference to the experience in studying the microporous molecular sieves, which is the innovation of this paper.
     Secondly, the micro-mesoporous molecular sieve Beta-MCM-41 is synthesized in two steps via the self-assembly of zeolite nanoparticles under the microwave radiation The primary and secondary building units of zeolite nanoparticles are successfully introduced into the pore walls of the mesoporous molecular sieve MCM-41, and the micro-mesoporous molecular sieve Beta-MCM-41 with large surface area and large pore volume, coupled with the uniform pore diameter is obtained. In this paper, the energy-consuming and time-consuming hydrothermal synthesis method is taken place by the energy-saving and time-saving microwave radiation method to quickly prepare the novel micro-mesoporous molecular sieve Beta-MCM-41, which is also a new point of this paper.
     Then, the catalysts for fuels hydrodesulfurization (HDS) are prepared by loading 15%Mo, 3%Co and 3%Ni on the lab-prepared Beta, MCM-41, SBA-15, Beta-MCM-41 andγ-Al2O3 respectively via impregnation, and then their HDS activity is investigated by using the dibenzothiophene (DBT) as a substitute for real fuels in the high pressure heating reaction still. The reaction kinetics study shows that the catalytic activity of the six catalysts followed in the following order: Co-Mo-Ni-Beta-MCM-41> Co-Mo-Ni-MCM-41> Co-Mo-Ni-γ-Al2O3> Co-Mo-Ni-SBA-15> commercial Co-Mo-Al2O3> Co-Mo-Ni-Beta. The novel micro-meso- -porous molecular sieve Beta-MCM-41 demonstrates a good performance in HDS of fuels. The HDS reactions catalyzed by the six catalysts are all first-level dynamic reactions.
     Finally, the mesoporous carbon CMK-5 and CMK-3 are synthesized by taking furfuryl alcohol and sucrose as carbon source, and SBA-15 as hard template. And then the mesoporous carbon CMK-5 is modified by using the mixture of (NH4)2S2O8 and H2SO4 to get a new carboxylated mesoporous carbon CMK-5-COOH with the same hexagonal structure as CMK-5 and much stronger surface acidity. Subsequently, the mesoporous carbon FMC with large pore diameter, large pore volume and surface area is prepared employing triblock copolymer F127, TEOS and sucrose via one-step EISA catalysted by H2SO4. The adsorption isotherms of three kinds of dyes on commercial activated carbon and above four kinds of mesoporous carbons show that the adsorption of dyes on five kinds of adsorbents belong to benefit one, and the dye adsorbability of four mesoporous carbons is better than that of the commercial activated carbon. The basic dye adsorbability of the carboxylated CMK-5-COOH is much better than that of the CMK-5 due to the increasing surface acidity. The acidic/azo dye (methyl orange) of the mesoporous carbon FMC is proved to be excellent, approximately 2.5 times more than that of the commercial activated carbon. In this paper, the mesoporous carbon FMC is quickly and easily synthesized by taking sucrose as a carbon source instead of phenol aldehyde resinol, which is another new point of this paper.
引文
[1] IUPAC manual of symbol sand terminology [J]. Pure Appl. Chem., 1972, 31: 578-638
    [2] Stein A., Melde B.J., Schroden R.C. Hybrid inorganic-organic mesoporous silicates- -nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12: 1403-1419
    [3] Davis M.E.. Ordered porous materials for emerging application [J]. Nature, 2002, 417: 813-821
    [4] Kleitz F., Liu D., Anilkumar G.M., et al. Large cage face-centered-cubic Fm3m meso- -porous silica: synthesis and structure [J]. J. Phys. Chem. B, 2003, 107: 14296-14300
    [5] Kohtani M., Jarrold M F. Water molecule adsorption on short alanine peptides: how short is the shortest gas-phase alanie-based helix [J]. J. Am. Chem. Soc., 2004, 126: 8454-8458
    [6] Kresge C.T., Leonowicz M.E., Roth W.J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712
    [7] Beck J.S., Vartuli J.C., Roth W.J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114: 10834-10843
    [8] Huo Q.S., Margolese D.L., Ciesla U., et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater., 1994, 69: 1176-1191
    [9] Zhao D., Fan J., Huo Q.S., et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552
    [10] Kim T.W., Ryoo R., Kruk M., et al. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time [J]. Phys. Chem. B, 2004, 108: 11480-11489
    [11] Wang L.M., Fan J., Tian B.Z., et al. Synthesis and characterization of small pore hick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains [J]. Micro. Meso. Mater., 2004, 67: 135-141
    [12] Fan J., Yu C., Gao F., et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties [J]. Angew. Chem. Int. Ed., 2003, 42: 3146-3150
    [13] Bagshaw S.A., Prouzet E., Pinnavaia T.J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J]. Science, 1995, 269: 1242-1244
    [14] Ryoo R., Kim J.M., Ko C.H., et al. Disordered molecular sieve with branched mesoporous channel network [J]. J. Phys. Chem., 1996, 100: 17718-17724
    [15] Yu C.Z., Yu Y.H., Zhao D.Y. Highly ordered large caged cubic mesoporous silica structures template by triblock PEO-PPO-PEO copolymer [J]. Chem. Comm., 2000, 7: 575-576
    [16] Schueth F. Non-siliceous mesostructured and mesoporous materials [J]. Chem. Mater., 2001, 13: 3184-3195
    [17] Huo Q.S., Margolese D.I., Ulrike C., et al. Generalized synthesis of periodic surfactant/ inorganic composite materials [J]. Nature, 1994, 368: 317-321
    [18] Tanev P.T., Pinnavaia T.J. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267: 865-867
    [19] Yang P.D., Zhao D.Y., Margolese D.I., et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396: 152-155
    [20] Hatayama H., Misono M., Taguchi A., et al. Hydrothermal synthesis of cubic meso- structured vanadium-phosphorus oxide [J]. Chem. Lett., 2000, 8: 884-885
    [21] Yada M., Ohya M., Machida M., et al. Mesoporous gallium oxide structurally stabilized by yttrium oxide [J]. Langmuir, 2000, 16: 4752-4755
    [22] Scott O., Ozin A., Coombs N., et al. Synthetic hollow aluminophosphate microspheres [J]. Adv. Mater., 1995, 7: 931-935
    [23] Stein A., Fendort M., Jarvie T.P., et al. Salt-gel synthesis of porous transition-metal oxides [J]. 1995, 7: 304-313
    [24] Khimyak Y.Z., Klinowski J. Synthesis of mesostructured aluminophosphates using cationic templating [J]. Phys. Chem. Phys., 2000, 2: 5275-5285
    [25] Tian B.Z., Liu X.Y., Tu B., et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J]. Nature Mater., 2003, 2: 159-163
    [26] Braun P.V., Osener P., Stupp S.L. Semiconducting superlattices template by molecular assemblies [J]. Nature, 1996, 386: 325-328
    [27] Maclachlan M.J., Coombs N., Bedard R.L., et al. Mesostructured metal germanium sulfide [J]. J. Am. Chem. Soc., 1999, 121: 12005-12017
    [28] Trikalitis P.N., Bakas T., Papaefthymiou V., et al. Supramolecular assembly of hexagonal mesostructured germanium sulfide and selenide nanocomposites incorporating the biologically relevant Fe4S4 cluster [J]. Angew. Chem. Int. Ed., 2000, 39: 4558-4562
    [29] Kim T.W., Park I.S., Ryoo R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls [J]. Angew. Chem. Int. Ed.,2003, 42: 4375-4379
    [30] Ryoo R., Joo S.H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B, 1999, 103: 7743-7746
    [31] Ryoo R., Joo S.H., Kruk M., et al. Ordered mesoporous Carbon [J]. Adv. Mater., 2001,13: 677-681
    [32] Joo S.H., Chl S., Oh I., et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412: 169-172
    [33] Jun S., Joo S.H., Ryoo R., et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J. Am. Chem. Soc., 2000, 122: 10712-10713
    [34] Tanev P.T., Pinnavaia T.J. A neutral templating route to mesoporous molecular sieves [J]. Science, 1995, 267: 865-867
    [35] Yu C.Z., Yu Y.H., Zhao D.Y., et al. Highly ordered large caged cubic mesoporous silica structures template by tribolck PEO-PBO-PEO copolymer [J]. Chem. Commun., 2000, 7: 575-576
    [36] Liu X.Y., Tian B.Z., Yu C.Z., et al. Room-temperature synthesis in acidic media of Large-pore three-dimensional bicontinuous mesoporous silica with Ia3d Symmetry [J]. Angew. Chem. Int. Ed., 2002, 114: 4032-4034
    [37] Wan Y., Zhao D.Y. On the Controllable Soft-Templating Approach to Mesoporous Silicates [J]. Chem.Rev., 2007, 107: 2821-2860
    [38] Huo Q.S., Margolese D.L., Ciesla U., et al. Generalized synthesis of periodic surfactant inorganic composite materials [J]. Nature, 1994, 368: 317-321
    [39] Kosuge K., Kubo S., Kikukawa N., et al. Effect of Pore Structure in Mesoporous Silicas on VOC Dynamic Adsorption/Desorption Performance [J]. Langmuir, 2007, 23: 3095-3102
    [40]黄少云,葛学贵,石磊等.介微孔复合沸石分子筛对重金属离子吸附性能的实验研究[J].岩石矿物学杂志, 2004, 23: 57-60
    [41] Aguado J, Arsuaga J.M., Arencibia A. Influence of synthesis conditions on mercury adsorption capacity of propylthiol functionalized SBA-15 obtained by co-condensation [J]. Micro. Meso. Mater., 2008, 109: 513-524
    [42] Li X., Wang A.J., Sun Z.C., et al. Effect of Surface Proton Exchange on Hydro- -desulfurization Performance of MCM-41-supported Catalysts [J]. Appl. Catal A: Gen, 2003, 254: 319-326
    [43] Zeng S.Q., Blanchard J., Breysse M., et al. Mesoporous materials from zeolite seeds as supports for nickel–tungsten sulfide active phases, Part 2: Catalytic properties for deephydrodesulfurization reactions [J]. Appl. Catal. A: Gen, 2006, 298: 88-93
    [44] Sugioka M., Kurosaka T. Catalytic activities of noble metals supported on zeolites and related materials for the hydrodesulfurization of thiophenes [J]. Journal of the Japan Petroleum Institute, 2002, 45: 342-354
    [45] Tang T.D., Yin C.Y., Wang L.F., et al. Good sulfur tolerance of a mesoporous Beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics [J]. J Catal., 2008, 257: 125-133
    [46] Wu Z.Y., Wang H.J. Multiple Functionalization of Mesoporous Silica in One-Pot: DirectSynthesis of Aluminum-Containing Plugged SBA-15 from Aqueous Nitrate Solutions [J]. Adv. Funct. Mater., 2008, 18: 82-94
    [47] Tanev P.T., Chibwe M., Pinnavaia T.J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368: 321-323
    [48]高峰,赵建伟,张松等.中孔分子筛SBA-15作为液相色谱固定相以及在巯基化合物分离中的应用[J].高等学校化学学报, 2002,23:1494-1497
    [49] Zhu S.M., Zhou Z.Y., Zhang D. Control of Drug Release through the In Situ Assembly of Stimuli-Responsive Ordered Mesoporous Silica with Magnetic Particles [J]. J. Chem. Phys. Chem., 2007, 8: 2478-2483
    [50] Yang P.P., Huang S.S. Luminescence Functionalization of SBA-15 by YVO4:Eu3+ as a Novel Drug Delivery System [J]. Inorg. Chem., 2007, 46: 3203-3211
    [51] Jun S., Joo S.H., Ryoo R., et al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure [J]. J. Am. Chem. Soc., 2000, 122: 10712-10713
    [52] Kruk M., Jaroniec M., Kim T.W., et al. Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes [J]. Chem. Mater., 2003, 15: 2815-2823
    [53] Zhang R.Y., Ding W., Tu B., et al. Mesoporous Silica: An Efficient Nanoreactor Liquid -Liquid Biphase Reactions [J]. Chem. Mater., 2007, 19: 4379-4381
    [54] Zhao Y.F., Qi Y., Zhang Y.Y., et al. Nano-Au/silica composite synthesized using nitrided SBA-15 as a host [J]. Mater. Letter., 2008, 62: 1197-1199
    [55] Han Y J, Kim J M, Stucky G D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15 [J]. Chem Mater., 2007, 12: 2068-2069
    [56] Ko C H, Ryoo R. Imaging the channels in mesoporous molecular sieves with platinum [J]. Chem Commun., 1996, 21: 2467-2468
    [57] Leon R, Margolese D, Stucky G.D., et al. Nanocrystalliine Ge Filaments in the Pores of Mesosilica [J]. Phys. Rev. B., 1995, 52: 2285-2288
    [58] Kageyama K, Tamazawa J, Aida T. Extrusion polymerization: Catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica [J]. Science, 1999, 285: 2113-2115
    [59] Prim A., Pellicer E., Rossinyol E., et al. A Novel Mesoporous CaO-Loaded In2O3 Material for CO2 Sensing [J]. Adv. Funct. Mater., 2007, 17: 2957-2963
    [60] Dai Z.H., Bao J.C., Yang X.,et al. A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores [J]. Biosensors and Bioelectronics., 2008, 23: 1070-1076
    [61] Zhang T., Wang R., Geng W.C., et al. Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15 [J]. Sensors and Actuators B., 2008, 128: 482-487
    [62] Lee J., Yoon S., Ohs M., et al. Development a new mesoporous carbon using an HMS aluminosilicate template [J]. Adv. Mater., 2000, 12: 359-362
    [63] Kim S.S., Pinnavaia T.J. A low cost route hexagonal mesostructured carbon molecular sieve [J]. Chem. Commun., 2001: 2418-2419
    [64] Lee J., Kim J., Hyeon T. Recent progress in the synthesis of porous carbon materials [J]. Adv. Mater., 2006, 18: 1073-2094
    [65] Marsh H., Rand B. The Processofactivation of carbons by gasification with CO2- the role of catalytic impurities [J]. Carbon, 1971, 9: 63-77
    [66] Freeman J., Gimblett F. G., Roberts R.A., et al. Studies of activated charcoal cloth (I): Modification of adsorptive properties by impregnation with boron-containing compounds [J]. Carbon, 1987, 25: 559-563
    [67] Oya A., Yoshida S., Aleaniz-Monge J., et al. Formation of mesopores in phenolic resin- derived carbon fiber by catalytic activation [J]. Carbon, 1995, 33: 1085-1090
    [68] Tamai H., Kakii T., Hirota Y., et al. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules [J]. Chem. Mater., 1996, 8: 454-462
    [69] Ozaki J., Ohizumi W., Endo N., et al. Novel Preparation method for the Production of the mesoporous carbon fiber from a Polymer blend [J]. Carbon, 1997, 35:1031-1033
    [70]文越华,曹高萍..炭凝胶的研究进展[J].炭素, 2002, 2: 32-37
    [71] Pekala R.W. Organic aerogels from the polycondensation of resorcinol with formalde- -hyde [J]. J. Mater. Sci., 1989, 24: 3221-3227
    [72] Pekala R.W., Alviso C.T., Lu X., et al. New organic aerogels based upon a phenolic- -furfural reaction [J]. J. Non-cryst. Solids, 1995, 188: 34-40
    [73] Pekala R.W., Schaefer D.W., Structure of organic aerogels I: Morphology and scaling [J]. Macromoleculars, 1993, 26: 5487-5493
    [74] Wu D.C., Fu R.W., Sun Z.Q., et al. Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde [J]. J. Non-Cryst. Solids, 2005, 35: 915-921
    [75] Wu D.C., Fu R.W. Synthesis of organic and carbon aerogels from phenol-furfural by two-step polymerization [J]. Micro. Meso. Mater., 2006, 96: 115-120
    [76] Brandtr R., Petricevic H., Fricke J., et al. Acetic acid catalyzed carbon aerogels [J].J. Porous. Mater., 2003, 10: 171-178
    [77] Schuth F. Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem. Int. Ed., 2003, 42, 3604-3622
    [78] Liang C., Li Z., Dai S. Mesoporous carbon materials: synthesis and modification [J]. Angew Chem. Int. Ed., 2008, 47: 3696-3717
    [79] Knox J.H., Gilberi M.T. Preparation of porous carbon [P]. US 426368, 1981
    [80] Kyotani T., Nagai T., Inoue S., et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels [J]. Chem. Mater., 1997, 9: 609-612
    [81] Kyotani T. Control of pore structure in carbon [J]. Carbon, 2000, 38: 269-278
    [82] Wayne W, Stucky G.D. Synthesis of Mesoporous Carbon Foams Templated by organic Colloids [J]. Chem. Mater., 2002, 14: 1665-1670
    [83] Meng Y., Gu D., Zhang F., et al. Ordered mesoporous polymers and homologous carbon framework: amphiphilic surfactant templating and direct transformation [J]. Angew. Chem. Int. Ed., 2005, 44: 7053-7059
    [84] Meng Y., Gu D., Zhang F., et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly [J]. Chem. Mater., 2006, 18: 4447-4464
    [85] Huang Y., Cai H., Yu T., et al. Formation of mesoporous carbon with a face-centered- -cubic Fdm structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO [J]. Angew. Chem. Int. Ed., 2007, 46: 1089-1093
    [86] Deng Y., Liu C., Gu D.,et al. Thick wall mesoporous carbons with a large pore structure template from a weakly hydrophobic PEO-PMMA diblock copolymer [J]. J. Mater. Chem., 2008, 18: 91-97
    [87] Zhang F.Q., Meng Y., Gu D., et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure [J].J. Am. Chem. Soc., 2005, 127: 13508-13509
    [88] Zhang F.Q., Meng Y., Gu D., et al. An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology [J]. Chem. Mater., 2006, 18: 5279-5288
    [89]李青,曾昌凤,张利雄等.模板法制备丰富中孔炭材料的研究进展[J].化工进展, 2003, 22(12): 1269-1273
    [90] Zhang W.H., Liang C., Sun H., et al. Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition [J]. Adv. Mater., 2002, 14: 1776-1778
    [91] Lu A.H., Li W.C., Schmidt F., et al. Easy synthesis f an ordered mesoporous carbon with a hexagonally packed tubular structure [J]. Carbon, 2004: 2939-2948
    [92] Shin H.J., Ryoo R., Krok M., et al. Modification of SBA-15 pore connectivity by high-temperature calcinations investigated by carbon inverse replication [J]. Chem. Commun., 2001: 349-350
    [93] Kim S.S., Pinnavaia T.J. A low cost route to hexagonal mesostructured carbon molecular sieves [J]. Chem. Commun., 2001: 2418-2419
    [94] Wang T., Liu X., Zhao D.Y., et al. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon [J]. Chem. Phys. Lett., 2004, 389: 327-331
    [95]郭卓,袁悦.介孔碳CMK-3对苯酚的吸附动力学和热力学研究[J].高等学校化学学报, 2007, 28: 289-292
    [96] Chandrasekar G., Son W.J., Ahn W.S. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption [J]. J. Porous Mater., 2009, 16: 545-551
    [97] Vinu A. Adsorption of L-histidine over rmesoporous carbon molecular sieves [J]. Carbon, 2006, 44: 530-536
    [98] Hussain M., Ihm S.K. Synthesis, Characterization, and Hydrodesulfurization Activity of New Mesoporous Carbon Supported Transition Metal Sulfide Catalysts [J]. Ind. Eng. Chem. Res., 2009, 48: 698-707
    [99]邢伟,张颖,阎子峰等.锂离子电池电极用规整中孔碳分子筛的电化学特性[J].化学学报, 2005, 63: 819-826
    [100] Xing W, Qiao S.Z., Ding R.G., et al. Superior electric double layer capacitors usingordered mesoporous carbons [J]. Carbon, 2006, 44: 216-224
    [101] Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalyst [J]. Chem. Mater., 2005, 17: 4577-4593
    [102] Vinu A., Hossain K.Z., Kumar G.S., et al. Adsorption of L-histidine over mesoporous carbon molecular sieves [J]. Carbon, 2006, 44:530-536
    [103] Vinu A., Miyahara M., Sivamurugan V., et al. Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterial [J]. J.Mater. Chem., 2005, 15: 5122-5127
    [104] Hartmann M., Vinu A., Chandrasekar G. Adsorption of Vitamin E on mesoporous carbon molecular sieves [J]. Chem. Mater., 2005, 17: 829-833
    [105] Wu Y.H., Wang D.M., Lai J.Y., et al. Effects of polymer chain length and stiffness on phase separation dynamics of semidilute polymer solution [J]. J. Phys. Chem. B., 2008, 112: 4604-4612
    [106] He L.L., Zhang L.X., Liang H.J. The effects of nanoparticles on the lamellar phase separation of diblock copolymers [J]. J. Phys. Chem. B., 2008, 112: 4194-4203
    [107] Chen S., Guo C., Hu G.H., et al. Dissipative particle dynamics simulation of gold nanoparticles stabilization by PEO–PPO–PEO block copolymer micelles [J]. Colloid. Polym. Sci., 2007, 285: 1543–1552
    [108] Lam Y.M., Wood G.G. Mesoscale simulation of block copolymers in aqueous solution: parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology [J]. Polymer., 2003, 44: 3593–3605
    [109] Li Y.Y., Hou T.J., Guo S., et al. The MesoDyn simulation of pluronic water mixtures using the‘equivalent chain’method [J]. Phys. Chem. Chem. Phys., 2000, 2: 2749-2753
    [110] Guo S.L., Hou T.J., Xu X.J. Simulation of the Phase Behavior of the (EO)13(PO)30- -(EO)13(Pluronic L64)/Water/p-Xylene System Using MesoDyn [J]. J. Phys. Chem. B., 2002, 106: 11397-11403
    [111] Li Y.M., Xu G.Y. Aggregation between Xanthan and nonyphenyloxypropylβ-hydr- -oxyltrimethylammonium bromide in aqueous solution: MesoDyn simulation and binding isotherm measurement [J]. J. Phys. Chem. B., 2005, 109: 22290-22295
    [112] Abe A., Mark J.E. Conformational energies and the random-coil dimensions and dipole Moments of the Polyoxides CH3O[(CH2)yO]xCH3 [J]. J. Am. Chem. Soc., 1976, 98: 6468-6476
    [113] Leibler L. Theory of Microphase Separation in Block Copolymers [J]. Macromolecules,1980, 13: 1602-1617
    [114] Honeycutt J.D. A general simulation method for computing conformational properties of single polymer chains [J]. Compu. Theo. Poly. Sci., 1998, 8: 1-8
    [115] Vlimmeren van B.A.C., Maurits N.M., Zvelindovsky A.V., et al. Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13 and (Propylene Oxide)19(Ethylene Oxide)33(Propylene Oxide)19. Application of dynamic Mean-Field Density Functional Theory [J]. Macromolecules., 1999, 32: 646-656
    [116] Venohr H., Fraaije V. Static and dynamic light scattering from aqueous poly(Ethylene Oxide) solutions [J]. J. Eur. Poly., 1998, 34: 723-732
    [117] Li Y.M., Xu G.Y., Wu D., et al. The aggregation behavior between anionic carboxy- -methylchitosan and cetyltrimethylammonium bromide: MesoDyn simulation and experiments [J]. J .Eur. Poly., 2007, 13: 2690-2698
    [118] Zhang X.Q., Yuan S.L. Mesoscopic simulation of the phase separation on triblock copolymer in aqueous solution [J]. Acta. Phys. -Chim. Sin., 2007, 23: 139-144
    [119] Zhao Y.R., Chen X., Yang C., et al. Mesoscopic dimulation on phase behavior of Pluronic P123 aqueous solution [J]. J. Phys. Chem. B., 2007, 111: 13937-13942
    [120] Stein A., Melde B.J., Schroden R.C. Hybrid inorganic-organic mesoporous silicates- -nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12: 1403-1419
    [121] Davis M.E.. Ordered porous materials for emerging application [J]. Nature, 2002, 417: 813-821
    [122] Ding L.H., Zheng Y., Zhang Z.S., et al. HDS, HDN, HDA, and Hydrocracking of Model Compounds Over Mo-Ni Catalysts with Various Acidities [J]. Appl. Catal. A: Gen, 2007, 319: 25-37
    [123] Song C., Reddy K.M.. Mesoporous molecular sieve MCM-41 Supported Co-Mo Catalyst for Hydrodesulfurization of Dibenzothiophene in Distillate Fuels [J]. Appl. Catal. A: Gen., 1999, 176: 1-10
    [124]周娟娟,胡中华,刘亚菲等.生物活性炭纤维的制备及其水处理影响[J].新型炭材料, 2006, 21:64-69
    [125] Avom J., Moadcam J.K., Noubacted C., et al. Adsorption of methylene blue from an aqueous solution on to activated carbons from palm-tree cobs [J]. Carbon, 1997, 35: 365-369
    [126] Asouhidou D.D., Triantafyllidis K.S., Lazaridis N.K., et al. Sorption of reactive dyesfrom aqueous solutions by ordered hexagonal and disordered mesoporous carbons [J]. Micro. Meso. Mater., 2009, 117: 257-267
    [127] Zhang X., Wan Y., Feng C.M., et al. Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons [J]. Chem. Mater., 2009, 21: 706-716
    [128]张引枝,汤忠,贺福.由氮吸附等温线表征中孔型活性炭纤维的孔结构[J].离子交换与吸附, 1997, 13: 113-116
    [129] Brunauer S., Edward Teller. Adsorption of Gases in Multimolecular Layers [J]. J. Am. Chem. Soc., 1938, 60: 309-318
    [130] Sing K.S, Everett D.H, Haul R.A.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure & Appl. Chem., 1985, 57: 603-605
    [131] Gregg S.J., Sing K.S.W. Adsorption Surface Area and Porosity [M]. Academic Press, 1982: 2345-2349
    [132] Freeman J.J, Gimblett E.G.R., Roberts R.A.. Studies of activated charcoal cloth. V: Modification of pore structure by impregnation with certain transition metal salts and oxo-complexes [J]. Carbon, 1989, 27: 85-93
    [133] Elliott P., Lesilie. B., Joyner G.. The Determination of Pore Volume and Area Distributions in Porous Substance I: Computations from Nitrogen Isotherms [J]. J. Am. Chem. Soc., 1951, 73: 373-380
    [134]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社, 2004: 5
    [135] Cao X.R., Xu G.Y., Li Y.M., et al. Aggregation of Poly(ethylene oxide)-Poly (propylene oxide) Block Copolymers in Aqueous Solution: DPD Simulation Study [J]. J. Phys. Chem. A, 2005, 109: 10418-10423
    [136] Chen S., Hu G.H., Guo C., et al. Experimental study and dissipative particle dynamics simulation of the formation and stabilization of gold nanoparticles in PEO-PPO-PEO block copolymer micelles [J]. Chem. Eng. Sci., 2007, 62: 5251-5256
    [137]刘伟,钱虎军,吕中元等.剪切场作用下环形二嵌段共聚物微相形态变化的耗散粒子动力学研究[J].高等学校化学学报, 2007, 28: 548-551
    [138]张秀青,苑世领,徐桂英等.水溶液中Pluronic嵌段共聚物聚集行为的介观模拟[J].物理化学学报, 2007, 23: 139-144
    [139] Vlimmeren B.A.C., Maurits N.M., et al. Simulation of 3D Mesoscale StructureFormation in Concentrated Aqueous Solution of the Triblock Polymer Surfactants (Ethylene Oxide)13(Propylene Oxide)30(Ethylene Oxide)13 and (Propylene Oxide)19(Ethylene Oxide)33(Propylene Oxide)19: Application of Dynamic Mean- Field Density Functional Theory [J]. Macromolecules, 1999, 32(3): 646-656
    [140] Yang C.J., Chen X., Qiu H.Y., et al. Dissipative Particle Dynamics Simulation of Phase Behavior of Aerosol OT/Water System [J]. J. Phys. Chem. B, 2006, 110: 21735-21740
    [141] Yuan S.L., Cai Z.T., Xu G.Y., et al. Mesoscopic simulation study on the interaction between polymer and C12NBr or C9phNBr in aqueous solution [J]. Colloid Polym. Sci., 2003, 281(11): 1069-1075
    [142] Zhao D.Y., Sun J.Y., Li Q.Z., Stucky G.D.. Morphological Control of Highly Ordered Mesoporous Silica SBA-15 [J]. Chem. Mater., 2000, 12: 275-279 [ 143 ] Kubo S., Kosuge K.. Salt-Induced Formation of Uniform Fiberlike SBA-15 Mesoporous Silica Particles and Application to Toluene Adsorption [J]. Langmuir, 2007, 23: 11761-11768
    [144] Ding L.H., Zheng Y., Zhang Z.S., et al. HDS, HDN, HDA, and Hydrocracking of Model Compounds Over Mo-Ni Catalysts with Various Acidities[J]. Appl. Catal. A: Gen, 2007, 319: 25-37
    [145] Song C., Reddy K.M.. Mesoporous molecular sieve MCM-41 Supported Co-Mo Catalyst for Hydrodesulfurization of Dibenzothiophene in Distillate Fuels[J]. Appl. Catal. A: Gen., 1999, 176: 1-10
    [146] Camblor M.A., Perez-Pariente. Crystallization of Zeolite Beta: Effect of Na and K ions[J]. Zeolite, 1991, 11: 202-210
    [147] Kruk M., Jaroniec M. Argon adsorption at 77K as a useful tool for the Elucidation of Pore Connectivity in ordered materials with large Cagelike Mesopores [J]. Chem. Mater., 2003, 15:2942-2949
    [148]刘彬,卢荣.物理化学[M].武汉:华中科技大学出版社, 2008: 242-248 [ 149 ] Lee G.J., Pyun S.I.. Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors [J]. Elect. Acta., 2006, 51: 3029-3038
    [150]郭卓,张维维,王立峰等.新型介孔碳的制备及对罗丹明B的吸附动力学研究[J].现代化工, 2006, 26(10): 95-98
    [151] Asouhidou D.D., Triantafyllidis K.S., Lazaridis N.K., et al. Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons [J].Micro. Meso. Mater., 2009, 117: 257-267
    [152] Zhang X., Wan Y., Feng C.M., et al. Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons [J]. Chem. Mater., 2009, 21: 706-716
    [153] Wei Y., Jin D.L., Ding T.Z., et al. A non-surfactant templating route to mesoporous silica materials [J]. Adv. Mater., 1999, 10: 313-316
    [154] Pearson R.G.. Hard and Soft Acids and Bases [J]. J. Am. Chem. Soc., 1963, 85: 3533-3539
    [155]章燕豪.吸附作用(第一版) [M].上海,上海科学技术文献出版社, 1989
    [156]赵振国.吸附作用应用原理(第一版) [M].北京,化学工业出版社, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700