脱细胞组织工程血管支架材料的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,心血管疾病和创伤日益成为威胁人们健康及生命的重要因素。冠状动脉搭桥术、严重创伤致血管损伤和缺损、多种血管移植手术在外科中的应用以及整形外科游离皮瓣转移中血管蒂的长度不足等,使得血管移植材料的研究日益成为人们关注的热点。作为一种全新的技术,组织工程在提供合适的血管移植物研究方面取得了迅速的发展。组织工程血管是一种用组织工程学方法构建的具有良好生物相容性和力学特性的血管替代物,其基本的构件是血管支架材料和种子细胞,而血管支架的研究一直是目前血管组织工程研究领域的难点和重点。组织工程血管支架材料主要分为人工合成的生物可降解高分子聚合物和天然生物支架材料两大类。高分子可降解材料的应用目前虽然得到广泛的认可,但是由于材料价格较为昂贵,合成技术要求高,难以大规模应用。另外由于材料本身的性质影响,其对种子细胞的亲和性不足,构建的组织工程血管顺应性尚不理想,对血液动力学方面可能会有较大影响。而作为天然生物支架材料的脱细胞血管基质,由于其与细胞亲和力强,能为细胞生长、繁殖、分化提供近似体内组织发育的细胞外基质支架,且生物相容性、顺应性以及免疫排斥性低等特点都优于合成材料,因此在血管组织工程中得到越来越多的重视和应用。
     目前国内外常用的主要脱细胞方法包括:机械法,酶消化法,化学去垢剂法等。以上几种方法各有利弊,物理方法对支架结构的破坏较小但脱细胞效果较差,而化学去垢剂方法脱细胞效果较好却容易破坏血管的胶原结构。另外,在利用化学去垢剂制备生物材料时,去垢剂的残留会导致脱细胞生物材料具有一定程度的细胞毒性。酶消化法制备脱细胞基质材料简单易行,但是高浓度的酶可引起支架胶原结构的破坏,而低浓度酶又无法完全去除动脉壁深部的细胞成份,脱细胞效果并不理想。因此寻找一种更高效和安全的脱细胞方法一直是脱细胞组织工程血管支架研究的一个热点。
     同其它异体移植材料一样,脱细胞血管支架的研究应用也面临着传播供体潜在疾病以及在移植物处理应用过程中二次污染的问题。传统的生物材料灭菌方法主要有以环氧乙烷为代表的化学法和以钴60照射为代表的电离辐射法两种。但是这些方法都存在操作要求条件较高,过程较复杂以及可能降低材料的机械强度等缺点。因此,我们希望找到一种操作简便、灭菌效果确实、费用低廉、残留低且对材料的生物特性影响较小的脱细胞血管支架消毒方法。
     目前仍没有足够的证据表明细胞能够长入脱细胞血管基质支架材料内部。因此,如何在保留脱细胞血管支架足够机械强度的前提下,提高脱细胞血管基质材料的疏松性和孔隙率,这也是目前组织工程脱细胞血管支架研究中一个亟待解决的难点。
     最后,脱细胞血管材料制备后如何长期保存也是一个需要解决的问题,我们希望找到一种简单可行的储存技术来长期保存制备的脱细胞血管支架以达到临床和科研上“随取随用”的目的。
     本实验采用天然血管作为组织工程血管支架的来源:
     1.通过反复冻融及超高压处理,摸索上述处理与完全去除血管材料固有细胞所需核酸酶酶浓度的关系,以及对血管材料生物力学特性的影响,从而得到一种体外快速高效构建组织工程化小血管支架材料的方法。
     2.在上述试验的基础上,我们将0.1%的过氧乙酸作为脱细胞血管支架的消毒剂,对经过氧乙酸处理的脱细胞血管支架进行组织学评估、超微结构观察、生物力学以及细胞毒性测定,以观察过氧乙酸对脱细胞血管支架材料生物相容性和生物力学特性的影响。
     3.利用超声处理的空化效应,对制备的脱细胞血管支架进行不同强度及不同时间的超声处理。对经超声处理后支架材料的孔隙大小、生物相容性、细胞毒性、生物力学效应及与种子细胞亲和性进行评估,从而得出脱细胞血管材料基质疏松的最佳超声强度参数以及作用时间。
     4.利用冷冻干燥技术,对制备好的脱细胞血管支架进行真空冷冻干燥处理。通过对经冻干处理并保存的脱细胞血管支架材料的各种生物学特性的分析,以判断冷冻干燥技术是否可以作为脱细胞生物支架材料长期保存的一种方法。
     本研究结果表明:
     1.采用反复冻融加超高压结合低浓度核酸酶消化、缓冲液冲洗的脱细胞方法可以在较短的时间内完全除去支架内细胞成份,且对材料的主要生物力学指标以及胶原结构无明显影响。相对于单一的超高压处理或反复冻融处理,反复冻融及超高压两种方法结合不仅能明显提高制备脱细胞血管支架的效率,其对于超高压设备参数的要求也明显降低,使得超高压生物处理这一过程在国产设备上即能完成。因此,其为今后脱细胞血管支架的快速高效制备提供一种新的思路和方法。
     2.体外试验表明经过0.1%浓度过氧乙酸处理过的脱细胞血管材料,其细胞毒性、生物力学及胶原含量与未经过氧乙酸处理前相比没有明显的差异。因此应用0.1%浓度过氧乙酸作为组织工程血管支架制备过程中的消毒灭菌剂是可行的。
     3.超声处理参数为强度300瓦,处理间隔1秒,处理时长1分钟时,脱细胞兔股动脉支架材料的疏松程度和材料的生物力学强度处于一个较均衡的水平。即材料疏松程度较未处理前明显提高,而生物力学强度无明显降低。因此,针对不同长度及厚度的血管材料,应用不同参数的超声处理,可以达到在不明显降低材料生物力学特性的前提下,使脱细胞血管基质材料结构明显疏松的目的。
     4.经过冻干保存处理的脱细胞血管材料,其细胞毒性、生物力学以及其自身胶原结构与未经处理前相比没有明显的差异,冻干保存后的材料在体内依然具有良好的生物相容性。因此我们认为:冷冻干燥处理作为组织工程脱细胞血管支架此类管状生物材料的长期储存方法是可行的。
     综上所述,通过系列的试验,我们找到了一种组织工程脱细胞血管支架材料快速制备、简便高效消毒及长时间储存的方法。同时我们也初步解决了脱细胞血管基质材料结构致密,种子细胞无法长入的问题,在组织工程脱细胞血管支架的研究上又前进了一步。
Cardiovascular diseases are prevalent and debilitating lesions that affect the quality of life among populations worldwide. Large numbers of patients suffers from diseases of the vascular system, resulting in a clear clinical need for developing functional arterial replacements. As a novel solution, tissue engineering has made significant progress toward the creation of vascular grafts for the repair of damaged or malformed vessels. It aims to address these lesions by integrating engineered, living substitutes with their native counterparts in vivo. For such a purpose, competent vascular scaffolding materials are essential. To date, two major categories of vascular scaffolding materials have been employed: synthetic polymers and natural collagen derivatives. Compared with synthetic polymers, natural acellular vascular scaffolds have the advantages of preserving ECM proteins important for cell attachment and the desired mechanical properties which made it the most intriguing materials used to create scaffolds for tissue engineering vascular applications.
     Different decellularization methods have been developed to fabricate acellular vascular scaffolds for the purpose of tissue engineering blood vessel, mostly comprising physical methods、detergents and zymatic extraction methods. Recent studies revealed that vascular grafts that had been decellularized using detergents were more resistant to cellular in-growth than those treated with enzymatic extraction. Otherwise, there are also flaws of the enzymatic extraction method; long digestion time may cause a biomechanical damage of the biomaterials and short time treatment results in a residue of the original cells. Then finding an ideal way to produce acellular vascular scaffolds becomes an interesting subject.
     As with any form of allografts, the risks of disease transmission from either the donor to recipient or from environmental contamination acquired during retrieval and processing of the graft must be considered. Historically, two methods have been commonly applied for the sterilisation of allograft biomaterials; chemical sterilisation utilising ethylene oxide gas and sterilisation with ionising radiation. Whilst both of these techniques have been demonstrated to be effective sterilisation procedures concerns have been raised about their potentially deleterious effects on important properties of the grafts. For these reasons, it is desirable to apply a high-level disinfection or sterilisation procedure to such grafts following retrieval and processing.
     On the same time, it is also suggested that following acellular treatment, the structure of the acellular scaffold is still compact. How to open up the collagenous matrix and subsequently allow cells to enter and migrate into the scaffold of their own accord without altering the biological or mechanical properties of the scaffold, this will also be the subject for our works. Finally, we want to find out a preservation protocol after fabrication of the acellular vascullar scaffolds to meet the emergency request of the clinical and scientific research.
     Object:
     1.This study was to find a new way for tissue engineering vascular scaffold fabrication by investigating the effect of ultrahigh pressure and freezing thawing treatment on natural vessels and to observe the decellularization results of different concentration nuclease solutions after the natural vessels being treated by repeated freeze thawing and ultrahigh pressure.
     2.To observe the effects that 0.1% Peracetic Acid had on the biological features of the acellular vascular scaffold by analyzing the biocompatibility and biomechanics of the dealed scaffolds treated by 0.1% Peracetic Acid.
     3.Various intensities of ultrasonication was tested in order to observe the effects that ultrasonication had on the biological features of the acellular vascular scaffold by analyzing the biocompatibility and biomechanics of the dealed scaffolds.
     4.To investigate the effects of a Freeze-Drying technique preservation protocol on the biocompatibility and biomechanical properties of acellular vascular scaffold.
     Results and conclusions:
     1 . The resulting scaffold has been shown to be biocompatible with biochemical and mechanical properties similar to those of natural vessels following ultrahigh pressure and repeated freeze thawing treatment, the vessels were completely cell free when they were treated by nuclease solutions in a fairly low concentration with short treatment time. This tissue processing of decellularization by ultrahigh pressure and repeated freeze thawing treatment can decrease both the treatment time and concentration of nuclease solutions remarkably; it may provide a new idea and method for fabrication of bioscaffolds.
     2.From the histological and ultrastructural analysis, we can see that treated by 0.1% Peracetic Acid, the main performance indexes of the acellular scaffold changed unremarkably in compared with normal blood vessels. This tissue processing of disinfection by 0.1% Peracetic Acid treatment has not obvious effect on the biocompatibility and biomechanics of the acellular scaffold, and it can be an alternative of disinfector for the acellular bioscaffold preparation.
     3.Ultrasonication treatment with the intensity of 300W and a pulse time of 1 s for a total of 1 min was found to be the optimal treatment. This process did not have significant effect upon the biochemical constituents, nor did it denature the collagen. Moreover, the acellular sonicated scaffold retained the essential biomechanical characteristics of the native tissue. These findings show us that ultrasonication can provide a novel method to enhance the recellularization of decellularized natural tissues.
     4.From the vitro investigation we find that treated by Freeze-Drying technique preservation protocol, the main performance indexes of the acellular scaffold changed unremarkably in compared with normal blood vessels. This tissue processing of Freeze-Drying technique preservation protocol has no obvious effects on the biocompatibility and biomechanics of the acellular scaffolds, and it can be a good preservation protocol for the acellular bioscaffold preparation.
     Summary: In our studies, a novel solution for the fast fbrication, simple sterilization and long preservation of the tissue engineered acelluluar vascular scaffolds is found out. Meanwhile, we also investigate a way to initially solve the problem of opening up the collagenous matrix and subsequently allowing cells to enter and migrate into the scaffold of their own accord without altering the biological or mechanical properties of the acellular vascular scaffold.
引文
1.韩雪峰,杨大平,郭铁芳.曲拉通X-100对制备脱细胞血管基质影响的实验研究.中华外科杂志.2002; 40(1):27-30.
    2.熊猛,鲁开化,商庆新等.血管组织工程基质材料及管形支架的制备.西北国防医学杂志.2004; 25(1):3-6.
    3. Kallenbach K, Leyh RG, Lefik E, etal. Guided tissue regeneration: porcine matrix does not transmit PERV. J Biomaterials. 2004; 25(17):3613-3620.
    4. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. J Biomaterials. 2000; 21 (22):2215-2231.
    5. Conklin BS, Richter ER, Kreutziger KL, et al. Development and evaluation of a novel decellularized vascular xenograft.J Med Eng Phys. 2002; 24 (3): 173-183.
    6. Greenwald SE, Berry CL. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol. 2000; 190(3): 292-299.
    7. Kearney JN. Sterilization of Human Tissue Implants.Tissue Cell Rep. 1996; 4(1): 33-36.
    8. Kearney JN, Bojar R, Holland KT. Ethylene oxide sterilisation of allogenic bone implants. Clin Mater. 1993;12(3):129-135.
    9. Silvaggio VJ, Fu FH, Georgescu HI, Evans CH. The induction of IL-1 by freeze dried ethylene oxide-treated bone-patellar tendon-bone allograft wear particles: an in vitro study. Arthroscopy.1993; 9(1): 82-86.
    10. Fideler BM, Vangsness CT, Lu B, Orlando C,Moore T. Gamma irradiationeffects on biomechanical properties of human bone-patellar tendon bone allografts. Am. J Sports Med. 1995; 23(5): 643-646.
    11. Langer R, Vacanti JP. Tissue engineering. Science .1993; 260 (511 0):920-926.
    12. Quarto R, Mastrogiacomo M, Cancedda R, et al. Repair of large bone defects with the use of autologous bone marrow stromal cells.N Engl J Med. 2001;344 (5):385-386.
    13. Vacanti CA, Bonassar LJ, Vacanti MP, et al. Replacement of an avulsed phalanx with tissue engineered bone.N Engl J Med. 2001; 344(20):1511-1514.
    14. Liu P, Deng Z, Han S, Liu T, Wen N, Lu W, Geng X, Huang S, Jin Y. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artif Organs. 2008;32(12):925-31.
    15.柴岗,张艳,刘伟等.组织工程骨在颅颌面骨缺损临床修复中的应用.中华医学杂志.2003; 83(19):1676-1681.
    16. Atala A, Bauer SB, Soker S, et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet.2006; 367(9518):1241-1246.
    17. Pokrywczyńska M, Drewa T. Treatment of liver failure using tissue engineering techniques. Pol Merkur Lekarski.2007; 23(133):66-69.
    18. Kofidis T, Müller-Stahl K, Haverich A. Myocardial restoration and tissue engineering of heart structures.Methods Mol Med.2007;140:273-290.
    19. Schmidt D, Mol A, Kelm JM, et al. In vitro heart valve tissue engineering. Methods Mol Med.2007; 140:319-330.
    20. Kagami H, Wang S, Hai B. Restoring the function of salivary glands. Oral Dis. 2008; 14 (1):15 -24.
    21. Cameron A, Davis KB, Green G, et al. Coronary bypass surgery withinternal thoracic after grafts: effects on survival over a 15 years period. N Engl J Med .1996; 334(4): 216-219.
    22. Fogle MA, Wittemore AD, Couch NP, et al. A comparision of in situ and revered saphemous vein grafts for infrainguinal reconstruction. J Vasc Surg 1987; 5(1): 46 -52.
    23. Kakuta T, Currier JW, Haudenschild CC, et al.Differences in compensatory vessel enlargement, not intimal formation, account for restenosis after angioplasty in the hypercholesterolemic rabbit model.Circulation. 1994; 89(6): 2809-2815.
    24. Sung HW, Cheng WH, Chiu IS, et al. Study on epoxy compound fixation. J Biomed Mater.Res.1996; 33(3):177-186.
    25. Lesech G, Penna G, Bouttier S, et al. Femorodistal bypass using cryopreserved venous allografted for limb salvage. Ann Vasc Surg. 1997; 11 (3):230 -236.
    26. Abbott WM, Megerman J, Hasson J, et al . Effect of compliance mismatch on vascular grafts patency. J Vacc Surg. 1997; 5(2):376-82.
    27. Shoenfeld NA, Conholly R, Rambery K, et al. The systemic activation of platelets by Dacron. Surg.Gynecol Obstet.1998; 166(5):454-457.
    28. Hiroyuki K, Takehisa M. Biocompatible coating grafts. J biomed mater Resear. 1996; 30:321-330.
    29. Aruma N, Matthew AH, Elazer RE. Tissue engineered perivascular endothelial call implants legilate vascular injury. Proc. Nati. Acad. Sci. USA.1995; 92(27):8130-8134.
    30. Robert M, Nerem S. Critical issues in vascular tissue engineering. J International Congress Series. 2004; 1(23): 262-122.
    31. Weinberg CB, BellE. A blood vessel model constructed from collagenandcultured Vascularcells.Science.1986; 231(4736):397-400.
    32. L/Heurenx N, Paquet S, Labbe R, etal. A completely biological tissue engineered human blood vessel. FASEB J .1998; 12(1):43-45.
    33. Shinoka T, Shum Tim D, Ma PX, et al. Creation ofviable pulmonary artery autografts through tissue engineering.J Thorac Cardiovasc Surg. 1998; 115(3): 536-545.
    34. He H, Matsuda T. Arterial replacement with compliant hierarchic hybrid vascular graft:biomechanical adaptation and failure.Tissue Eng .2002; 8(2): 213-224.
    35. Conklin BS,Richter ER,Kreutziger KL,et al.Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys .2002; 24(3): 173-183.
    36. Baltoyannis G,Mitsis M,Nathanael C,et al. Submucosa of canine small intestine as an alternative medium-diameter autogenous arterial graft.Int Angiol .2000; 19(3):280-284.
    37. Isenberg BC,Williams C,Tranquillo RT. Small-diameter artificial arteries engineered in vitro.Circ Res .2006; 98(1):25-35.
    38. Tu Q, Zhang Y, Li Y, et al. Fabrication and evaluation of a new decellularized tissue engineered blood vessel scaffold. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007; 24(2):379-384.
    39. Wen SJ,Zhao LM,Wang SG,et al. Human vascular smooth muscle cells and endothelial cells cocultured on polyglycolic acid(70/30) scaffold in tissue engineered vascular graft.Chin Med J.2007;120(15):1331-1335.
    40. Chen GP, Takashi Ushida. Development of biodegradable porous scaffolds for tissue engineering. J Materials Science and Engineering.2001; 17(5):63-69.
    41. Yeong WY, Chua CK. Rapid prototyping in tissue engineering: challenges and potential.J Trends in Biotechnology.2004; 22(12):643-647.
    42. Wang Z, wang S, Marois Y, Guidoin R, Zhang Z. Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue. Biomaterials.2005; 26(35):7387-7401.
    43. Li M,Mondrinos MJ,Chen X,et al. Co-electrospun poly (lactide–co– glycolide), gelatin, and elastin blends for tissue engineering scaffolds.J Biomed Mater Res A .2006; 79(4):963-973.
    44. Tsai SH,Liu YW,Tang WC,et al. Characterization of porcine arterial endothelial cells cultured on amniotic membrane,a potential matrix for vascular tissue engineering.Biochem Biophys Res Commun. 2007; 357(4): 984-990.
    45. Miller DC,Thapa A,Haberstroh KM,et al. Endothelial and vascular smooth muscle cell function on poly (lactic-co-glycolic acid) with nano-structured surface features.Biomaterials .2004.25(1):53-61.
    46. Miller DC,Haberstroh KM,Webster TJ. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res A. 2007.81(3):678-684.
    47. Hashi CK,Zhu Y,Yang GY,et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts.Proc Natl Acad Sci USA .2007; 104(29):11915-11920.
    48. Rennekam Pff HO, Schaller HE. Acellular allograft dermalmatrix: immediate or delayed epidermal cover-age? .J Burns. 2002; 28: 100-101.
    49. Kerdjoudj H, Boura C, Marchal L, et al. Decellularized umbilical artery treated with thin polyelectrolyte multilayer films: potential use in vascular engineering.J Biomed Mater Eng. 2006; 16(4Suppl): 123-129.
    50. Kasimir MT, Weigel G, Sharma J, et al. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion andactivation. J Thromb Haemost.2005; 94(3):562-567.
    51. Cho SW, Park HJ, Ryu JH, et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials .2005; 26(14):1915-1924.
    52. VandeVondele S,Voros J, Hubbell JA. RGD-grafted poly-L-lysine–graft- copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bio eng. 2003; 82(7):784-790.
    53. Kim TG, Park TG. Biomimicking extracellular matrix:cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid)nanofiber mesh.Tissue Eng .2006;12(2):221-233.
    54.王石泉,朱爱萍,胡勤刚,等.组织工程血管构建的研究进展.中国修复重建外科杂志.2001; 15(5):286-290.
    55. Dahl SL, Koh J, Prabhakar V, et al. Decellularized native and engineered arterial scaffolds for transplantation.Cell Transplant .2003;12(6):659-666.
    56. Boccafoschi F, Habermehl J,Vesentini S, et al. Biological performances of collagen-based scaffolds for vascular tissue engineering. Biomaterials. 2005; 26 (35):7410-7417
    57.余喜讯,成敏,陈槐卿.改造天然生物组织为血管支架材料的预处理方法.生物医学工程学杂志.2004; 21(3):476-481.
    58. Ketchedjian A, Kreuger P, Lukoff H, et al.Ovine panel reactive antibody assay of HLA responsivity to allograft bioengineered vascular scaffolds. J Thorac Cardiovasc Surg .2005; 129(1):159-166.
    59. Mozhaev V, Heremans K, Frank J, et al. Exploiting the effects of high hydrostatic pressure in biotechnological applications. Trend Biotechnology.1994; 12(15): 493-501.
    60.殷猛,刘锦纷,藤里俊哉,凑谷谦司,中谷武嗣.超高压脱细胞组织工程血管支架的试验研究.组织工程于重建外科杂志.2006; 2(4):193-196.
    61.殷猛,刘锦纷,藤里俊哉,凑谷谦司,中谷武嗣.超高压脱细胞技术制备组织工程带瓣血管支架.中国组织工程研究与临床康复.2008. 12(19):3605-3608.
    62. Suslick KS. Sonochemistry. Science. 1990; 247(4949):1439-1445.
    63.金长善.超声工程[M].哈尔滨工业大学出版社.1989; 5.
    64. Wang Jun, Han Jiantao, Zhang Yang. The application ofultrasound technology in chemical production. J Con-temporary Chemical Industry. 2002; 12(4):187-189.
    65. Suslick K S, Choe S B, Cichow las A, et al. Sonochemical synthesis of amorphous iron .Nature.1991;353:414-416.
    66.王保强,王敬东,尹蓉莉.超声生物处理与声学参数的调控.生物医学工程学杂志Biomed Eng.2004; 21(4):662-665.
    67.沈忠厚.水射流理论与技术[M].石油大学出版社.1998; 3.
    68.席细平,马重芳,王伟.超声波技术应用现状.山西化工.2007. 27(1):25-29.
    69. G-W厄特延,P黑斯利.冷冻干燥.北京:化学工业出版社.2005; 28.
    70.徐成海,邹惠芬,张世伟等.角膜真空冷冻干燥实验的传热传质分析.真空.2001.5(2):13-17.
    71.史宏灿,徐志飞,秦雄等.生物材料人工气管的设计与动物实验研究.第二军医大学学报.2002; 23(10):1142-1145.
    72. Shinichi Ha, Akira Ta, et al. Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads. Materials Science and Engineering. 2008; 1250-1254.
    73. Teebken OE, Pichlmaier AM, Haverich A. Cell seeded decellularisedallogeneic matrix grafts and biodegradable polydioxanone-prostheses compared with arterial autografts in a porcine model. Eur J Vasc Endovasc Surg.2001; 25(22):129-139.
    74. Cho SW, Park HJ, Ryu JH,et al. Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices.J Biomaterials.2005;26(14):1915-1921.
    75. U.S.Food and Drug Administration Center for Food Ssafety and ApPlied Nutrition. Kinetics of Microbia lInactivation for Alternative Food processing technologies high pressure processing EB/OL http:// vm. Cfsan. FDA. Gov/ com/ift-hpp.html.2000;2.
    76. Motwani JG, Topol EJ.Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 1998; 97: 916–931.
    77. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 2001; 7(2):1035-1040.
    78. L’Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization.Nat Med. 2006; 12(14):361-365.
    79. Watanabe M, Shin’oka T, Tohyama S, et al. Tissue engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng. 2001; 7:429-439.
    80. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering.Biomaterials.2000; 21(22): 2215-2231.
    81. Courtman DW, Pereira CA, Omar S, et al. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. J Biomed Mater Res.1995;29(24):1507-1516.
    82. Teebken OE, Bader A, Steinhoff G, et al. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg, 2000; 19(17):381-386.
    83. Minami A, Ishii S, Ogino T, et al. Effect of the immunological antigenicity of the allogeneic tendons on tendon grafting. The Hand. 1982; 14(2):111-118.
    84. Hartmann C, Mathmann K, Delgado A. Mechanical stresses in cellular structures under high hydrostatic pressure. Innovative Food Science and Emerging Technologies 2006; 7(1): 1-12.
    85. Kearney JN. Sterilization of Human Tissue Implants.Tissue Cell Rep. 1996; 4(1): 33-36.
    86. Kearney JN, Bojar R, Holland KT. Ethylene oxide sterilisation of allogenic bone implants. Clin. Mater. 1993; 12(3):129-135.
    87. Silvaggio VJ, Fu FH, Georgescu HI. Evans CH. The induction of IL-1 by freeze dried ethylene oxide-treated bone-patellar tendon-bone allograft wear particles: an in vitro study. Arthroscopy .1993; 9(1): 82-86.
    88. Fideler BM, Vangsness CT, Lu B, Orlando C, Moore T. Gamma irradiation effects: on biomechanical properties of human bone-patellar tendon-bone allografts. Am. J. Sports Med. 1995; 23(5): 643-646.
    89. Martin M, Schoecklmann H, Foster G, et al. Identification of a subpopulation of human renal microvascular endothelial cells with capacity to form capillary-like cord and tube structures. In Vitro Cell Dev Biol Anim. 1997; 33(4): 261-269.
    90. Wutzler P, Sauerbrei A. Virucidal efficacy of a combination of 0.2% peracetic acid and 80 %( v/v) ethanol (PAA-ethanol) as a potential handdisinfectant. J Hosp Infect .2000; 46(4):304-308.
    91. Scheffler S,Trautmann S,Smith M,et al. No influence of collagenous proteins of Achilles tendon, skin and cartilage on the virus-inactivating efficacy of peracetic acid ethanol.Biologicals.2007; 35(4):355-359.
    92.郝丹力,袁继勇,张桂林.低浓度过氧乙酸溶液稳定性探讨.西北国防医学杂志.2005; 26(6):450-451.
    93. Lomas RJ, Cruse-Sawyer JE, Simpson C, Ingham E, Bojar R. Kearney JN. Assessment of the biological properties of human split skin allografts disinfected with peracetic acid and preserved in glycerol. Burns. 2003; 18(29):515–525.
    94. Pruss A, Kao M, Kiesewetter H, von Versen R, Pauli G. Virus safety of avital bone tissue transplants: evaluation of sterilization steps of spongiosa cuboids using a peracetic acid-methanol mixture. Biologicals .1999; 27(3): 195-201.
    95. Farrington M, Wreghitt T, Matthews I, Scarr D, Sutehall G, Hunt CJ, Santiago T, Gruys E, Voorhout W, Ramos T, Pegg DE. Processing of Cardiac Valve Allografts: 2 Effects of antimicrobial treatment on sterility, structure and mechanical properties. Cell and Tissue Banking Int. 2002; 3(5): 91-103.
    96. Lomas RJ, Jennings LM, Fisher J, Kearney JN. Effects of a peracetic acid disinfection protocol on the biocompatibility and biomechanical properties of human patellar tendon allografts .Cell and Tissue Banking .2004; 5: 149-160.
    97. Oberpinning F, Meng J, Yoo J, Atala A. De novo reconstitution of a functional mammalian bladder by tissue engineering. Nat Biotechnol. 1999; 17(16):149-158.
    98. Sodian R, Lemke T, Loebe M, Hoerstrup SP, Potapov EV, Hausmann H, Meyer R, Hetzer R. New pulsatile bioreactor for fabrication of tissue engineered patches. J Biomed Mater Res .2001; 58(12):401-412.
    99. Vunjak-Novakovic G, Obradovic B, Martin I, Bursac PM, Langer R, Freed LE. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog .1998; 14(12): 193-199.
    100. Godbey WT, Stacey Hindy BS, Sherman ME, Atala AA. Novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials. 2004; 25(3): 2799–2805.
    101. Van Ejik F, Saris DB, Riesle J, Wilems WJ, Dhert WJ. 3D knitted scaffold for ligament tissue engineering.49th Annual Meeting of the Orthopaedic Research Society. 2003; 989-995.
    102. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL. Silk matrix for tissue engineered anterior cruciate ligaments. Bio- materials. 2002; 23(18): 4131-4139.
    103.夏文森.组织工程方法构建全生物化血管移植物的实验研究.第四军医大学博士论文.2006; 53-54.
    104. Maylia E, Nokes LD. The use of ultrasound in orthopaedics-a review.Technol Health Care. 1999; 7(1). 1-28.
    105. Rubin C, Bolander M, Ryaby J, Handjiargyrou M.The use of low-intensity ultrasound to accelerate the healing of fractures. J Bone Joint Surg. 2001; 83(A):259-263.
    106. Terada S,Sato M,Sevy A,et al. Tissue engineering in the twenty-first century.Yonsei Med J.2000; 14(12):685-691.
    107. Sewell WH, Koth DR, Pate JW, et al. Review of some experiments with freeze -dried grafts. Am J Surg, 1956; 91(3):358-361.
    108. Smith AU. Freezing and drying biological materials. Nature, 1958; 181 (4625):1694-1696.
    109. Briggs A. A new freeze-drying technique for processing biological materials. J Dev Biol Stand. 1976; 36:251-260.
    110. Hanes PJ. Bone replacement grafts for the treatment of periodontal intrabony defects .J Oral Maxillofac Surg Clin North Am. 2007; 19 (4):499-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700