基于启发式方法和径向基函数神经网络的QSRR/QSAR研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定量构效关系(Quantitative Structure-Activity/Property Relationship)方法是目前国际上比较活跃的研究领域之一,QSAR/QSPR的研究领域涉及化学、生物、医学、农业以及环境等诸多学科。QSAR/QSPR利用计算出来的化合物的分子结构参数,建立二维(2-D)、三维(3-D)或多维定量模型,来预测未知化合物的各种理化性质、药物生物活性等。
     本论文从定量描述分子的结构和性质定量关系的建立及发展入手,总结了QSAR/QSPR方法在化学研究、色谱分析、环境效应评价和药物设计方面的应用。同时,着重研究了如何运用径向基函数神经网络(Radial Basis Function Neural Networks, RBFNN)方法建立高效、稳定的QSAR/QSPR模型。
     第一章介绍了定量构效关系的概念、基本原理、方法、发展历程及研究进展。同时,详细介绍了HM和RBFNN方法的基本原理及应用。
     第二章对83种食物中真菌的二级代谢物毒枝菌素在LC-MS/MS中的保留行为进行了QSRR研究。运用启发式方法和RBFNN方法分别建立了这些化合物的结构与其色谱保留值之间的线性和非线性模型。两种方法的判定系数(R2)分别为0.7835和0.8932。通过对两种模型的稳定性和预测能力的比较,发现所选描述符与保留值存在一定的非线性关系,非线性方法RBFNN模型的预测能力有很大改善。该方法与其它非线性方法相比具有简单、快捷、准确的优点。
     第三章运用启发式方法和RBFNN方法分别建立了描述65个有机污染物的结构与其生物分配胶束色谱保留值之间的线性和非线性QSRR模型。RBFNN模型的训练集、预测集的判定系数(R2)分别为0.9301和0.9046。结果表明,RBFNN模型性能优于HM。
     第四章运用启发式和RBFNN方法分别建立了40个XR类肿瘤多药耐药抑制剂的结构与calcein AM分析中的活性的线性和非线性模型。两种模型对测试集进行预测得到的判定系数(R2)分别为0.8827和0.9276。结果表明,RBFNN模型的预测结果更为准确。
Quantitative structure-activity/property Relationship (QSAR/QSPR) methods are the most promising and successful tools to provide rapid and useful meaning for predicting the biological activity or toxicity of organic compounds by using of different statistical methods and various kinds of molecular descriptors. The aim of QSAR is to develop models on a training set of compounds, these models will then allow for the prediction of the biological activity of related chemicals. This kind of study can not only develop a method for the prediction of the property of compounds that have not been synthesized, but also can identify and describe important structural features of molecules that are relevant to variations in molecular properties, thus gain some insight into structural factors affecting molecular properties. Now, QSAR method has been introduced to environment chemistry and medical chemistry. In this dissertation, we mainly discussed radial basis function neural networks (RBFNN) to construct QSAR model.
     Chapter 1 of the dissertation included a brief description of the history, principle, realization process and research status of QSAR/QSPR. In this section, we also introduced the method RBFNN and a review of the application of RBFNN in medical and environment chemistry area.
     Chapter 2 of this dissertation described Quantitative Structure-Retention Relationships for Mycotoxins and Fungal Metabolites in LC-MS/MS. Quantitative structure-retention relationship (QSRR) models have been successfully developed for the prediction of the retention time of Mycotoxins and Fungal Metabolites in LC-MS /MS. Heuristic method (HM) and RBFNN were utilized to construct the linear and non-linear QSRR models, respectively. The RBFNN model gave a correlation coefficient (R2) of 0.8709 and root-mean-square error (RMSE) of 1.2892 for the test set. This work provided a useful model for the predicting tR of other mycotoxins when experiment data are unknown.
     Chapter 3 of dissertation described the prediction of the retention factor (log k) in the biopartitioning micellar chromatography (BMC) of 65 organic pollutants by HM and RBFNN. Heuristic method (HM) and RBFNN were utilized to construct the linear and non-linear QSRR models, respectively. The correlation coefficients (R2) of the nonlinear RBFNN model were 0.9301 and 0.9046 for the training and testing sets, respectively. This work provided a useful model for the predicting the log k of other organic compounds when experiment data are unknown. Compared with the results of HM, the RBFNN obtained more accurate prediction.
     Chapter 4 of dissertation described QSAR about multidrug resistance modulators. HM and RBFNN methods were proposed to generate QSAR models for a set of tetrahydroisoquinoline-ethyl-phenylamine substructure to predict their biological activity in the calcein AM assay. Descriptors calculated from the molecular structures alone were used to represent the characteristics of the compounds. Compared with the results of HM, the RBFNN obtained more accurate prediction. The correlation coefficients (R2) of the nonlinear RBFNN model were 0.9101 and 0.9276 for the training and testing sets, respectively. This paper proposed an effective method to design new MDR modulators based on QSAR.
引文
[1]Gasteiger, J.; Engle, T.著.《化学信息学教程》,梁逸曾,徐峻,姚建华,等译.北京,化学工业出版社,2005.
    [2]邵学广,蔡文生.化学信息学及其课程建设.大学化学,2002,17,12-15.
    [10]Murugan, R.; Grendze, M. P.; Toomey, Jr. J. E.; Katritzky, A. R.; Karelson, M.; Lobanov, V.; Rachwal, P. Predicting physical properties from molecular structure. Chemtech,1994,24,17-23.
    [9]Katritzky, A. R.; Lobanov, V. S.; Karelson, M. QSPR:The correlation and quantitative prediction of chemical and physical properties from structure. Chem. Soc.Rev.1995,24,279-287.
    [8]Karelson, M.; Maran, U.; Wang, Y.; Katritzky, A. R. QSPR and QSAR models derived using large descriptor spaces. A review of CODESSA applications. Collect. Czech. Chem. Commun.1999,64,1551-1571.
    [7]Katritzky, A. R.; Maran, U.; Lobanov, V. S.; Karelson, M. Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. J. Chem. Inf. Comput. Sci.2000,40,1-18.
    [6]Katritzky, A. R.; Petrukhin, R.; Tatham, D.; Basak, S.; Benfenati, E.; Karelson, M.; Maran, U. Interpretation of quantitative structure-property and activity relationships. J. Chem. Inf. Comput. Sci.2001,41,679-685.
    [5]Katritzky, R.; Fara, D. C; Petrukhin, R. O.; Tatham, D. B.; Maran, U.; Lomaka, A.; Karelson, M. The present utility and future potential for medicinal chemistry of QSAR/QSPR with whole molecule descriptors. Current Topics in Medicinal Chemistry.2002,2,1333-1356.
    [4]王连生,支正良.《分子连接性与分子结构—活性》.北京,中国环境科学出版社,1992.
    [3]王连生,韩朔睽. 《有机物定量结构活性相关》.北京,中国环境科学出版社,1993.
    [11]许禄,胡昌玉.《应用化学图论》.北京,科学出版社,2000.
    [12]Omar, D.; Bahram, H.; Amal, Jaber, R.; Ramin, M. Effect of the electronic and physicochemical parameters on the carcinogenesis activity of some sulfa drugs using QSAR analysis based on genetic-MLR and genetic-PLS. Chemosphere.2007,11,2122-2130.
    [13]Lin, Z.; Yin, K.; Shi, P.; Wang, L; Yu, H. Development of QSARs for predicting the joint effects between cyanogenic toxicants and aldehydes. Chem. Res. Toxicol.2003,16,1365-1371.
    [14]Hansch, C; Leo, A.; Hoekman, D. Exploring QSAR fundamentals and applications in chemistry and biology, volume 1. hydrophobic, electronic and steric constants. J. Am. Chem. Soc.1996,118,10678-10678.
    [15]俞庆森,朱龙观.《分子设计导论》.北京,高等教育出版社,2000.
    [16]Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA:Reference Manual; Version 2; University of Florida,1994.
    [17]夏彬彬.径向基函数神经网络在环境化学和药物化学中的应用.硕士学位论文.兰州大学,2008.
    [18]Ali, A.; Cheolju, L.; Hyunsung, P.; Seung J. C.3D QSAR studies of dioxins and dioxin-like compounds using CoMFA and CoMSIA. Chemosphere.2006,65, 521-529.
    [19]Kruhlak, N. L.; Contrera, J. F.; Daniel Benz, R.; Matthews, E. J. Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products. Advanced Drug Delivery Reviews,2007,59,43-55.
    [20]薛春霞.SVM在QSPR中的应用及基于配体的计算机辅助药物设计.博士学位论文.兰州大学,2005.
    [21]刘焕香.基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究.博士学位论文.兰州大学,2005.
    [22]赵春燕.QSAR研究在生命分析化学和环境化学中的应用.博士学位论文.兰州大学,2006.
    [23]马卫平.线性和非线性方法在QSAR中的应用.博士学位论文.兰州大学,2006.
    [24]Kubinyi, H.; Structure-based design of enzyme inhibitors and receptor ligands. Curr. Opin. Durg. Disc.1998,1,4-15.
    [25]Jayatilleke, P. R. N.; Nair, A. C; Zauhar, R.; Welsh, W. J. Computational studies on HIV-1 protease inhibitors:Influence of calculated inhibitor-enzyme binding affinities on statistical quality of 3D-QSAR CoMFA models. J. Med. Chem. 2000,43,4446-4451.
    [26]Chandrasekaran, V.; McGaughey, G. B.; Cavallito, C. J.; Bowen, J.P. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses of choline acetyltransferase inhibitors. J. Mol. Graph. Model.2004, 23,69-76.
    [27]Worth, A. P.; Van Leeuwen, C. J.; Hartungt A, T. The prospects for using (Q)SARs in a changing political environment-high expectations and a key role for the European commission's joint research centre. SAR. QSAR. Environ. Res. 2004,75,331-343.
    [28]Gieleciak, R.; Magdziarz, T.; Bak, A.; Polanski, J. Modeling robust QSAR.1. Coding molecules in 3-D QSAR from a point to surface sectors and molecular volumes. J. Chem. Inf. Model.2005,45,1447-1455.
    [29]Macchiarulo, A:; De Luca, L.;Costantino, G; Barrece, M. L.; Gitto, R.; Pellicciari, R.; Chimirri, A. QSAR study of anticonvulsant negative allosteric modulators of the AMPA receptors. J. Med. Chem.2004,47,1860-1863.
    [30]Liu, H. X.; Hu, R. J.; Zhang, R. S.; Yao, X. J.; Liu, M.'C; Hu, Z. D.; Fan, B. T. The prediction of human oral absorption for diffusion rate-limited drugs based on heuristic method and support vector machine. J. Comput. Aid. Mol. Des.2005, 19,33-46.
    [31]Zhao, C. Y.; Zhang, H. X.; Zhang, X Y; Zhang, R. S.; Luan, F.; Liu, M. C; Hu, Z. D.; Fan, B. T. Prediction of milk-to-plasma drug concentration (M/P) ratio using support vector machine (SVM) method. Phram. Res.2006,23,41-48.
    [32]Leonard, J. T.; Roy, K.; QSAR by LFER model of HIV protease inhibitor mannitol derivatives using FA-MLR, PCRA, and PLS techniques. Anal. Bioanal. Chem.2006,14,1039-1046.
    [33]Liu, H. X.; Gramatica, P. QSAR study of selective ligands for the thyroid hormone receptor β. Bioorgan. Med Chem.2007,15,5251-5261.
    [34]Raha, M. K.; Peters, B.; Wang, B.; Yu, N.; Wollacott, A. M.; Westerhoff, L. M.; Merz Jr, K. M. The role of quantum mechanics in structure-based drug design. Drug Discovery Today,2007,12,725-731,
    [35]Fujikawa, M.; Nakao, K.; Shimizu, R.; Akamatsu, M. QSAR study on permeability of hydrophobic compounds with artificial membranes. Bioorgan. Med Chem.2007,75,3756-3767.
    [36]Freidig, A. P.; Dekkers, S.; Verwei, M.; Zvinavashe, E.; Bessems, J.G.M.; van de Sandt, J. J. M.; Nikolic, K. M. QSAR study of a-tocopherol derivatives with chemotherapeutic activity against human breast cancer cells. J. Mol. Strue: THEOCHEM,2007,809,137-143.
    [37]Gonzalez-Diaz, H.; Bonet, I.; Teran, C; Clercq, E.; Bello, R.; Garcia, M. M.; Santana, L.; Uriarte, E. ANN-QSAR model for selection of anticancer leads from structurally heterogeneous series of compounds. Eur. J. Med. Chem.2007, 42,580-585.
    [38]徐筱杰,侯廷军,乔学斌,章威.《计算机辅助药物分子设计》.北京,化学工业出版社,2004.
    [39]Verma, R. R; Hansch, C. Understanding human rhino virus infections in terms of QSAR. Virology.2007,359,152-161.
    [40]Karawajczyk, A.; Drgan, V.; Medic, N.; Oboh, G; Passamonti, S.; Novic, M. Properties of flavonoids influencing the binding to bilitranslocase investigated by neural network modeling. Biochem. Pharm.2007,73,308-320.
    [41]Zhao, C. Y.; Zhu, Y; Zhang, H. X.; Liu, M. C; Fan, B.T. Accurate prediction of the folding rate for two-state proteins based on amino acid sequences. QSAR & Comb. Sci.2007,26,307-316.
    [42]苏丽敏,袁星.持久性有机污染物(POP)及其生态毒性的研究现状与展望.重庆环境科学,2003,25,62-73.
    [43]Toropov, A.A.; Benfenati, E. SMILES as an alternative to the graph in QSAR modelling of bee toxicity. Computational Biology and Chemistry,2007,31, 57-60.
    [44]Luan, F; Zhang, R.; Zhao, C; Yao, X.; Liu, M.; Hu, Z.; Fan, B. Classification of the carcinogenicity of N-nitroso compounds based on support vector machine and linear discrimination analysis. Chem. Res. Toxcol 2005,18,198-203.
    [45]Zhao, C. Y.; Zhang, R.S.; Zhang, H. X.; Xue, C. X.; Liu, H.X.; Liu, M. C; Hu, Z. D.; Fan, B. T. QSAR study of natural, synthetic and environmental endocrine disrupting compounds for binding to the androgen receptor. SAR QSAR Environ. Res.2005,16,349-367.
    [46]Zhang, L.; Zhou, P. J.; Yang, F.; Wang, Z. D. Computer-based QSARs for predicting mixture toxicity of benzene and its derivatives. Chemosphere.2007, 67,396-401.
    [47]Huuskonen, J. QSAR modeling with the electrotopological state indices: predicting the toxicity of organic chemicals. Chemosphere.2003,50,949-953.
    [48]Freidig, A. P.; Dekkers, S.; Verwei, M.; Zvinavashe, E.; Bessems, J. G. M.; van de Sandt, J. J. M. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds. Toxico. Lett.2007,170,214-222.
    [49]Papa, E.; Dearden, J.C.; Gramatica, P. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere.2007,67,351-355.
    [50]Lo Piparo, E.; Fratev, F.; Lemke, F.; Mazzatorta, P.; Smiesko, M.; Fritz, J. I.; Benfenati, E. QSAR models for Daphnia magna toxicity prediction of benzoxazinone allelochemicals and their transformation products. J. Agric. Food. Chem.2006,54,1111-1115.
    [51]Scotti, L.; Scotti, M. T.; Ishiki, H. M.; Ferreira, M. J. P.; Emerenciano, V. P.; Menezes, C. M. de S.; Ferreira, E. I. Quantitative elucidation of the structure-bitterness relationship of cynaropicrin and grosheimin derivatives. Food Chemistry.2007,105,77-83.
    [52]Katritzky A.R.; Pacureanu L. M.; Slavov S. H.; Dobchev D. A.;Shah D.O.; Karelson M. QSPR study of the first and second critical micelle concentrations of cationicsurfactants. Computers and Chemical Engineering.2009,53,321-332.
    [53]http://www.rcsb.org/pdb/Webcome.do
    [54]http://www.pubs.acs.org
    [55]http://www.sciencedirect.com
    [56]http://www3.interscience.wiley.com
    [57]http://www.springerlink.com
    [58]http://www.ckni.net/index.htm
    [59]http://wanfang.calis.edu.cn/wf/kjxx/cacp.htm
    [60]http://www.tydata.com
    [61]Topliss, J. G.; Edwards, R. P. Chance Factors in Studies of Quantitative Structure-Activity Relationships. J. Med. Chem.1979,22,1238-1244.
    [62]许禄,胡昌玉.《应用化学图论》.北京,科学出版社,2000.
    [63]北京林学院.《数理统计林业专业用》.北京,中国林业出版社,.1980.
    [64]陈仲生.《基于Matlab 7.0的统计信息处理》.长沙,湖南科技出版社,2005.
    [65]卢纹岱.《SPSS for Windows统计分析》.北京,电子工业出版社,2002.
    [66]王小平,曹立明.《遗传算法—理论、应用与软件实现》.西安,西安交通大学出版社,2002.
    [67]周明,孙树栋.《遗传算法原理及应用》.北京,国防工业出版社,1999.
    [68]Kauffmann, G. W. The development of predictive models for physical and biological properties from molecular structure and the analysis of data from a conduction polymer chemiresistive sensor array,博士毕业论文.Pennsylvania State University,2002.
    [69]许禄.《化学计量学方法》.北京,科学出版社,1995.
    [70]Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug Research; Academic Press:New York,1976.
    [71]Katritzky,A.R.;Lobanov,V.S.;Karelson,M.CODESSA:Reference Manual;Version 2; University of Florida,1994.
    [72]Kier, L. B.; Hall, L. H. Molecular Connectivity in Structure-Activity Analysis; John Wiley& Sons:New York,1986.
    [73]Balaban, A. T. From Chemical Topology to Three-Dimensional Geometry; Plenum Press:New York,1996.
    [74]Devillers, J.; Balaban, A. T.; Eds. Topological Indices and Related Descriptors in QSAR and QSPR; Gordon and Breach:Amsterdam, the Netherlands,1999.
    [75]Karelson, M. Molecular Descriptors in QSAR/QSPR; John Wiley& Sons:New York,2000.
    [76]Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors. Wiley-VCH:Weinheim, Germany,2000.
    [77]Karelson, M.; Lobanov, V. S.; Katritzky, A. R. Quantum-chemical descriptors in qsar/qspr studies. Chem. Rev.1996,96,1027-1043.
    [78]Stanton, D. T.; Jurs, P. C. Development and use of charge partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem.1990,62,2323-2329.
    [79]Connolly, M. L. Solvent-accessible surfaces of proteins and nucleic acids.Science.1983,221,709-713.
    [80]Gasteiger, J.; Sadowski, J.; Selzer, P.; Steinhauer, L.; Steinhauer, V. Chemical Information in 3D Space. J. Chem. Inf. Comput. Sci.1996,36,1030-1037.
    [81]Livingstone, D. J. The Characterization of Chemical Structures Using Molecular Properties. A Survey. J. Chem. Inf. Comput. Sci.2000,40,195-209.
    [82]Gasteiger, J.; Burkard, S. U.; Hemmer, M. C; Herwig, A.; von Homeyer, A.; Hollering, R.; Kleinoder, T.; Kostka, T.; Schwab, C; Selzer, P.; Steinhauer, L. Decision Support Systems for Chemical Structure Representation, Reaction Modeling and Spectra Simulation SAR QSAR in Environm. Res.2002,13, 89-110.
    [83]Engel, T.; Gasteiger, J. Chemical Structure Representation for Information Exchange. Online Inform. Rev.2002,26,139-145.
    [84]Todeschini, R.; Gramatica, P. New 3D Molecular Descriptors:The WHIM theory and QSAR applications In 3D QSAR in drug design, Kluwer/Escom, Dordrecht, The Netherlands,1998.
    [85]Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, R.; Zaliani, A. MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties:a comparative 3D-QSAR study in a series of steroids. J. Computer-Aided Mol. Des.1997,11,79-92.
    [86]Chiorboli, C; Piazza, M.; Gramatica, P.; Pino, A.; Todeschini, R. 3D-modelling and prediction by WHIM descriptors. Part 7. Physico-chemical properties of haloaromatics:comparison between WHIM and topological descriptors. SAR QSAR Environ.Res.1997,7,133-150.
    [87]Todeschini, R.; Gramatica, P.3D-modelling and prediction by WHIM descriptors. Part 6. Applications of the WHIM descriptors in QSAR studies. Quant. Struct. Act. Relat.1997,16,120-125.
    [88]Todeschini, R.; Moro, G.; Boggia, R.; Cosentino, U.; Lasagni, M.; Pitea, D. Modeling and prediction of molecular properties. Theory of Grid-Weighted Holistic Invariant Molecular (G-WHIM) descriptors. Chemometrics & Intell. Lab. Syst.1997,36,65-73.
    [89]Puri, S.; Chickos, J. S.; Welsh, W. J. Three-dimensional quantitative structure-property relationship (3D-QSPR) models for prediction of thermodynamic properties of polychlorinated biphenyls (pcbs):enthalpy of sublimation. J. Chem. Inf. Comput. Sci.2002,42,109-116.
    [90]Hopfinger, A. J.; Burke, B. J.; Dunn, W. F. Ⅲ A generalized formalism of three-dimensional quantitative structure-property relationship analysis for flexible molecules using tensor representation. J. Med. Chem.1994,37, 3768-3774.
    [91]http://www.tripos.com/
    [92]Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C. Construction of 3D-QSAR models using the 4d-qsar analysis formalism. J. Am. Chem. Soc.1997,119,10509-10524.
    [93]Duca, J. S.; Hopfinger, A. J.4D-QSPR Analysis and virtual screening of calcite growth inhibitor libraries. Chem. Mater.2000,2,3821-3829.
    [94]http://www.mdli.com/.
    [95]http://www.daylight.com/.
    [96]茅晓延.改进型BP神经网络在N-亚硝基化合物致癌活性QSAR研究中的应用.硕士学位论文.浙江大学,2005.
    [97]阂惜琳,刘国华.人工神经网络结合遗传算法在建模和优化中的应用[J],计算机应用研究,2002,19,79-80
    [98]唐桂刚,白乃彬.遗传神经网络在QSAR中的应用研究.计算机与应用化学,1999,16,435-440.
    [99]Kosko, B. Nueral Networks and Fuzzy System, Englewood Cliffs:Pretice Hall.Inc.1992.
    [100]高守国,屈凌波,等.模糊人工神经网络方法在QSAR研究中的应用.计算机与应用化学.2002,19,432-434.
    [101]许禄,胡昌玉.化学中的人工神经网络法.化学进展.2000,12,18-31.
    [102]徐筱杰,侯廷军,乔学斌,章威.《计算机辅助药物分子设计》.北京,化学工业出版社,2004.
    [103]Orr, M. J. L. Introduction to Radial basis function networks, center for cognitiVe science, Edinburgh University,1996.
    [104]Orr, M. J. L. MATLAB routines for subset selection and ridge regression in linear neural networks, Center for cognitiVe science, Edinburgh University, 1996.
    [105]Yao, X. J.; Zhang, X. Y.; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. Prediction of enthalpy of alkanes by the use of radial basis function neural network. Comput. Chem.2001,25,475-483.
    [106]Yao, X. J.; Zhang, X. Y; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. Radial basis function neural networks based QSPR for the prediction of critical pressure of substituted benzenes. Comput. Chem.2002,26,159-169.
    [107]Yao, X. J.; Wang, Y. W.; Zhang, X. Y; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. Radial basis ruction neural network-based QSPR for the prediction of critical temprature. Chem. Intel. Lab. Syst.2002,62,217-225.
    [108]Yao, X. J.; Fan, B. T.; Doucet, J. P.; Panaye, A.; Liu, M. C; Zhang, X. Y; Zhang, R. S.; Hu, Z. D. Quantitative structure property relationship models for the prediction of liquid heat capacity. QSAR. Com. Sci.2003,22,29-48.
    [109]Xue, C.X.; Zhang, R. S.; Liu, H. X.; Yao, X. J.; Liu, M. C; Hu, Z. D.; Fan, B. T. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and support vector machine. J. Chem. Inf. Comput. Sci.2004,44,1693-1700.
    [110]Liu, H. X.; Yao, X. J.; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine. Chemosphere 2006,63,722-733.
    [111]Luan, F.; Zhang, X.Y.; Zhang, H.X.; Zhang, R.S.; Liu, M.C.; Hu, Z.D.; Fan. B.T. QSPR study of permeability coefficients through low-density polyethylene based on radial basis function neural networks and the heuristic method. Computational Materials Science.2006,37,454-461.
    [112]Lu,W.J.; Chen, Y.L.; Liu, M.C.; Chen, X.G.; Hu, Z.D. QSPR prediction of n-octanol/water partition coefficient for polychlorinated biphenyls. Chemosphere.2007,69,469-478.
    [113]Wang, J.; Du, H.Y.; Liu,.; Yao, X.J.; Hu, Z.D.; Fan, B.T. Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine. Talanta.2007,73,147-156.
    [114]Luan, F.; Liu, H.T.; Gao, Y.; Li, Q.Z.; Zhang, X.Y.; Guo, Y. Prediction of hydrophile-lipophile balance values of anionic surfactants using a quantitative structure-property relationship. Journal of Colloid and Interface Science.2009, 336,773-779.
    [115]Liu, H.T.; Wen, Y.Y.; Luan, F; Gao, Y; Li,X.Y. Quantitative structure-max relationship study on flavones by heuristic method and radial basis function neural network. Analytica Chimica Acta.2009,649,52-61.
    [116]Liu, H.T.; Han, P.; Wen, Y.Y.; Luan, F.; Gao, Y.;Li,X.Y Quantitative structure-electrochemistry relationship for variously-substituted 9,10-anthraquinones using both an heuristic method and a radial basis function neural network. Dyes and Pigments.2010,84,148-152.
    [117]Yao, X.J.; Zhang,X.Y; Zhang, R.S.; Liu, M.C.; Hu,Z.D.; Fan, B.T. Prediction of gas chromatographic retention indices by the use of radial basis function neural networks. Talanta.2002,57,297-306.
    [118]Wang, Y.W.; Zhang, X.Y.; Yao, X.J.; Gao, Y.H.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Prediction of logkw of disubstituted benzene derivatives in reversed-phase high-performance liquid chromatography using multiple linear regression and radial basis function neural network. Analytica Chimica Acta.2002,463, 89-97.
    [119]Luan, F; Xue, C.X.; Zhang,R.S.; Zhao, C.Y.; Liu, M.C.; Hu, Z.D.; Fan,B.T. Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine. Analytica Chimica Acta.2005, 537,101-110.
    [120]Xue, C. X.; Yao, X. J.; Liu, H. X.; Liu, M. C; Hu, Z. D.; Fan, B. T. Development of migration models for acids in capillary electrophoresis using heuristic and radial basis function neural network methods. Electrophoresis. 2005,25,2154-2164.
    [121]Liu, H. X.; Yao, X,J.; Liu, M.C.; Hu,Z.D.; Fan, B.T. Prediction of retention in micellar electrokinetic chromatography based on molecular structural descriptors by using the heuristic method. Analytica Chimica Acta.2006,558, 86-93.
    [122]Luan, F.; Liu, H.T.; Wen, Y.Y.; Zhang, X.Y Quantitative structure-property relationship study for estimation of quantitative calibration factors of some organic compounds in gas chromatography. Analytica Chimica Acta.2008,612, 126-135.
    [123]Du, H.Y.; Wang, J.; Zhang, X.Y; Yao, X.J.; Hu, Z.D. Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression. Chemometrics and Intelligent Laboratory Systems. 2008,92,92-99.
    [124]Ji,C.H.;Li,Y.W.;Su L.;Zhang,X.Y; Chen, X.G. Quantitative structure-retention relationships for mycotoxins and fungal metabolites in LC-MS/MS. J.Sep.Sci. 2009,32,3967-3979
    [125]Xue, C.X.; Zhang, R. S.; Liu, H. X.; Yao, X. J.; Liu, M. C; Hu, Z. D.; Fan, B. T. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and support vector machine. J. Chem. Inf. Comput. Sci.2004,44,1693-1700.
    [126]Xia, B.B.; Ma, W.P.; Zheng, B.; Zhang, X.Y.; Fan, B.T. Quantitative structureeactivity relationship studies of a series of non-benzodiazepine structural ligands binding to benzodiazepine receptor. European Journal of Medicinal Chemistry.2008,43,1489-1498.
    [127]Liu, K.P; Xia, B.B.; Ma, W.P.; Zheng, B.;Zhang, X.Y.; Fan, B.T. Quantitative Structure-Activity Relationship Modeling of Triaminotriazine Drugs Based on Heuristic Method. QSAR Comb. Sci.2008,27,425-431
    [128]Yuan, Y.N.; Zhang, R.S.; Hu, R.J.; Ruan, X.F. Prediction of CCR5 receptor binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas based on the heuristic method,support vector machine and projection pursuit regression. European Journal of Medicinal Chemistry.2009,44,25-34.
    [129]Liu, H. X.; Yao, X. J.; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine. Chemosphere.2006,63,722-733.
    [130]Ma, W.P.; Luan, F. Zhang, H.; Zhang, X.Y; Liu, M.C.; Hu, Z.D.; Fan, B.T. Quantitative structure-property relationships for pesticides in biopartitioning micellar chromatography. J Chromatogr A.2006,1113,140-147.
    [131]Xia, B.B.; Ma, W.P.; Zhang, Y; Fan, B.T.Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography. Analytica Chimica Acta.2007,598,12-18.
    [1]Hussein, H.S.; Brasel, J.M. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology Toxicology.2001,167,101-134.
    [2]Trebstein, A.; Seefelder, W; Lauber, U.; Hans-Ulrich, H. Determination of T-2 and HT-2 Toxins in cereals including oats after immunoaffinity cleanup by liquid chromatography and fluorescence detection. J. Agric. Food Chem.2008,56, 4968-4975.
    [3]Krska, R.; Crews, C. Significance, chemistry and determination of ergot alkaloids: A review, Food Addit. Contam.2008,25,722-731.
    [4]Ren, Y.P.; Zhang, Y.; Shao, S.L.; Cai, Z.X.; Feng, L.; Pan, H.F.; Wang, Z.G. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A.2007,1143,48-64.
    [5]Shephard, G. S. Determination of mycotoxins in human foods. Chem. Soc. Rev. 2008,37,2468-2477.
    [6]Krska, R.; Schubert-Ullrich, P.; Molinelli A.; Sulyok, M.; Macdonald, S.; Crews, C. Mycotoxin analysis:An update. Food Addit. Contam.2008,25,152-163.
    [7]Van Egmond, H.P.; Schothorst, R.C.; Jonker, M.A. Validation of analytical methods for determining mycotoxins in foodstuffs. Anal. Bioanal. Chem.2007, 389,147-157.
    [8]Gilbert, J.; Anklam, E. Validation of analytical methods for determining mycotoxins in foodstuffs. Trends Anal. Chem.2002,21,468-486.
    [9]Schneider, E.; Curtui, V; Seidler, C; Dietrich, R.; Usleber, E.; Martlbauer E.; Rapid methods for deoxynivalenol and other trichothecenes. Toxicol. Lett.2004, 755,113-121.
    [10]Songsermsakul, P.; Razzazi-Fazeli, E.; A review of recent trends in applications of liquid chromatography-mass spectrometry for determination of mycotoxins. J. Liq. Chromatogr. Related Technol.2008,31,1641-1686.
    [11]Kokkonen, M.; Jestoi, M.; Rizzo, A.; Determination of selected mycotoxins in mould cheeses with liquid chromatography coupled to tandem with mass spectrometry. Food Addit. Contam.2005,22,449-456.
    [12]Delmulle, B.; De Saeger, S.; Adams, A.; De Kimpe, N.; Van Peteghem, C. Development of a liquid chromatography/tandem mass spectrometry method for the simultaneous determination of 16 mycotoxins on cellulose filters and in fungal cultures. Rapid Commun. Mass Spectrom.2006,20,771-776.
    [13]Sulyok, M.; Krska, R.; Schuhmacher, R. A liquid chromatography-tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal.Bioanal.Chem.2007,389,1505-1523.
    [14]Luan, F.; Xue, C.X.; Zhang, R.S.; Zhao, C.Y.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine. Anal. Chim. Acta.2005,537, 101-110.
    [15]Xia, B.B.; Ma, W.P.; Zhang, X.Y.; Fan, B.T:Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography. Anal. Chim. Acta.2007,598,12-18.
    [16]Katritzky, A.R.; Ignatchenko, E.; Barcock, R.; Lobanov, V.; Karelson, M. Prediction of gas chromatographic retention times and response factors using a general qualitative structure-property relationships treatment. Anal. Chem.1994, 66,1799-1807.
    [17]Xiang, YH.; Liu, M.C.; Zhang, X.Y.; Zhang, R.S.; Hu, Z.D.; Fan, B.T.; Doucet, J.P.; Panaye, A. Quantitative prediction of liquid chromatography retention of N-benzylideneanilines based on quantum chemical parameters and radial basis function neural network. J. Chem. Inf. Comput. Sci.2002,42,592-597.
    [18]Ma, W.P.; Luan, F.; Zhang, H.X.; Zhang, X.Y.; Liu, M.C, Hu, Z.D.; Fan, B.T. Accurate quantitative structure-property relationship model of mobilities of peptides in capillary zone e;lectrophoresis. Analyst (Cambridge, U. K),2006,131, 1254-1260.
    [19]Shi, J.; Luan, F.; Zhang, H.X.; Liu, M.C.; Guo, Q.X.; Hu, Z.D.; Fan, B.T. QSPR study of fluorescence wavelengths (λex/λem) based on the heuristic method and radial basis function neural networks. QSAR Comb. Sci.2006,25,147-155.
    [20]Golbraikh,A.; Tropsha,A. Beware of q2! J. Mol. Grap. Model.2002,20,69-276.
    [21]Zhang, S.X.; Wei, L.Y.; Bastow K.; Zheng, W.F.; Brossi, A.; Lee, K.; Tropsha A. J. Comput. Aided. Mol. Des.2007,21,97-112.
    [22]Dyekjr, J.D.; Osk Jonsdottir, S. QSPR Models Based on Molecular Mechanics and Quantum Chemical Calculations.2. Thermodynamic Properties of Alkanes, Alcohols, Polyols, and Ethers, Ind. Eng. Chem. Res.2003,42,4241-4259.
    [23]Tamm, K.; Fara, D.C.; Katritzky, A.R.; Burk, P.; Karelson, M. A quantitative structure property relationship study of lithium cation basicities. J. Phys. Chem. A,2004,705,4812-4818.
    [24]Lii, W. J.; Chen, Y.L.; Ma, W.P.; Zhang, X.Y.; Luan, F.; Liu, M.C.; Chen, X.G.; Hu, Z.D. QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network. Eur. J.Med. Chem.2008,43,569-576.
    [25]Gramatica, P.; Giani, E.; Papa, E. Statistical external validation and consensus modeling:A QSPR case study for Koc prediction. J. Mol. Graph. Model 2007, 25,755-766.
    [26]Gong, Z. G.; Xia, B. B.; Zhang, R. S.; Zhang, X. Y.; Fan, B. T. Quantitative Structure-activity relationship study on fish toxicity of substituted benzenes. QSAR Comb. Sci.2008,27,967-976.
    [27]Tropsha, A.; Gramatica, P.; Gombar, V.K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci.2003,22,69-77.
    [28]Katritzky, A.R.; Oliferenko, A.A.; Oliferenko, P.V.; Petrukhin, R.; Tatham, D.B.; Maran, U.; Lomaka, A.; Acree, W.E. A general treatment of solubility:1. the QSPR correlation of solvation free energies of single solutes in series of solvents. J. Chem. Inf. Model.2003,43,1794-1805.
    [29]Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev.1996,96,1027-1044.
    [1]Escuder-Gilabert, L.; Martin-Biosca, Y.; Sagrado, S.; Villanueva-Camanas, R. M:; Medina-Hernandez, M. J. Biopartitioning micellar chromatography to predict ecotoxicity. Anal.Chim. Acta.2001,448,173-185.
    [2]张然,袁从英,王素敏.新技术拟相生物色谱法研究进展.药学学报,2008,43(5):443-449.
    [3]孙进,王永军,何仲贵.生物分配色谱:高通量筛选药物膜通透性和活性.化学进展,2006,18(7/8):1002-1008.
    [4]Galiulin, R.V.; Bashkin, V. N.; Galiulina, R. A. Review:Behavior of Persistent Organic Pollutants in the Air-Plant-Soil System. Water. Air. Soil Pollu.2002,137, 179-191.
    [5]Mydlova-Memersheimerova, J.;Tienpont, B.; David, R; Krupcik, J.;Sandra, P. Gas chromatography of 209 polychlorinated biphenyl congeners on an extremelyefficient nonselective capillary column. J. Chromatogra. A.2009,1216, 6043-6062.
    [6]Song, Y. F.; Wilke, B. M.; Song, X. Y.; Gong, P.; Zhou, Q. X.; Yang, G. F.; Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation. Chemosphere.2006,65,1859-1868.
    [7]Giesy, J. P.; Kannan, K. P. Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs):Implications for risk assessment. Crit. Rev. Toxicol.1998,25,511-569.
    [8]Ji,C.H.; Li,Y.W.; Su,L.; Zhang,X.Y.; Chen, X.G. Quantitative structure-retention relationships for mycotoxins and fungal metabolites in LC-MS/MS. J.Sep.Sci. 2009,32,3967-3979.
    [9]Du,H.Y.; Wang, J.; Zhang, X.Y; Yao, X.J. Hu,Z.D. Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression. Chemometrics and Intelligent Laboratory Systems.
    2008,92,92-99.
    [10]Ma, W. P.; Luan, F.; Zhang, H. X.; Zhang, X. Y.; Liu, M. C; Hu, Z. D.; Fan, B. T. Quantitative structure-property relationships for pesticides in biopartitioning micellar chromatography. J. Chromatogr. A.2006,1113,140-147.
    [11]Luan, F.; Xue, C.X; Zhang, R.S.; Zhao, C.Y.; Liu, M.C.; Hu, Z.D.; Fan, B.T. Prediction of retention time of a variety of volatile organic compounds based on the heuristic method and support vector machine. Analytica Chimica Acta.2005, 537,101-110.
    [12]Hodjmohammadi, M. R.; Ebrahimi, P.; Pourmorad, F. Quantitative structure-retention relationships (QSRR) of some CNS agents studied on DB-5 and DB-17 phases in gas chromatography. QSAR Comb. Sci.2004,23,295-302
    [13]Devillers, J.; Balaban, A. T. Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam,1999.
    [14]Karelson, M. Molecular Descriptors in QSAR/QSPR, Wiley, New York,2000.
    [15]Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany,2000.
    [16]Chen, S.; Cowan, C.F.N.; Grant, P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neur. Net.1991,2, 302-309.
    [17]Lohninger, H. Evaluation of neural networks based on radial basis functions and their application to the prediction of boiling points from structural parameters. J. Chem. Inf. Comput. Sci.1993,33,736-744.
    [18]Tetteh, J.; Metcalfe, E.; Howells, S. L. Optimisation of radial basis and backpropagation neural networks for modelling.auto-ignition temperature by quantitative-structure property relationships. Chemom. Intell Lab. Syst.1996,32, 177-191.
    [19]Stubbings, T.; Hutter, H. Classification of analytical images with radial basis function networks and forward selection. Chemom. Intell. Lab. Syst.1999,49, 163-172.
    [20]Yao, X. J.; Zhang, X. Y.; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. Prediction of enthalpy of alkanes by the use of radial basis function networks. Comput. Chem.2001,25,475-483.
    [21]Yao, X. J.; Wang, Y. W.; Zhang, X. Y.; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. Radial basis, function neural network-based QSPR for the prediction of critical temperature. Chemom. Intell. Lab. Syst.2002,62,217-225.
    [22]Yao, X. J.; Zhang, X. Y.; Zhang, R. S.; Liu, M. C; Hu, Z. D.; Fan, B. T. Radial basis function networks based QSPR for the prediction of critical pressure of substituted benzenes. Comput. Chem.2002,26,159-169.
    [23]Xia, B. B.; Ma, W. P.; Zhang, X. Y; Fan, B. T. Quantitative structure-retention relationships for organic pollutants in biopartitioning micellar chromatography. Anal. Chim. Acta.2007,589,12-18.
    [24]Berm'udez-Saldana, J. M.; Escuder-Gilabert, L.; Medina-Hernandez, M. J. Villanueva-Camanas, R.M.; Sagrado,S. Biopartitioning micellar chromatography: An alternative high-throughput method for assessing the ecotoxicity of anilines and phenols. J. Chromatogr. B.2007,852,353-361
    [1]Ambudkar, S. V.; Dey, S.; Hrycyna, C. A.; Ramachandra, M; Pastan, I.; Gottesman, M. M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol.1999,39,361-398.
    [2]Schinkel, A. H.; Jonker, J. W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family:an overview. Adv. Drug Deliv. Rev.2003,55, 3-29.
    [3]Lee, C. G; Gottesman, M. M; Cardarelli, C.O.; Ramachandra, M.; Jeang, K. T.;Ambudkar, S. V.; Pastan, I.; Dey, S. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry.1998,37,3594-3601.
    [4]Juliano, R. L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta.1976,455, 152-162.
    [5]Hoffmann, U.; Kroemer, H. K. The ABC Transporters MDR1 and MRP2: Multiple Functions in Disposition of Xenobiotics and Drug Resistance. Drug Metab. Rev.2004,36,669-701.
    [6]Tsuruo, T.; Iida, H.; Tsukagoshi, S.; Sakurai, Y. Enhancement of vincristine-and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochem. Pharmacol.1982,31, 3138-3140.
    [7]Roe, M. J.;Folkes, A. J.;Ashworth, P. A.;Brumwell, J. E.;Chima, L.;Hunjan,S.; Pretswell, I.; Dangerfield, W.; Ryder, H.; Charlton, P. reversal of P-glycopratein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg. Med. Chem. Lett.1999,9,595-600.
    [8]Ryder, H.; Ashworth, P. A.; Roe, M. J.; Brumwell, J. E.; Hunjan, S.; Folkes, A. J.; Sanderson, J. T.; Williams, S.; Maximen, L. M. WO98/17648, April 30,1998.
    [9]Thomas, H.; Coley, H. M. Overcoming multidrug resistance in cancer:an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control.2003,10, 159-165.
    [10]Szakacs, G; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C; Gottesmann, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discovery.2006,5, 219-234.
    [11]Mistry, P.; Stewart, A. J.; Dangerfield, W.; Okiji, S.;Liddle, C; Bootle, D.; Plumb, J. A.; Templeton, D.; Charlton, P. in vitro and in vivo reversal of p-glycoprotein-mediated multidrug resistance by a novel potent modulator, XR9576.Cancer Res.2001,61,749-758.
    [12]Walker, J.; Martin, C; Callaghan, R. Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy. Eur. J. Cancer.2004,40,594-605.
    [13]Muller, H.; Pajeva, I. K.; Globisch, C; Wiese, M. Functional assay and structure-activity relationships of new third-generation P-glycoprotein inhibitors. Bioorg. Med. Chem.2008,16,2448-2462.
    [14]Klinkhammer, W.; Muller, H.; Globisch, C; Pajeva, I. K.; Wiese M. Synthesis and biological evaluation of a small molecule library of 3rd generation multidrug resistance modulators. Bioorg. Med. Chem.2009,17,2524-2535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700