紫外光引发乳液聚合制备氨基聚苯乙烯纳米粒子
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,各种功能化的聚合物纳米粒子应用前景广阔,受到越来越多的关注。其中,氨基纳米粒子因其表面的氨基反应性强,可进一步功能化而成为研究的热点。但是,由于在金属或者半导体纳米粒子表面引入氨基较为容易,因此大部分研究局限于金属或者半导体纳米粒子,对聚合物纳米粒子表面氨基化的研究相对较少。本文分别采用氨基化的可聚合表面活性光引发剂(photo-inisurfs)和氨基化的功能单体制备了氨基聚苯乙烯纳米粒子,方法简单易行,在理论和实践上都具有重要意义。
     氨基化可聚合表面活性光引发剂法:以夺氢型photo-inisurfs为引发剂和乳化剂,通过紫外光引发苯乙烯无皂乳液聚合,制备了纳米级的表面氨基化聚苯乙烯粒子。考察了photo-inisurfs链长、单体浓度、助引发剂、交联剂、醋酸和外加的断裂型光引发剂对体系的影响,并通过茚三酮反应定性鉴定了氨基的存在。实验结果表面,通过这种方法可以一步制备粒径为60-500nm的表面纯净且带有氨基基团的聚苯乙烯纳米粒子。通过调节photo-inisurfs的链长,可以调节photo-inisurfs的对单体的乳化作用。随着单体浓度的增大,聚合物粒子的粒径随之增大。助引发剂的引入虽然有利于提高引发剂的引发效率,但会使产物粒子粒径增大,而且会带来副产物。交联剂的引入会使产物粒径增大。醋酸的引入有利于提高photo-inisurfs的用量,但对体系的稳定性有不利影响,聚合物粒径增大,甚至破乳分层。水溶性光引发剂4-(2-羟乙氧基)-(2-羟基-2-丙基)酮(Irgacure 2959)的引入有利于得到小粒径的聚合物粒子。
     氨基化功能单体法:首先,采用1,3-丙二胺与二氯甲烷通过脱除反应制备了含有氨基功能基团的可聚合单体N-(3-氨基丙基)对乙烯基苄基亚胺(CVPD)。然后,采用乳液聚合,以苯乙烯(St)和CVPD为共聚单体,Irgacure 2959为光引发剂,十六烷基三甲基溴化铵(CTAB)为乳化剂,经紫外光辐照引发,合成了P(St-co-CVPD)二元共聚物的纳米胶乳。体系的乳化剂用量仅为体系总质量的0.1-0.8wt%,远小于常用来制备纳米粒子的微乳液体系的乳化剂用量。用TEM和DLS表征了P(St-co-CVPD)纳米粒子的粒径和粒径分布。用FT-IR和NMR证明了P(St-co-CVPD)纳米粒子上氨基的存在,并通过茚三酮显色反应定量检测了氨基含量。分别研究了单体配比,引发剂浓度,乳化剂用量以及紫外光强度对反应体系的影响。实验结果表明,产物粒子尺寸为30-600nm,氨基通过共价键连接在粒子上,其含量为1.2×10-5-1.6×10-4mol·g-1该乳液体系聚合反应速率较快,单体转化率在60 min内即可达到80%。所得粒子的氨基含量可以通过单体配比进行调节。粒子尺寸可通过单体配比,引发剂浓度,乳化剂用量以及紫外光强度进行调节。
Nowadays, functionalized polymeric nanoparticles have attracted great attention since they have widely potential applications. Among them, amino-functionalized nanoparticles become a hot issue because they can be easily further functionalized by using those amino groups as the handle. However, most researches focused on the amino functionalization of metal or semiconductor nanoparticles, and few studies concentrate on the polymeric nanoparticles. In this study, amino-functionalized polystyrene nanoparticles were prepared by photo-induced emulsion polymerization with photo-inisurfs (Method 1) or amino-functionalized comonomer (Method 2), respectively.
     Method 1:Amino-functionalized polystyrene nanoparticles were prepared by surfactant free emulsion polymerization. The polymerization was carried out by using amino functionalized photo-inisurfs, which combines the properties of photo-initiator and surfactant. The effects of the lenghth of the alkyl group of photo-inisurfs molecules, monomer concentrations, co-initiator, crosslinking agent, acetic acid and cleavage photo initiator polymerization system were studied. Ninhydrin reaction was used to qualitatively identify the existence of the amino groups on the polystyrene nanoparticles. The results showed that the diameters of amino-functionalized polystyrene particles ranged from 60 nm to 500 nm. The lenghth of the alkyl group of photo-inisurfs molecule could influence the emulsification effect of photo-inisurfs. With the increase of monomer concentration, polymer particle size increases. The Co-initiator could enhance the initiating efficiency, whearas the particle size was larger and the side products present. Although the addition of acetic acid could increase the photo-inisurfs amount, but it led to larger particle sizes, and made the emulsion system instabe, or even emulsion breaking. The addition of water-soluble photo-initiator 4-(2-hydroxyethoxy)phenyl-(2-hydroxy-2-propyl)ketone (Irgacure 2959) can lead to smaller particle sizes.
     Method 2:Step1, dichloromethane and 1,3-propane diamine were used to synthesize the amino-functionalized monomer N-(3-aminopropyl)-p-vinylbenzylimine (CVPD). Step2, P (St-co-CVPD) nano-latex were prepared by UV-initiated emulsion polymerization. The used photo-initiator was Irgacure 2959, and the concentration was in the range of 0.01-0.02 mol·L-1. The used surfactant was cetyltrimethylammonium bromides (CTAB), and the concentration was only 0.1-0.8 wt% of the total system which was greatly lower than that of micoemulsion polymerization system. The particle morphology was observed by TEM, and the diameter and PDI of the P(St-co-CVPD) nanoparticles were characterized by DLS. The particle sizes were between 30 nm to 600 nm. The present of amino groups of P(St-co-CVPD) nanoparticles were characterized by FT-IR and NMR. The amino group contents were 1.2×10-5-1.6×10-4 mol·g-1, which was characterized by ninhydrin reaction. The influences of St/CVPD ratios, initiator concentrations, surfactant amount and UV light intensity on the polymerization system were systematically investigated.
引文
[1]Khlebtsov N. G, and Dykman L. A. Optical properties and biomedical applications of plasmonic nanoparticles[J]. J. Quant. Spectrosc. Radiat. Transf.,2010,111:1-35.
    [2]Yang G. H., Tan, L., Yang Y. Y, Chen S. W., and Liu G. Y Single electron tunneling and manipulation of nanoparticles on surfaces at room temperature[J]. Surf. Sci.,2005,589: 129-138.
    [3]Zhai L. L., Ling G. P.; Li J., Wang Y W., The effect of nanoparticles on the adhesion of epoxy adhesive[J]. Mater. Lett.,2006,60 (25-26):3031-3033
    [4]Zhang M. C., Zhang W. Q., Pd nanoparticles immobilized on pH-responsive and chelating nanospheres as an efficient and recyclable catalyst for Suzuki reaction in water[J]. J. Phys. Chem. C,2008,112 (16):6245-6252.
    [5]Zhang G, Liu Y, Zhang C., Hu W., Xu W., Li Z., Liang S., Cao J., Wang Y Aqueous immune magnetite nanoparticles for immunoassay[J]. J. Nanopart. Res.,2009,11 (2): 441-448.
    [6]Chen X.-L., Zou J.-L., Zhao T.-T., Li Z.-B. Preparation and fluoroimmunoassay application of new red-region fluorescent silica nanoparticles[J]. J. Fluoresc.,2007,17 (2): 235-241.
    [7]Dhar S., Daniel W. L., Giljohann D. A., Mirkin C. A.; Lippard, S. J. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads[J]. J. Am. Chem. Soc.,2009,131 (41):14652-14653.
    [8]Lee S. H., Bae K. H., Kim S. H., Lee K. R., Park T. G Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers [J]. Int. J. Pharm.,2008,364(1):94-101.
    [9]Yang J.-H., Nakano Y, Murakami Y, Song K.-S., Kawarada, H. Functionalization of ultradispersed diamond for DNA detection[J]. J. Nanopart. Res.,2008,10 (0):69-75.
    [10]Barick K. C., Aslam M., Prasad P. V., Dravid, V. P. Bahadur, D. Nanoscale assembly of amine-functionalized colloidal iron oxide[J]. J. Magn. Magn. Mater.2009,321 (10): 1529-1532.
    [11]Jarrett B. R., Gustafsson, B. r., Kukis, D. L., Louie, A. Y. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging[J]. Bioconjugate Chem.,2008,19 (7): 1496-1504.
    [12]Noren, K., Kempe, M. Multilayered magnetic nanoparticles as a support in solid-phase peptide synthesis[J]. Int. J. Pept. Res. Ther.,2009,15 (4):287-292.
    [13]Ramajo, L., Parra, R., Reboredo, M., Castro, M. Preparation of amine coated silver nanoparticles using triethylenetetramine[J]. J. Chem. Sci.,2009,121 (1),83-87.
    [14]McConnell, M. D., Yang, S., Composto, R. J. Covalent nanoparticle assembly onto random copolymer Films[J]. Macromolecules 2008,42 (2):517-523
    [15]Mohammed H. S., Shipp D. A. Uniform sub-micron polymer spheres coated with Ag nanoparticles[J]. Macromol. Rapid Commun.,2006,27 (20):1774-1778.
    [16]Sunintaboon, P., Duangphet S., Tangboriboonrat, P. Polyethyleneimine-functionalized poly(methyl methacrylate) colloidal nanoparticles for directly coating natural rubber sheet[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2009,350 (1-3):114-120.
    [17]Guan N., Xu J., Wang L., Sun D. One-step synthesis of amine-functionalized thermo-responsive magnetite nanoparticles and single-crystal hollow structures [J]. Colloids Surf. A:Physicochem. Eng. Aspects,2009,346 (1-3):221-228.
    [18]Samra Z., Shabir S., Rehmat Z., Zaman M., Nazir A., Dar N., Athar M. Synthesis of cholesterol-conjugated magnetic nanoparticles for purification of human paraoxonase 1[J]. Appl. Biochem. Biotechnol.
    [19]Newman J., Blanchard G Formation and encapsulation of gold nanoparticles using a polymeric amine reducing agent[J]. J. Nanopart. Res.,2007,9 (5):861-868.
    [20]Jiang J., Thayumanavan S. Synthesis and characterization of amine-functionalized polystyrene nanoparticles[J]. Macromolecules,2005,38 (14):5886-5891.
    [21]Musyanovych A., Adler H.-J. P. Hydroperoxide-containing terpolymers as inisurfs in emulsion polymerization of styrene[J]. Langmuir,2003,19 (23):9619-9624.
    [22]Musyanovych A., Adler H.-J. P. Grafting of amino functional monomer onto initiator-modified polystyrene particles[J]. Langmuir,2005,21 (6):2209-2217.
    [23]Hoar T. P., Schulman J. H. Transparent Water-in-Oil Dispersions:the Oleopathic Hydro-Micelle[J]. Nature,1943,(152):102-103.
    [24]Schulman J. H., Stoeckenius W., Prince L. M. Mechanism of formation and structure of micro emulsions by electron microscopy [J]. J. Phys. Chem.,1959,63 (10):1677-1680.
    [25]Alvarez J., Lopez-Serrano F., Mendizabal E., Flores J., Puig J. E. On the modeling of microemulsion polymerization[J]. Eur. Polym. J.,1998,34 (3-4):411-420.
    [26]O'Donnell J., Kaler E. W. Microstructure, kinetics, and transport in oil-in-water microemulsion polymerizations[J]. Macromol. Rapid Commun.,2007,28 (14):1445-1454
    7[27] 曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].化学工业出版社:北京,1997,426-433.
    [28]Pavel F. M. Microemulsion polymerization[J]. J. Dispersion Sci. Technol.,2004,25 (1): 1-16.
    [29]Stoffer J. O., Bone T. Polymerization in water-in-oil microemulsion systems. I[J]. J. Polym. Sci. Part A:Polym. Chem.Ed.,1980,18 (8):2641-2648.
    [30]Stoffer J. O., Bone T. Polymerization in water in oil microemulsion systems containing methyl methacrylate[J]. J. Dispersion Sci. Technol.,1980,1 (1):37-54.
    [31]Atik S., Thomas J. K. Photoinduced reactions in polymerized microemulsions[J]. J. Amer. Chem. Soc.,1983,105 (14):4515-4519.
    [32]Atik S. S., Thomas J. K. Polymerized microemulsions[J]. JACS,1981,103 (14): 4279-4280.
    [33]Atik S. S., Thomas J. K. Photochemistry in polymerized microemulsion systems[J]. J. Amer. Chem. Soc.,1982,104 (22):5868-5874.
    [34]Capek I., Juranicova V. On the free-radical microemulsion polymerization of alkyl methacrylates[J]. Eur. Polym. J.,1998,34 (5-6):783-788.
    [35]Capek I., Juraniova V., Barto J., Asua J. M., Ito K..Microemulsion radical polymerization of alkyl acrylates[J]. Polymer International 1997,43 (1):1-7.
    [36]Bleger F., Murthy A. K., Pla F., Kaler E. W. Particle nucleation during microemulsion polymerization of methyl methacrylate[J]. Macromolecules 1994,27 (9):2559-2565.
    [37]Chieng T. H., Gan L. M., Chew C. H., Ng S. C. Morphology of microporous polymeric materials by polymerization of methyl methacrylate and 2-hydroxyethyl methacrylate in microemulsions[J]. Polymer 1995,36 (10):1941-1946
    [38]Gan L. M., Li T. D., Chew C. H., Teo W. K., Gan L. H. Microporous polymeric materials from polymerization of zwitterionic microemulsions[J]. Langmuir 1995,11 (9): 3316-3320.
    [39]Deng Y, Wang L., Yang W., Fu S., Elaissari A. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process[J]. J. Magn. Magn. Mater.,2003,257 (1):69-78.
    [40]Gupta B., Singh H. Polymerization in microemulsion systems[J]. Polym. Plast. Technol. Eng.,1992,31 (7):635-658.
    [41]Palkovits R., Althues H., Rumplecker A., Tesche B., Dreier A., Holle U., Fink G, Cheng C. H., Shantz D. F., Kaskel S. Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites[J]. Langmuir,2005,21 (13):6048-6053.
    [42]Harkins W. D. A General theory of the mechanism of emulsion polymerization 1[J]. JACS, 1947,69 (6):1428-1444.
    [43]Harkins W. D. General theory of mechanism of emulsion polymerization. Ⅱ[J]. J. Polym. Sci.,1950,5 (2):217-251.
    [44]Smith W. V. The partition of acrylonitrile between styrene and water[J]. JACS,1948,70 (6):2177-2179.
    [45]Smith W. V. The kinetics of styrene emulsion polymerization[J]. J. Am. Chem. Soc.,1948, 70 (11):3695-3702.
    [46]Smith, W. V., Chain initiation in styrene emulsion polymerization[J]. J. Am. Chem. Soc., 1949,71 (12):4077-4082.
    [47]Gardon J. L. Emulsion polymerization. Ⅲ. Theoretical prediction of the effects of slow termination rate within latex particles[J]. J. Poly. Sci. Part A-1:Poly. Chem.,1968,6 (3): 665-685.
    [48]Zhang W., Gao J., Wu C. Microwave preparation of narrowly distributed surfactant-free stable polystyrene nanospheres[J]. Macromolecules,1997,30 (20):6388-6390.
    [49]Ngai T., Wu C. Double roles of stabilization and destabilization of initiator potassium persulfate in surfactant-free emulsion polymerization of styrene under microwave irradiation[J]. Langmuir 2005,21 (18):8520-8525.
    [50]Monteiro M. J., de Barbeyrac, J. Free-radical polymerization of styrene in emulsion using a reversible addition-fragmentation chain transfer agent with a low transfer constant: effect on rate, particle size, and molecular weight[J]. Macromolecules,2001,34 (13): 4416-4423.
    [51]Bhawal S., Kumar Pokhriyal N., Devi S. Translucent nanolatexes through emulsion polymerisation of ethyl acrylate[J]. Eur. Polym. J.,2002,38 (4):735-744.
    [52]Pokhriyal N. K., Sanghvi P. G., Shah D. O., Devi S. Kinetics and behavior of copolymerization in emulsion and microemulsion systems [J]. Langmuir,2000,16 (14): 5864-5870.
    [53]Pokhriyal N. K., Sanghvi P. G., Hassan P. A., Devi S. Transparent nanolatexes by polymerization of precursor emulsions[J]. Eur. Polym. J.,2001,37 (8):1695-1704.
    [54]Pusch J., van Herk A. M. Emulsion polymerization of transparent core-shell latices with a polydivinylbenzene styrene and vinyl acetate[J]. Macromolecules,2005,38 (16): 6909-6914.
    [55]Pusch J., van Herk A. M. Emulsion polymerization of novel transparent latices by pulsed electron beam initiation[J]. Macromolecules,2005,38 (16):6939-6945.
    [56]Pusch J., van Herk A. M. Pulsed electron beam initiation in emulsion polymerization[J]. Macromolecules,2005,38 (21):8694-8700.
    [57]Rahme K., Gauffre F., Marty J.-D., Payre B., Mingotaud C. A. Systematic study of the stabilization in water of gold nanoparticles by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers[J]. J. Phys. Chem. C,2007,111, (20): 7273-7279.
    [58]Na K., Kim S., Park K., Kim K., Woo D. G., Kwon I. C., Chung H.-M., Park K.-H. Heparin/poly(1-lysine) nanoparticle-coated polymeric microspheres for stem-cell therapy[J]. J. Am. Chem. Soc.,2007,129, (18):5788-5789.
    [59]Hong Y., Sen A. Selective heterogeneous catalytic hydrogenation by recyclable poly(allylamine) gel-supported Palladium(0) nanoparticles[J]. Chem. Mater.,2007,19, (5): 961-963.
    [60]Kim H. R., Andrieux K., Gil S.; Taverna, M.; Chacun, H.; Desmaele, D.; Taran, F.; Georgin, D.; Couvreur, P., Translocation of Poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells:role of apolipoproteins in receptor-mediated endocytosis[J]. Biomacromolecules 2007,8, (3): 793-799.
    [61]Borodko Y., Humphrey S. M., Tilley T. D., Frei H., Somorjai G. A. Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and Rhodium nanoparticles [J]. J. Phys. Chem. C,2007,111, (17):6288-6295.
    [62]Liu J., Zhang Q., Remsen E. E., Wooley K. L. Nanostructured materials designed for cell binding and transduction[J]. Biomacromolecules,2001,2, (2):362-368.
    [63]Christof M. N. Nanoparticles, proteins, and nucleic acids:biotechnology meets materials science[J]. Angew. Chem. Int. Ed.,2001,40, (22):4128-4158.
    [64]Lahav M., Heleg-Shabtai V., Wasserman J., Katz E., Willner I., Durr H., Hu Y.-Z., Bossmann S. H. Photoelectrochemistry with integrated photosensitizer, electron acceptor and Au-nanoparticle arrays[J]. J. Am. Chem. Soc.,2000,122, (46):11480-11487.
    [65]Shipway A. N., Lahav M., Willner I. Nanostructured gold colloid electrodes [J]. Adv. Mater.,2000,12, (13):993-998.
    [66]Eugenii Katz I. W. Integrated Nanoparticle-biomolecule hybrid systems:synthesis, properties, and applications[J]. Angew. Chem. Int. Ed.,2004,43, (45):6042-6108.
    [67]Beata Sweryda-Krawiec, Thierry. C. J. H. F. Ultrathin electroactive junctions assembled from silicon nanocrystallites and polypyrrole[J]. Adv. Mater.,1999,11, (8):659-664.
    [68]Gittins D. I., Bethell D., Schiffrin D. J., Nichols R. J. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups[J]. Nature,2000,408, (6808): 67-69.
    [69]Hoare T., Pelton R. Highly pH and Temperature responsive microgels functionalized with vinylacetic acid[J]. Macromolecules,2004,37, (7):2544-2550.
    [70]Liu H., Li C., Liu H., Liu S. pH-responsive supramolecular self-assembly of well-defined zwitterionic ABC miktoarm star terpolymers[J]. Langmuir, in press.
    [71]Breed D. R., Thibault R., Xie F., Wang Q., Hawker C. J., Pine D. J. functionalization of polymer microspheres using click chemistry[J]. Langmuir, in press.
    [72]An Z., Tang W., Hawker C. J., Stucky G. D. One-step microwave preparation of well-defined and functionalized polymeric nanoparticles[J]. J. Am. Chem. Soc.,2006,128, (47):15054-15055.
    [73]Ottewill R. H., Satgurunathan R. Nonionic latices in aqueous media part 1. Preparation and characterization of polystyrene lattices[J]. Colloid. Polym. Sci.,1987,265, (9):845-853.
    [74]Andrij P, Sven R, Hans-Juergen A, Vitaly D, Stanislav V. Functionalization of latex particle surface by using polymeric inisurfs[J]. Macromol. Symp.,2001,164, (1):11-24.
    [75]Nagamune T., Nagai S., Ueda A. Synthesis of (AB)n-type block copolymers employing surface-active macro-azo initiators [J]. J. Appl. Polym. Sci.,1996,62, (2):359-365.
    [76]Guyot A., Tauer K., Asua J.M., Van Es S., Gauthier C., Hellgren A.C., Sherrington D.C., Montoya-Goni A., Sjoberg M., Sindt O., Vidal F., Unzue M., Schoonbrood H., Shipper E., Lacroix-Desmazes P. Reactive surfactants in heterophase polymerization[J]. Acta Polym., 1999,50, (2-3):57-66.
    [77]Aslamazova T. R., Tauer K. On the colloidal stability of poly(methyl methacrylate) and polystyrene particles prepared with surface-active initiators [J]. Colloids Surf. A:Phys. Eng. Aspect,2007,300, (3):260-267.
    [78]Wang L., Liu X., Li Y. Microemulsion polymerization of styrene using surface-active peresters as photoinitiators[J]. Langmuir,1998,14, (24):6879-6885.
    [79]Hu X., Zhang J., Yang W. Preparation of transparent polystyrene nano-latexes by an UV-induced routine emulsion polymerization [J]. Polymer 2009,50, (1):141-147.
    [80]Friedman M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences[J]. J. Agric. Food. Chem.,2004,52, (3):385-406.
    [81]Aldaye F A, Palmer A L, Sleiman H F. Assembling materials with DNA as the guide[J]. Science,2008,321 (5897):1795-1799.
    [82]Shevchenko E V, Talapin D V, Kotov N A, O'Brien S, Murray C B. Structural diversity in binary nanoparticle superlattices[J]. Nature,2006,439 (7072):55-59.
    [83]Dhar S, Daniel W L, Giljohann D A, Mirkin C A, Lippard S J. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for Platinum(IV) warheads.[J]. J Am Ceram Soc,2009,131 (41):14652-14653.
    [84]Ivanov M R, Bednar H R, Haes A J. Investigations of the mechanism of gold nanoparticle stability and surface functionalization in capillary electrophoresis[J]. ACS Nano,2009,3 (2):386-394.
    [85]Hou X, Liu B, Deng X, Zhang B, Yan J. Monodisperse polystyrene microspheres by dispersion copolymerization of styrene and other vinyl comonomers:Characterization and protein adsorption properties [J]. J Biomed Mater Res Part A,2007,83A (2):280-289.
    [86]Allen T M, Cullis P R. Drug Delivery Systems:Entering the Mainstream [J]. Science,2004, 303 (5665):1818-1822.
    [87]Torre L, Frulloni E, Kenny J M, Manferti C, Camino G. Processing and characterization of epoxy-anhydride-based intercalated nanocomposites[J]. J Appl Polym Sci,2003,90 (9): 2532-2539.
    [88]Monteiro M J, de Barbeyrac J. Free-Radical Polymerization of Styrene in Emulsion Using a Reversible Additionb Fragmentation Chain Transfer Agent with a Low Transfer Constant:Effect on Rate, Particle Size, and Molecular Weight[J]. Macromolecules,2001, 34 (13):4416-4423.
    [89]Lu Q, Singh A, Deschamps J R, Chang E L. Cu(II)-containing cross-linked polymers for the hydrolysis of 4-nitrophenyl phosphate[J]. Inorg Chim Acta,2000,309 (1-2):82-90.
    [90]Harkins W D. General theory of the reaction loci in emulsion polymerization[J]. J Chem Phys,1945,13 (9):381-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700