卵巢癌诊断用HE4抗体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是严重威胁广大妇女的恶疾,由于发病部位隐匿,早期症状不明显,卵巢癌死亡率居妇科恶性肿瘤之首,70%~80%卵巢癌患者发现时已为晚期,五年生存率仅20%,而早期患者5年生存率可达70%~90%,所以提高卵巢癌早期诊断水平对提高其治愈率有重要意义,这也是目前妇科肿瘤研究关注的热点。
     肿瘤标志物的检测简便且无创,在肿瘤的筛查、诊断、指导治疗、预后评价等方面有着非常广泛的应用前景。目前只有癌抗原125(cancer antigen 125, CA125)检测被广泛应用于临床卵巢癌的诊断,大量研究证实CA125敏感性和特异性不高,对卵巢癌早期诊断率低。人附睾蛋白4(human epididymis protein 4, HE4)是一种新的卵巢癌肿瘤标志物,最初是在人附睾上皮中发现的,可能有蛋白酶抑制剂的作用,但具体功能不详。HE4在卵巢癌组织中高表达,而在正常组织中不表达或低表达,在卵巢癌诊断方面其灵敏度要明显高于CA125,且能更好区分良性与恶性肿瘤,大量研究证实HE4是检测早期卵巢癌的最佳标志物之一。因此制备针对HE4的卵巢癌早期诊断试剂,对于提高卵巢癌患者的生存率有重要意义。
     传统的抗体制备方法通常采用纯化的蛋白质来免疫动物,但分离纯化蛋白费时费力,难以获得理想产品,有时即使获得了目的蛋白,其免疫原性也很低(如某些原核表达蛋白),难以获得理想的免疫效果。电穿孔辅助DNA免疫能克服上述缺点。瞬时电场可使细胞生物膜产生可恢复的微孔,外源基因在电场力的作用下通过微孔进入目标组织或器官,并在该组织或器官中直接表达目的抗原,引发免疫反应。DNA被细胞摄取后,基因半衰期延长,可持续表达目的蛋白,增强了淋巴细胞记忆持久性;另外,电穿孔引起局部组织炎症反应,使大量炎症细胞浸润,提高了抗原递呈效率,因此,电穿孔辅助DNA免疫能获得高效价的抗体。
     本研究利用RT-PCR从患者卵巢癌组织中获取HE4基因编码序列,通过T-A克隆将HE4基因克隆到pMD19T载体中,经测序鉴定后将其亚克隆至pPICZαA和pcDNA3.1(+)表达载体中,并通过PCR、双酶切及测序对其进行鉴定。将构建好的pPICZαA-HE4表达质粒通过电穿孔转染毕赤酵母GS115,在选择培养基上筛选阳性表达菌株,诱导其表达HE4重组蛋白,进一步通过ELISA、Western-blot鉴定表达的HE4重组蛋白。通过考察不同甲醇浓度、pH、诱导时间、生物量及诱导温度对HE4表达水平的影响,优化了HE4诱导表达的条件。对含HE4重组蛋白的酵母培养上清采用镍亲和层析进行纯化。另一方面,我们采用活体电穿孔法辅助pPICZαA-HE4和pcDNA3.1-HE4分别免疫BALB/c小鼠,通过B淋巴细胞杂交瘤技术进行细胞融合来制备单抗,经多次克隆化培养,筛选出特异分泌鼠抗人HE4 mAb的杂交瘤细胞株。采用Western-blot,Ig亚型分析和mAb表位分析等对mAb的生物学特性进行鉴定。
     研究结果显示,成功从卵巢癌组织中获取了HE4基因,并构建了pcDNA3.1-HE4和pPICZαA-HE4两个真核表达载体;构建的毕赤酵母能分泌表达HE4蛋白,表达的重组蛋白已被糖基化修饰并具有一定的空间构象;HE4重组蛋白的最佳诱导条件为:pH4.0,2%甲醇,2倍菌量,温度26℃,诱导12h;从1L培养上清中,可纯化出约10mg的HE4重组蛋白;单抗制备方面,获得了2株持续、稳定分泌鼠抗人HE4 mAb的杂交瘤细胞株,命名为1-7-C和3-12-C,两株单抗培养上清抗体效价分别为1:160和1:320,ELISA和Western-blot结果均显示:本实验获得的两株mAb能够特异识别有天然构象的HE4蛋白,针对HE4蛋白的相同表位,两株mAb的Ig亚类均为IgM,轻链均为λ链。
     上述结果表明,HE4基因被成功克隆至pcDNA3.1-HE4和pPICZαA-HE4两个真核表达载体中;成功构建了表达HE4蛋白的酵母工程菌,获得了有空间构象的HE4重组蛋白,并获得2株分泌鼠抗人HE4 mAb的杂交瘤细胞株,为卵巢癌早期诊断和HE4蛋白功能研究奠定了基础。
Ovarian cancer is the leading cause of death from gynecologic malignancy among women worldwide. Early stage ovarian cancer has an excellent prognosis if properly evaluated. Unfortunately, 70~80% of patients could not be found until the cancer progressed to the late stages, and their 5-year survival rate is lower than 20%. In contrast, if we can detect and treat the cancer at early stage, when tumor is found to be only in the ovary, the 5-year survival rate is up to 70~90%. Therefore, a sensitive and specific early detection method is no doubt appealing.
     In the present, the only clinically accepted serum marker for ovarian cancer is CA125. Numerous studies showed that the sensitivity and specificity of CA125 is not high enough for a screening test. HE4 (human epididymis protein 4) is one of the most promising new serum biomarkers for ovarian cancer, which is a glycoprotein and first detected in human epididymal epithelium. The biological function of HE4 is still unknown although some research suggested it may play a role of protease. HE4 is highly expressed by ovarian carcinomas and serum HE4 has been shown to elevate in both early and advanced stage endometrial cancers. Clinical studies also confirmed that the combination of serum HE4 and CA125 raised the sensitivity of detection compared to that of CA125 alone. Therefore, the objectives of this study were to obtain recombinant HE4 and its antibodies for developing serum HE4 assay methods, which would provide more powerful tool for early detection and prognosis supervision of ovarian cancer.
     During the antibodies preparation methods, animals were commonly immunized with purified protein. But sometimes it is difficult to obtain a quantity of purified proteins enough for immunization, and the recombinant proteins might be deficient in immunogenicity to initiate immune reaction, such as inclusion body proteins expressed by E.coli. DNA immunization via electroporation could make a way to produce antibodies without proteins preparation. As we known, the proteins expressed in vivo have structures more similar to its natural structure. Electroporation could help the DNA taken up by the cells, prolong its expression, and the continually expressed protein could provoke and boost the memory lymphocyte responses. In addition, electroporation causing local tissue inflammation and large numbers of inflammatory cell infiltration improved the antigen presentation. Therefore, we will try to obtain high titer antibodies by DNA immunization via electroporation in vivo.
     We obtained the cDNA encoding HE4 from ovarian cancer tissues by RT-PCR. The amplified product was inserted into PMD19T vector via T-A complement and then subcloned into pPICZαA and pcDNA3.1(+), pichia pastoris and mammalian cell expression vectors, respectively. Recombinant plasmids were identified by PCR, restriction enzyme digestion and sequencing. The indentified pPICZαA-HE4 plasmid was then transformed into pichia pastoris GS115 by electroporation and positive recombinant strains were screened by PCR and induced expression. The expressed recombinant protein was identified by ELISA and Western-blot with commercial anti-HE4 monoclonal antibody. The expression conditions were also optimized for obtaining a quantity of recombinant HE4 to develop a quantitative method.
     On the other hand, the plasmids constructed were also used to immune BALB/c mice via electroporation in vivo. The hybridomas were achieved by fusing the immunized spleen cells with Sp2/0 myeloma cell line and the positive clones secreting anti-human HE4 antibodies were screened by further subcloning. The secreted antibodies properties were determined by Western blot, Ig subtyping and epitope analysis.
     The results showed that we obtained the cDNA encoding HE4 from ovarian cancer tissues and successfully constructed the pcDNA3.1-HE4 and pPICZαA-HE4 eukaryotic expression vector. The secretory expression of HE4 protein could be detected from, the recombinant pichia strains transformed with pPICZαA-HE4 and the recombinant HE4 was glycosylated with special confirmations; The expression level of recombinant HE4 reached the highest after 12 hours induced by 2% concentration of methanol, at pH 4.0 and 26℃. After purification, 0.413 mg/mL recombinant HE4 protein was obtained from 1 liter culture medium. At the same time, we obtained two hybridoma cell lines, named 1-7-C and 3-12-C respectively, which could continuously and stably secrete specific anti-HE4 monoclonal antibodies. The antibodies titers were 1:160 and 1: 320 respectively. ELISA and Western-blot assay showed that the monoclonal antibodies recognized the HE4 protein with natural conformation. Subgroup assay showed that they are both IgM antibodies, and their light chains were typeλ.
     Therefore, the research successfully developed the engineered pichia pastoris strains, which could produce a quantity recombinant HE4 with special conformation. It is valuable in the future studies for its diagnostic and therapeutic application. In addition, two mouse anti-human HE4 hybridomas were obtained by DNA immunization and they secreted antibodies specifically recognize the recombinant HE4 which made it possible to develop a quantitative method for detection of serum or urinary HE4 level.
引文
1.杨国奋,李晓明,谢丹,等.卵巢癌组织中clusterin蛋白表达和细胞凋亡检测[J].中国肿瘤临床, 2007, 34(12): 14-16.
    2. Drapkin R, Hecht JL. The origins of ovarian cancer: hurdles and progress[J]. Women’s Oncol Rev, 2002, 2: 261-268.
    3. Li J, Dowdy S, Tipton T, et al. HE4 as a biomarker for ovarian and endometrial cancer management[J]. Expert Rev Mol Diagn, 2009, 9(6):555-566.
    4. Whitehouse C, Solomon E. Current status of the molecular characterization of the ovarian cancer antigen CA125 and implications for its use in clinical screening[J]. Gynecol oncol, 2003, 88(1 pt 2): 152-157.
    5. Ozols RF, Bookman MA, Connolly DC, et al. Focus on epithelial ovarian cancer[J]. Cancer Cell, 2004, 5(1): 19-24.
    6. Schink JC. Current initial therapy of stageⅢand IV ovarian cancer: challenges for managed care. Sem Oncol, 1999, 26(1 Suppl 1): 2-7.
    7.黄啸,蔡树模,范建立,等.晚期卵巢上皮性癌的综合治疗和预后分析[J].中华妇产科杂志, 2002, 37(5): 291-293.
    8. Piver MS, Baker TR, Driscoll DL. Lack of substantial five year disease-free survival by primary aggressive surgery and cisplatin-based chemotherapy or by salvage intraperitoneal cisplatin-based chemotherapy[J]. Eur J Gynaecol Oncol, 1990, 11(4): 243-250.
    9.曹泽毅,主编.中华妇产科学[M].北京:人民卫生出版社, 1999. 1545-1551.
    10. Redman C, Bradgate MG, Rollason TP, et al. Cancer antigen CA125 in epithelial ovarian cancer: immunohistochemical expression before and after chemotherap[J]. Eur J Cancer Clin Oncol, 1988, 24(8): 1381-1382.
    11. Urban N, McIntosh MW, Andersen M, et al. Ovarian cnacer screening. Hematol Oncol Clin North Am, 2003, 17(4): 989-1005.
    12. Menon U, Jacobs IJ. Recent developments in ovarian cancer screening. Curr Opin Obstet Gynecol, 2000, 12(1): 39-42.
    13. Jacobs I, Bast RC Jr. The CA 125 tumour-associated antigen: a review of the literature[J]. Hum Reprod, 1989, 4(1): 1-12.
    14. Berek JS, Bast RC Jr. Ovarian cancer screening. The use of serial complementary tumor markers to improve sensitivity and specificity for early detection[J]. Cancer, 1995, 76(10 Suppl): 2092–2096.
    15. Fures R, Bukovi? D, Hodek B, et al. Preoperative tumor marker CA125 levels in relation to epithelial ovarian cancer stage. Coll Antropol, 1999, 23(1): 189-94.
    16. Stenman UH, Alfthan H, Vartiainen J, et al. Markers supplementing CA125 in ovarian cancer. Ann Med, 1995, 27(l): 115-120.
    17. Fleuren GL, NaP M, Anlders JG, et al. Explanation of the limited correlation between tumor CA125 content and serum CA125 antigen levels in patients with Ovarian tumors. Caneer, 1987, 60(10): 2437-2442.
    18. Olivier RI, Lubsen-Brandsma MA, Verhoef S, et al. CA125 and transvaginal ultrasound monitoring in high-risk women cannot prevent the diagnosis of advanced ovarian cancer. Gynecol Oncol, 2006, 100(1): 20-26.
    19. Thylan S. Prospective multicenter study on CA125 in postmenopausal pelvic masses[J]. Gynecol Oncol, 1995, 58(2): 281-283.
    20. Curtin JP. Management of the adnexal mass[J]. Gynecol Oncol, 1994, 55(3 Pt 2):S42-46.
    21. Carney ME, Lancaster JM, Ford C, et al. Apopulation-based study of patterns of care for ovarian cancer: who is seen by a gynecologic oncologist and who is not? Gynecol Oncol, 2002, 84(1): 36-42.
    22. McGowan L, Lesher LP, Norris HJ, et al. Misstaging of ovarian cancer[J]. Obstet Gynecol, 1985, 65(4): 568-572.
    23. Bromley B, Goodman H, Benacerraf BR. Comparison between sonographicmorphology and Doppler waveform for the diagnosis of ovarian malignancy[J]. Obstet Gynecol, 1994, 83(3): 434-437.
    24. Woolas RP, Oram DH, Jeyarajah AR, et al. Ovarian cancer identified through screening with serum markers but not by pelvic imaging[J]. Int J Gynecol Cancer, 1999, 9(6): 497-501.
    25. Schut ter EM, Davelaar EM, van Kamp G J, et al. The differential diagnostic potential of a panel of tumor markers (CA125, CA15-3, and CA72-4 antigens) in patients with a pelvic mass[J]. Am J Obstet Gynecol, 2002, 187(2): 385-392.
    26. Woolas RP, Conaway MR, Xu F, et al. Combinations of multiple serum markers are superior to individual assays for discriminating malignant from benign pelvic masses[J]. Gynecol Oncol, 1995, 59(1): 111-116.
    27. van Haaf ten-Day C, Shen Y, Xu F, et al. OVX1, macrophage-colony stimulating factor, and CA-125-II as tumour markers for epithelial ovarian carcinoma: a critical appraisal[J]. Cancer, 2001, 92(11): 2837-2844.
    28. Woolas RP, Xu FJ, J acobs I J, et al. Elevation of multiple serum markers in patients with stage I ovarian cancer [J]. J Natl Cancer Inst, 1993, 85(21): 1748 -1751.
    29. Kirchhoff C, Habben I, Ivell R, et al. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod, 1991, 45(2): 350–357.
    30. Kirchhoff C. Molecular characterization of epididymal proteins[J]. Rev Reprod, 1998, 3(2): 86-95.
    31. Bingle L, Singleton V, Bingle CD. The putative ovarian tumour marker gene HE4(WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms[J]. Oncogene, 2002, 21(17): 2768-2773.
    32. Ranganathan S, Simpson KJ, Shaw DC, et al. The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling[J]. J Mol Graph Model, 1999, 17(2): 106-113.
    33. Schummer M, Ng WV, Bumgarner RE, et al. Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas[J]. Gene, 1999, 238(2): 375-385.
    34. Wang K, Gan L, Jeffery E, et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray[J]. Gene, 1999, 229(1-2): 101-108.
    35. Ono K, Tanaka T, Tsunoda T, et al. Identification by cDNA microarray of genes involved in ovarian carcinogenesis[J]. Cancer Res, 2000, 60(18): 5007–5011.
    36. Welsh JB, Zarrinkar PP, Sapinoso LM, et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer[J]. Proc Natl Acad Sci USA, 2001, 98(3): 1176–1181.
    37.陈颖,赵雨杰,辛彦. DNA芯片在卵巢癌早诊及临床病理分期中的初步应用探讨[J].中国肿瘤临床, 2006, 33(23): 1338-1341.
    38. Hellstrom I, Raycraft J, Hayden-Ledbetter M, et al. The HE4(WFDC2) protein is a biomarker for ovarian carcinoma[J]. Cancer Res, 2003, 63(13): 3695-3700.
    39. Drapkin R, von Horsten HH, Lin Y, et al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas[J]. Cancer Res, 2005, 65(6): 2162–2169.
    40. Havrilesky LJ, Whitehead CM, Rubatt JM, et al. Evaluation of biomarker panels for early stage ovarian cancer detection and monitoring for disease recurrence[J]. Gynecol Oncol. 2008, 110(3): 374-382.
    41. Moore RG, Brown AK, Miller MC, et al. The use of multiple novel tumor biomarkers for the detection of ovarian carcinoma in patients with a pelvic mass[J]. Gynecol Oncol, 2008, 108(2): 402-408.
    42.王术艺,董立新,李洪臣,等.血清HE4浓度在妇科盆腔恶性肿瘤诊断中的应用[J].中国肿瘤临床, 2009, 36(4):181-183.
    43. Lu KH, Patterson AP, Wang L, et al. Selection of potential markers for epithelialovarian cancer with gene expression arrays and recursive descent partition analysis[J] Clin Cancer Res, 2004, 10(10): 3291-3300.
    44. Bingle L, Cross SS, High AS, et al. WFDC2 (HE4) a potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung[J]. Respir Res, 2006, 7(1): 61.
    45. Galgano MT, Hampton GM, Frierson HF Jr. Comprehensive analysis of HE4 expression in normal and malignant human tissues[J]. Mod Pathol. 2006, 19(6): 847-853.
    46. Peters DG, Kudla DM, Deloia JA, et al. Comparative gene expression analysis of ovarian carcinoma and normal ovarian epithelium by serial analysis of gene expression[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(7): 1717-1723.
    47. Drapkin R, von Horsten HH, Lin Y, et al. Human epididymis protein 4(HE4) is a secreted glycoprotein that is overexpressed by serous and endomet rioid ovarian carcinomas[J]. Cancer Res, 2005, 65(6): 2162-2169.
    48. Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances[J]. Trends Mol Med, 2006,12(5): 216-222.
    49. Otten G, Schaefer M, Doe B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation[J]. 2004, 22(19): 2489-2493.
    50. Babiuk S, Baca-Estrada ME, Foldvari M, et al. Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines[J]. J biotechnol, 2004, 110(1):1-10.
    51. Eefting D, Grimbergen JM, de Vries MR, et al. Prolonged in vivo gene silencing by electroporation-mediated plasmid delivery of small interfering RNA[J]. Hum Gene Ther. 2007, 18(9): 861-869.
    52. Magin-Lachmann C, Kotzamanis G, D'Aiuto L, et al. In vitro and in vivo delivery of intact BAC DNA-comparison of different methods[J]. J Gene Med, 2004, 6(2): 195-209.
    53. Widera G, Austin M, Rabussay D, et al, Increased DNA vaccine delivery and immunogenicity by electroporation in vivo[J]. J Immunol, 2000, 164(9): 4635-4640.
    54. Mathiesen I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther, 1999, 6(4): 508-514.
    55. Cui Z, Mumper RJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug Carrier Syst, 2003, 20(2-3): 103-137.
    56. Babiuk S, Baca-Estrada ME, Foldvari M, et al. Electroporation improves the efficacy of DNA vaccines in large animals[J].Vaccine, 2002, 20(27-28): 3399-3408 .
    57. Bertrand A, Ng?-Muller V, Hentzen D, et al. Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. Am J Physiol Cell Physiol, 2003, 285(5): C1071–C1081.
    58. Dean DA, Machado-Aranda D, Blair-Parks K, et al. Electroporation as a method for high-level nonviral gene transfer to the lung[J]. Gene Ther, 2003, 10(18): 1608-1615.
    59. Heller L, Merkler K, Westover J, et al. Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model[J]. Clin Cancer Res, 2006, 12(10): 3177-3183.
    60. Sersa G. Tumor blood flow change induced by application of electrical pulses. Eur J Cancer. 1999, 35(4): 672-677.
    61. McMahon JM, Wells DJ. Electroporation for gene transfer to skeletal muscles: current status[J]. BioDrugs, 2004, 18(3): 155-165.
    62. Takabatake Y, Isaka Y, Mizui M, et al. Exploring RNA interference as a therapeutic strategy for renal diseas[J]. Gene Ther, 2005, 12(12): 965-973.
    63. Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro[J]. Proc Natl Acad Sci USA, 2004, 101(1): 16-22.
    64. Hoshina K, Koyama H, Miyata T, et al. Aortic wall cell proliferation via basic fibroblast growth factor gene transfer limits progression of experimental abdominal aortic aneurysm[J]. J Vasc Surg, 2004, 40(3): 512-518.
    65. Akaneya Y, Jiang B, Tsumoto T. RNAi-induced gene silencing by local electroporation in targeting brain region[J]. J Neurophysiol 2005, 93(1): 594–602.
    66. Schiffelers RM, Ansari A, Xu J, et al. Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis[J]. Arthritis Rheum, 2005, 52: 1314-1318.
    67. Peng JL, Zhao YG, Mai JH, et al. Non-cytolytic antigen clearance in DNA-vaccinated mice with electroporation[J]. Acta Pharmacol Sin, 2007, 28(7): 1024-1030.
    68. Ma J, Matsusaka T, Yang H, et al. Local Actions of Endogenous Angiotensin II in Injured Glomeruli[J]. J Am Soc Nephrol, 2004, 15(5): 1268-1276.
    69. Widera G, Austin M, Rabuszay D, et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo[J]. J immuno, 2000, 164(9): 4635-4640.
    70. Tolefsen S, Vordermeier M, Olsen I. et a1. DNA Injection in combination with dectroporation: a Novel method for vaccination of farmed ruminants[J]. Scand J Immunol. 2003, 57(3): 229-238.
    71. Neumann E, Schaefer-RidderM, Wang Y, et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields[J]. EMBO J, 1982, 1(7): 841-845.
    72. Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA[J]. Biochim Biophys Acta, 1991, 1088(1): 131-134.
    73. Zhang X, Divangahi M, Ngai P, et al. Intramuscular immunization with amonngenic plasmid DNA tuberculosis vaccine: enhanced immunngenicity by electroporation and co-expression of GM-CSF transgene[J]. Vaccine, 2007, 25(7): 1342-1352.
    74. Southampton General Hospital. Vaccine treatment for prostate cancer that has comeback(GTAC No 089). http://www. cancerhelp. org. uk/trials/. 2006.
    75. Merck. V930 First Man (FIM) Study. www. clinicaltrials. gov/ct/, NCT00250419. 2006.
    76. Lin MP, Marti GP, Dieb R, et al . Delivery of plasmid DNA expression vector for keratinocyte growth factor-l using electroporation to improve cutaneous wound healing in a septic rat model[J] .Wound Repair Regen, 2006, 14(5): 618-624.
    77. Qin J, Liu ZX. FAK-related nonkinase attenuates hypertrophy induced by angiotensin-II in cultured neonatal rat cardiac myocytes[J]. Acta Pharmacol Sin, 2006, 27(9): 1159-1164.
    78. Bare M, Axelrod JH, Nur I. Liposome-encapsulated DNA-mediated gene transfer and synthesis of human factor IX in mice[J]. Gene, 1995, 161: 143-150
    79. Bouchard D, Morisset D, Bourbonnais Y, et al. Proteins with whey-acidic-protein motifs and cancer[J]. Lancet Oncol. 2006, 7(2):167–174.
    80. Galgano MT, Hampton GM, Frierson HF Jr. Comprehensive analysis of HE4 expression in normal and malignant human tissues[J]. Mod Pathol, 2006, 19(6): 847-853.
    81.陈瑶,牟霞,王穗海,等. HE4基因表达载体的构建及对卵巢癌细胞HO8910生长侵袭的影响[J].热带医学杂志, 2009, 9(6): 605-633.
    82. Idoji Y, Watanabe Y, Yamashita A, et al. In silico study of whey-acidic-protein domain containing oral protease inhibitors[J]. Int J Mol Med, 2008, 21(4): 461-468.
    83. Daly R, Hearn MT. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production[J]. J Mol Recognit. 2005, 18(2): 119-138.
    84. Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiol Rev, 2000, 24(1): 45-66.
    85.欧阳立明,张惠展,张嗣同.巴斯德毕赤酵母的基因表达系统研究进展[J].生物化学与生物物理进展, 2000, 27(2): 151-154.
    86.彭毅,杨希才,康良仪.影响甲醇酵母外源蛋白表达的因素[J].生物技术通报, 2000, 4: 33-36.
    87.高炳淼,长孙东亭,罗素兰,等.毕赤酵母表达系统中重组蛋白的分离纯化[J].生物技术通报, 2009, 3: 33-36.
    88.唐元家,余泊松.巴斯德毕赤酵母表达系统[J].国外医药抗生素分册, 2002, 23(6): 246-271.
    89. Klei IJ, Harder W, Veenhuis M. Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeast[J]. Yeast, 1991, 7(3):195-209.
    90.杨晟,黄鹤,章如安.重组人血清蛋自在Pichia pastoris中分泌表达影响因素的研究.生物工程学报, 2000, 16(6): 675-678.
    91. Clare JJ, Rayment FB, Ballantine SP, et al. High-level expression of tetaus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene[J]. Bio/Technology, 1991, 9: 455.
    92. Rosenfeld SA, Nadeau D, Tirado J, et al. Production and puri fication of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris[J]. Protein Expre Purif, 1996, 8(4): 476-482.
    93. Sreekrishma K, Nelles L, Potenz R, et al. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris[J]. Biochemistry, 1989, 28(9): 4117-4125.
    94.朱振洪,葛立君,刘洪文,等.利用毕赤酵母系统表达重组人生长激素的研究[J].生命科学研究, 2009, 13(1): 20-24.
    95.路蓉,安云庆.巴斯德毕赤酵母表达系统及其分泌型蛋白表达的研究进展[J].临床和实验医学杂志, 2004, 3(1): 43-47.
    96. Hui SW. Overview of drug delivery and alternative methods to electroporation[J]. Methods Mol Biol, 2008, 423: 91-107.
    97. Mascola JR, Montefiori DC. The role of antibodies in HIV vaccines[J]. Annu RevImmunol, 2010, 28: 413-444.
    98. David C, Benjamin JA, Berzofsky LJ, et al. The antigenic structure of protens: a reappraisal[J]. Immunol, 1984, 2: 67-101
    99. Helenius A, Aebi M. Intracellular functions of N-linked glycans[J]. Science, 2001, 291(5512): 2364-2369.
    100.Rudd PM, Elliott T, et al. Glycosylation and the immune system[J]. Science, 2001, 291(5512):2370-2376.
    101.Wells L, Vosseller K, Hart GW. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc[J]. Science, 2001, 291(5512):2376-2378.
    102.Freeze HH. Lectin affinity chromatography[J]. Curr Protoc Protein Sci. 2001, Chapter 9:Unit 9.1.
    103.Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds[J]. Glycobiology, 2002, 12(4): 43R-56R.
    104.Kukuruzinska MA, Bergh ML, Jackson BJ. Protein glycosylation in yeast[J]. Annu Rev Biochem, 1987, 56: 915-944.
    105.N?hr J, Kristiansen K, Krogsdam AM. Protein expression in yeasts[J]. Methods Mol Biol, 2003, 232:111-25.
    106.Cregg JM, Cereghino JL, Shi J, et al. Recombinant protein expression in Pichia pastoris[J]. Mol Biotechnol, 2000, 16(1): 23-52.
    107.Gellissen G. Heterologous protein production in methylotrophic yeasts[J]. Appl Microbiol Biotechnol, 2000, 54(6): 741-750.
    108.Boraston AB, Warren RA, Kilburn DG. Glycosylation by Pichia pastoris decreases the affinity of a family 2a carbohydrate-binding module from Cellulomonas fimi: a functional and mutational analysis[J]. Biochem J, 2001, 358(Pt 2): 423-430.
    109.Lloyd RC, Davis BG, Jones JB. Site-selective glycosylation of subtilisin Bacillus lentus causes dramatic increases in esterase activity[J]. Bioorg Med Chem, 2000,8(7): 1537-1544.
    110.Kwon KS, Yu MH. Effect of glycosylation on the stability of alpha1-antitrypsin toward urea denaturation and thermal deactivation[J]. Biochim Biophys Acta, 1997, 1335(3): 265-272.
    111.Suzuki S, Furuhashi M, Suganuma N. Additional N-glycosylation at Asn(13) rescues the human LH beta-subunit from disulfide-linked aggregation[J]. Mol Cell Endocrinol, 2000, 160(1-2): 157-163.
    112.Pratap J, Rajamohan G, Dikshit KL. Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation[J]. Appl Microbiol Biotechnol, 2000, 53(4): 469-475.
    113.Coloma MJ, Trinh RK, Martinez AR, et al. Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(126)dextran antibody[J]. J Immunol, 1999, 162(4): 2162-2170.
    114.Davies J, Jiang L, Pan LZ, et al. Expression of GnT III in a recombinant anti-CD20 CHO production cell line: Expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma R III[J]. Biotechnol Bioeng, 2001, 74(4): 288-294.
    115.Tams JW, Vind J, Welinder KG. Adapting protein solubility by glycosylation. N-glycosylation mutants of Coprinus cinereus peroxidase in salt and organic solutions[J]. Biochim Biophys Acta, 1999,1432(2): 214-221.
    116.Elliott S, Lorenzini T, Asher S, et al. Enhancement of therapeutic protein in vivo activities through glycoengineering[J]. Nat Biotechnol, 2003, 21(4): 414-421.
    117.Linden HM, Kaushansky K. The glycan domain of thrombopoietin enhances its secretion[J]. Biochemistry, 2000, 39(11): 3044-3051.
    118.Yao Y, Wang J, Viroonchatapan N, et al. Yeast expression and NMR analysis of the extracellular domain of muscle nicotinic acetylcholine receptor alpha subunit[J]. J Biol Chem, 2002, 277(15): 12613-12621.
    119.Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP)[J]. Br J Cancer, 2001(Suppl):3-10.
    120.Mistry PK, Wraight EP, Cox TM. Therapeutic delivery of proteins to macrophages: implications for treatment of Gaucher's disease[J]. Lancet, 1996, 348(9041):1555-1559.
    121.Clare JJ, Romanos MA, Rayment FB, et al. Production of mouse epidermal growth facter in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene, 1991, 105(2): 205-212.
    122.Scorer CA, Buckholz RG, Clare JJ, et al. The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris[J]. Gene, 1993, 136(1-2): 111-119.
    123.Clare JJ, Romanos MA, Rayment FB, et al. Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies[J]. Gene, 1991,105(2): 205-212.
    124.官孝群,王跃祥,吴良成,等.血管生成抑制因子K4K5cDNA基因的克隆及其在毕赤酵母中的表达[J].生物工程学报, 2001, 17(2): 126-130.
    125.丁秀云,李春梅,朱运峰,等.基质金属蛋白酶2在酵母系统中表达的初步研究[J].生物化学与生物物理进展, 1999, 26(3): 291-294.
    126.Sherwood R. Protein fusions: bioseparation and application[J]. Trends Biotechnol, 1991, 9(1): 1-3.
    127.Casey JL, Keep PA, Chester KA, et al. Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography[J]. J Immunol Methods, 1995, 179(1): 105-116.
    128.Gabere Porekar V, Menart V, Jevsevar S, et al. Histidines in affinity tags and surface clusters for immobilized metalion affinity chromatography of trimeric tumor necrosis factor alpha[J]. J Chromatogr A, 1999, 852(1): 117-128.
    129.K?hler G, Milstein C. Continuous cultures of fused cells secreting antibody ofpredefined specificity[J]. Nature, 1975, 256(5517): 495-497.
    130.Kilpatrick KE, Cutler T, Whitehom E, et al. Gene gun delivered DNA-based immunizations mediate rapid production of murine monoclonal antibodies to the flt3 receptor[J]. Hybridoma, 1998, 17(6): 569-576.
    131.Lillehoj HS, Choi KD, Jenkins MC, et al. A recombinant Eimeria protein inducing interferon-gamma production: comparison of different gene expression systems and immunization strategies for vaccination against coccidiosis[J]. Avian Dis, 2000, 44(2): 379-389.
    132.Tearina Chu TH, Halverson GR, Yazdanbakhsh K, et al. A DNA-based immunization protocol to produce monoclonal antibodies to blood group antigens[J]. Br J Haematol, 2001, 113(1): 32-36.
    133.龚非力.医学免疫学[M].第2版.北京:科学出版社, 2004: 24-34.
    1. Aigner A. Gene silencing through RNA interference (RNAi) in vivo: Strategies based on the direct application of siRNAs. J Biotechnol, 2006, 124 (1): 12-25
    2. BelákováJ, HorynováM, Krupka M, et al. DNA vaccines: are they still just a powerful tool for the future? Arch Immunol Ther Exp, 2007, 55 (6): 387-98
    3. Prud'homme GJ, Glinka Y, Khan AS, et al. Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Current Gene Therapy, 2006, 6(2): 243-73
    4. Colzio M, Teissie J, Rols MP. Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci USA, 2002, 99(3):1292-7
    5. Sersa G. Tumor blood flow change induced by application of electrical pulses. Eur J Cancer, 1999, 35(4): 672
    6. Barker M, Billups B, Hamann M, et al. Focal macromolecule delivery in neuronal tissue using simultaneous pressure ejection and local electroporation. Immunol Res, 2008 2009 ,177(2):273-84
    7. Eefting D, Grimbergen JM, de Vries MR, et al. Prolonged in vivo gene silencing by electroporation-mediated plasmid delivery of small interfering RNA. Hum Gene Ther, 2007, 18(9): 861-9
    8. Takabatake Y, Isaka Y, Imai E. Renal artery injection for delivery of biological materials to the glomerulus. Nephrology, 2008, 13(1): 23-6
    9. Magin-Lachmann C, Kotzamanis G, D'Aiuto L, et a1. In vitro and in vivo delivery of intact BAC DNA-comparison of different methods. J Gene Med, 2004, 6(2): 195-209
    10. Abdulhaqq SA, Weiner DB. DNA vaccines: developing new strategies to enhance immune responses. Immunol Res, 2008,42(1-3): 219-32
    11. Heller LC, Jaroszeski MJ, Coppola D, et al. Comparison of electrically mediatedand liposome-complexed plasmid DNA delivery to the skin. Genet Vaccines Ther, 2008, 6(1): 16
    12. Bodles-Brakhop AM, Draghia-Akli R. DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines, 2008, 7(7): 1085-101
    13. Onodera S, Ohshima S, Tohyama H, et al. Arthritis Rheum, 2007, 56(2): 521-30
    14. Prud'homme GJ, Lawson BR, Theofilopoulos AN. Anticytokine gene therapy of autoimmune diseases. Expert Opin Biol Ther, 2001, 1(3): 359-73
    15. Peng JL, Zhao YG, Mai JH, et al. Non-cytolytic antigen clearance in DNA-vaccinated mice with electroporation. Acta Pharmacol Sin, 2007, 28(7): 1024-30
    16. Zhang QZ, Qin XM, Dong HL, et al. Efficient protection of H5N1 influenza virus DNA vaccine delivering by electroporation in mammalian and avian system. Prog Biochem Biophy, 2005, 32 (8): 726-32
    17. Long X, Xiong SD, Xiong WN, et al. Efect of intramuscular injection of hepatocyte growth factor plasmid DNA with electroporation on bleomycin-induced lung fibrosis in rats.Chin Med J, 2007, 120(16): 1432-7
    18. Bertrand A, Ngo-Muller V, Hentzen D, et al. Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. Am J Physiol Cell Physiol, 2003, 285(5): C1071–81
    19. Heller L, Merkler K, Westover J, et al. Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin Cancer Res, 2006, 12(10): 3177-83
    20. Manam S, Ledwith BJ, Barnum AB, et al. Plasmid DNA vaccines: tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA. Intervirology, 2000, 43(4-6): 273-81
    21. Wang Z, Troilo PJ, Wang X, et al. Detection of integration of plasmid DNA intohost genomic DNA following intramuscular injection and electroporation. Gene Ther, 2004,11(8): 711-21
    22. Barzon L, Stefani AL, Pacenti M, et al. Versatility of gene therapy vectors through viruses. Expert Opin Biol Ther, 2005, 5(5): 639-62
    23. Selby M, Goldbeck C, Pertile T, et al. Enhancement of DNA vaccine potency by electroporation in vivo. J Biotechnol, 2000, 83(1-2): 147-52
    24. Dean DA. Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am J Physiol Cell Physiol, 2005, 289(2): C233-45
    25. Otten G, Schaefer M, Doe B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine, 2004, 22(19): 2489-93
    26. Wells DJ.Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther, 2004, 11(18):1363-9
    27. Corovic S, Al Sakere B, Haddad V, et al. Importance of contact surface between electrodes and treated tissue in electrochemotherapy. Technol Cancer Res Treat, 2008, 7(5): 393-400
    28. Hojman P, Gissel H, Andre F, et al. Physiological effects of high and low voltage pulse combinations for gene electrotransfer in muscle. Hum Gene Ther, 2008, 19(11): 1249-60
    29. Zhang L, Li L, Hoffmann GA, et al. Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: an approach to gene therapy of skin aging and other diseases. Biochem Biophys Res Commun, 1996, 220(3): 633-6
    30. Toneguzzo F, Hayday AC, Keating A. Electric field-mediated DNA transfer: transient and stable gene expression in human and mouse lymphoid cells. Mol Cell Biol, 1986, 6(2): 703-6
    31. Molnar MJ, Gilbert R, Lu Y, et al. Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol Ther, 2004(3): 447-55
    32. Nunamaker EA, Zhang HY, Shirasawa Y, et al. Electroporation-mediated delivery of catalytic oligodeoxynucleotides for manipulation of vascular gene expression. Am J Physiol Heart Circ Physiol, 2003, 285(5): H2240-7
    33. Nicol F, Wong M, Mac Laughlin FC, et a1. Poly-L-glutamate, an anionic polymer, enhances transgene expression for plasmids delivered by intramuscular injection with in vivo electroporation. Gene Ther, 2002, 9(20): 1351-8
    34. Scheerlinck JP, Karlis J, Tjelle TE, et al. In vivo electroporation improves immune responses to DNA vaccination in sheep. Vaccine, 2004, 22(13-14): 1820-5
    35. Otten G, Schaefer M, Doe B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine, 2004, 22(19):2489-93
    36. Babiuk S, Baca-Estrada ME, Foldvari M, et al. Increased gene expression and inflammatory cell infihration caused by electroporation are both important for improving the efficacy of DNA Vaccine. J Biotechnol, 2004, 110(1):11-10
    37. Ulmer JB, Wahren B, Liu MA. Gene-based vaccines: recent technical and clinical advances. Trends Mol Med, 2006,12(5): 216-22
    38. Otten G, Schaefer M, Doe B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine, 2004, 22(19): 2489-93
    39. Zhao YG, Peng B, Deng H, et al. Anti-HBV immune responses in rhesus macaques elicited by electroporation mediated DNA vaccination. Vaccine, 2006, 24(7): 897-903
    40. Bodles-Brakhop AM, Brown PA, Pope MA, et al. Double-blinded, Placebo-controlled plasmid GHRH trial for cancer-associated anemia in dogs. Mol Ther, 2008, 16(5): 862-70
    41. Fewell JG. Factor IX gene therapy for hemophilia. Methods Mol Biol, 2008, 423: 375-82
    42. Fewell JG, Mac Laughlin F, Mehta V, et al. Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle withelectroporation. Mol Ther, 2001, 3(4): 574-83
    43. Tjelle TE, Salte R, Mathiesen I, et al. A novel electroporation device for gene delivery in large animals and humans. Vaccine, 2006, 24(21): 4667-70
    44. http://www.clinicaltrials.gov/ct2/results?term=electroporation
    45. Merck. V930 First Man (FIM) Study. www.clinicaltrials.gov/ct/, NCT00250419. 2006.
    46. Daud AI, Deconti RC, Andrews S, et al. Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma. J Clin Oncol, 2008, 26(36): 5896-903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700