上面级轨道外热流算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天任务的进一步发展,对运载火箭上面级提出了更高的要求。轨道外热流计算是上面级热控系统设计和热分析的基础,目前,国内外热流算法和国外商业软件存在诸多缺陷,严重影响了上面级热控系统的设计及校验。基于此,本文对上面级轨道外热流算法进行了深入研究,完成了如下工作:
     首先,对上面级应用发展状况和外热流算法研究进展进行了总结,分析了现有方法的不足。而后,对轨道外热流理论进行了系统的研究,以辐射换热理论、蒙特卡洛法、Gebhart法为基础,针对传统外热流角系数概念的不足,重新对外热流角系数进行了定义;为考虑多次反射后外热流的吸收问题,提出了外热流辐射传递因子的概念。
     其次,系统研究了上面级轨道外热流计算方法。以外热流算法流程为基础,从能束发射模型、轨道及太阳矢量确定、外热流角系数计算方法等方面,阐述了上面级轨道外热流的核心算法。其中,研究了蒙特卡洛法中能束几何特性的表示方法,对上面级常用曲面面元局部坐标系和几何参数进行定义,确定了面元能束发射概率模型,分析了局部坐标系和系统坐标系下能束与面元相交判定方法的优劣,并给出了局部坐标系下的相交判定方法;基于SGP4/SDP4模型给出了考虑摄动后轨道参数、坐标变换矩阵、太阳矢量的确定及地影区的判定方法;对传统蒙特卡洛法计算外热流时存在的问题进行了改进,提高了计算效率,并给出了算法流程;基于Gebhart法研究了外热流辐射传递因子及考虑多次反射后吸收的轨道外热流的计算方法。
     最后,对上面级外热流算法进行了模块划分,以轨道模块、外热流角系数模块、外热流辐射传递因子模块和外热流模块的设计为基础,实现了上面级轨道外热流求解器。以一简单模型为例进行轨道外热流计算,通过对比本文求解器和商业软件Thermal Desktop的计算结果,分析了轨道摄动、太阳矢量变化、多次反射对轨道外热流的影响,论证了本文算法的先进性及正确性;随后,以一虚拟上面级为例进行轨道外热流计算,通过与Thermal Desktop对比,证实了本文算法能够实现上面级常见曲面的轨道外热流计算要求,具有适用性。
With the further development of space missions, higher requirements on launch vehicle upper stage have been put forward. The calculation of external heat flux of upper stage is the foundation of the designing of its thermal control system and its thermal analysis, at present, domestic algorithms and foreign commercial software have many defects, severely affecting the design and verification of upper stage thermal control system. Based on this, this thesis presents a deep insight into the calculation of external heat flux of the upper stage, with the following achievements:
     Firstly, the upper stage application and external heat flux algorithms development was summarized, and the deficiencies of existing methods were analyzed. Then, a systematic research of external heat flux theory was carried out. To resolve the shortcomings of the conventional definition, the concept of the external heat flux view factor was redefined, and the concept of external heat flux radiative transfer coefficient was put forward, to consider the absorption of external heat flux after multiple reflections, basing on radiative heat transfer theory, Monte Carlo methods and Gebhart methods.
     Secondly, the algorithms of upper stage external heat flux were researched. Core algorithms, such as energy beam emission models, orbital parameters and sun vector determination, external heat flux view factors calculations, were elaborated, based on the algorithms procedure. The geometric properties of the energy beam in Monte Carlo methods were described. The local coordinate and geometric parameters of upper stage common surface elements were defined. The energy beam emission models of surface elements were established. Advantages and disadvantages of intersection judgement of the beams and elements in different coordinate were analyzed, and intersection judgement in local coordinate was put forward. Algorithms of orbital parameters, coordinate transformation matrix, solar vector and eclipse considering perturbation basing on SGP4/SDP4 model were put forward. Improvement was achieved to solve the problems encountered using conventional Monte Carlo methods to calculate external heat flux, higher efficiency was achieved, and the algorithm procedures were introduced. Algorithms of external heat flux radiative transfer coefficient and total absorbed external heat flux after multiple reflections were introduced.
     Finally, modules were divided in the upper stage external heat flux algorithms, and upper stage external heat flux solver was realized, basing on the designing of orbital module, external heat flux view factor module, external heat flux radiative transfer coefficient module, and external heat flux module. External heat flux simulation of a simple model was made, by comparing the results of the solver and commercial software Thermal Desktop, effects of the perturbation, solar vector variation and multiple reflections were analyzed, and the distinction and the validity of the algorithms was proved. Then, external heat flux simulation of a virtual upper stage was made, by comparing the results of the solver and Thermal Desktop, it was proved that computing requirements of external heat flux of common upper stage surface could be fulfilled, and that the algorithms was applicable.
引文
1 Marc Verhage. NASA Ares I Crew Launch Vehicle Upper Stage Overview. AIAA 2007-5831
    2 Neil E. Otte. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA’s Marshall Space Flight Center. AIAA 2008-4983
    3 Daniel J. Davis. NASA Ares I Crew Launch Vehicle Upper Stage Overview. AIAA 2008-4897
    4 Charles L. Nola. NASA Ares I Crew Launch Vehicle Upper Stage Avionics and Software Overview. AIAA 2008-4898
    5 Thomas D. Byrd, Michael H. Kynard. Progress on the J-2X Upper Stage Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. AIAA 2007-5832
    6 Thomas Byrd. From Concept to Design: Progress on the J-2X Upper Stage. AIAA 2008-4980
    7 Jason E. Quinn. Overview of the Main Propulsion System for the NASA Ares I Upper Stage. AIAA 2009-5131
    8 Jeffrey P. Hons, Carl T. Bangasser. Delta-Qualification Test of Aerojet 6 and
    9 lbf MR-106 Monopropellant Hydrazine Thrusters for Use on the Atlas Centaur Upper Stage During the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) Missions. AIAA 2009-5481
    9 Kurt L. Austad. The Common Centaur Upper Stage. AIAA 2001-3842
    10 Han V. Nguyen. Thermodynamic Analysis of a Cryogenic Upper Stage Supercritical Tank. AIAA 2004-3532
    11 Han V. Nguyen. Thermodynamic Analysis of a Cryogenic Upper Stage Supercritical Tank With Active Pressurization. AIAA 2007-5499
    12 Kay L. Gemba, Deepak Verma. Development and Testing of a Prototype LOX/propylene Upper Stage Engine. AIAA 2008-4839
    13 Deepak Verma, Kay L. Gemba. Flight Testing of a Prototype LOX/propylene Upper Stage Engine. AIAA 2010-175
    14 Daniel R. Kirk, Justin Oliveira. Modeling of Upper Stage Cryogenic Propellants in a Rotating, Reduced Gravity Environment. AIAA 2006-5059
    15 Philipp Behruzi, Mark Michaelis. Behavior of the Cryogenic Propellant Tanks during the First Flight of the Ariane 5 ESC-A Upper Stage. AIAA 2006-5052
    16 J. Grila, O. Ferrandon. Status of Ariane 5 Cryogenic Upper Stage Program - Propulsion System. AIAA 2000-3785
    17 F. Jean, E. Dalbies. Development status of the VINCI engine for Ariane 5 upper stage. AIAA 2000-3786
    18 J. Grila, J. M. Bahu. Qualification status of Ariane 5ECA cryogenic upper stage propulsion after flight 521. AIAA 2005-3754
    19 P. Alliot, V. Jover. Ariane 5 cryogenic upper stage propulsion systems. AIAA 2001-3259
    20 Pascal Pempie, Hilda Boussif. Cryogenic Upper Stage Engine Trade-Off. A1AA 2000-3449
    21 Andreas Goetz, Gerald Hagemann. Advanced Upper Stage Propulsion Concept– The Expansion-Deflection Upper Stage. AIAA-2005-3752
    22 Masumi Fujita, Hiroshi Aoki. Upper Stage Propulsion System for H-IIA Launch Vehicle. AIAA 2002-4212
    23 J.R. Brown, J.R. Bullock. Development Status of the Pratt & Whitney RL 50 Upper Stage Engine. AIAA 2000-3787
    24 D. Valentian, O. Gogdet. Low Cost Cryogenic Propulsion as an Option for a New ELV Upper Stage. AIAA 2006-4905
    25 Dominique Valentian, Alain Souchier. Green Propellant Implementation For Space Missions And Upper Stage Propulsion. AIAA 2007-5483
    26 M. Calabro, J.B. Perie. Innovative Upper Stage Propulsion Concepts For Future Launchers. AIAA 2001-3692
    27 Lorenzo Casalino, Dario Pastrone. Integrated Design of Hybrid Rocket Upper Stage and Launcher Trajectory. AIAA 2009-4843
    28 William F. Sack, Julie H. Watanabe. Development Progress of the MB-XX Cryogenic Upper Stage Rocket Engine. AIAA 2003-4486
    29 G.A.Dressier, L.W.Matuszak. Study of a High-Energy Upper Stage for Future Shuttle Missions. AIAA 2003-5128
    30 Patrick M. McGinnis, C. Russell Joyner. Upper Stage Propulsion Options for Various Launch Vehicle Architectures. AIAA 2005-4180
    31 Alan B. Jenkin, Jason P. Anderson. Case Study of Upper Stage Disposal for Geosynchronous Debris Mitigation. AIAA 2002-4628
    32 Yunjun Xu. Trajectory Control and Analysis for a Vertical Takeoff and Vertical Landing Reusable Launch Vehicle’s Upper Stage. AIAA 2005-5996
    33 Tibor Lak, Frank Chandler. A Safe & Low Cost Cryogenic Upper Stage Design for the Space Shuttle. AIAA 2000-5286
    34郑作亚,陈永奇.UKF算法及其在GPS卫星轨道短期预报中的应用.武汉大学学报.2008,33(3):249-252
    35陈务深,陆本魁.单位矢量法的数学模型及其简化形式的迭代法的收敛性.天文学报.2007,48(3):343-354
    36史纪鑫,曲广吉.用SGP4模型和卡尔曼滤波实现空间碎片轨道预报.航天器环境工程.2005,22(5):273-277
    37刘林,王彦荣.卫星轨道预报的一种分析方法.天文学报.2005,46(3):307-313
    38孙萌,张堪.舱外航天服热平衡试验的外热流模拟方法.宇航学报.2009,30(1):327-331
    39孙萌,张堪.舱外航天服热试验外热流模拟方法研究.航天器环境工程.2009,26(2):134-136
    40杨晓宁,任德鹏.红外加热棒式空间外热流模拟器的数值研究.中国空间科学技术.2009,(4):54-60
    41张军,郭赣.外热流模拟对象在线辨识方法比较分析.航天器环境工程.2007,24(2):99-103
    42耿利寅,李国强.红外笼模拟外热流方法对空间相机温度的影响分析.航天器环境工程.2007,24(3):164-167
    43邵兴国,刘自军.航天器热试验外热流实施和测试探索.航天器工程.2007,16(4):94-98
    44秦文波,程惠尔.对接机构真空热试验外热流模拟方案研究.上海航天.2008,(6):47-51
    45王建设.空间光学遥感器轨道外热流的模拟.光学精密工程.2000,8(4):328-330
    46贾阳,徐丽.红外加热笼模拟航天器瞬变外热流的方法研究.中国空间科学技术.2001,(2):54-62
    47闵桂荣.卫星热控制技术.宇航出版社,1991:48-66
    48翁建华,潘增富,闵桂荣.空间任意形状凸面的轨道空间外热流计算方法.中国空间科学技术.1994,(2):11-18
    49赵立新.轨道空间外热流计算的一种新方法.光学精密工程.1995,3(6):80-85
    50金学宽.近地航天器受照角系数的矢量计算法.宇航学报.1984,(1):69-80
    51张涛,孙冰.计算近地轨道航天器空间外热流的RUD方法.宇航学报.2009,(1):338-343
    52杨世铭,陶文铨.传热学(第三版).高等教育出版社,1998:239-259
    53余其铮.辐射换热原理.哈尔滨工业大学出版社,2000:6-62
    54李济生.航天器轨道确定.国防工业出版社,2003:57-60
    55 F.R.Hoots. A Short Efficient Analytical Satellite Theory. AIAA 80-1659R
    56 David A.Vallado. Revisiting Spacetrack Report #3. AIAA 2006-6753
    57李万林.卫星空间外热流轨道参数ψ0, ? 0和ω0计算.中国空间科学技术.1993,(6):58-61
    58安敏杰,程惠尔,李鹏.空间对接机构太阳外热流的计算与分析.上海航天.2006,(1):22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700