静液传动混合动力车辆驱动与制动系统的控制性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球化的市场竞争、能源匮乏、环境污染等问题促使人们考虑车辆的燃油经济性问题。作为混合动力技术的一个重要分支,静液传动混合动力车辆也逐渐引起了各国政府、研究机构及汽车制造商的高度重视。
     二次调节静液传动技术是通过改变液压泵/马达的斜盘倾角,从而改变排量来适应负载的变化。液压储能系统功率密度大,全充和全放能力强,满足短时间车辆制动时的能量转换和储存要求。除此之外,静液传动技术还具有无级变速的精细速度调节、容易实现正反转、操控性强以及可靠性高等优点。因此,将二次调节静液传动技术应用于车辆传动系统中,对研究车辆的能量回收,减少环境污染以及提高车辆的整体性能具有重要意义。本文以二次调节静液传动技术应用于车辆传动系统的驱动与制动控制系统的性能研究为主要内容,对二次调节静液传动车辆控制技术进行了较为全面的研究。
     在查阅大量国内外有关文献的基础上,本文概述了国内外静液传动混合动力车辆的发展概况,按照能量再生系统与发动机的不同配置形式,将液压混合动力车辆分为四种形式,并对静液传动混合动力车辆的特点做了相关介绍。
     阐述二次调节静液传动车辆的工作原理,以及几种典型的工作模式。根据控制系统的需求,分别建立了电液伺服阀、液压泵/马达和液压泵-蓄能器组合的动态特性的数学模型,进而建立了液压泵/马达回路控制的数学模型。
     根据驱动和制动系统的特点设计了转矩控制方式和转速控制方式,建立了相应的数学模型,并对其稳定性进行了分析。根据PID控制和离散滑模变结构控制的特点设计了相应的驱动和制动系统控制器。
     最后,对本文相关的研究内容进行仿真研究,并对仿真结果进行分析。结果表明,转矩控制方式更适合于驱动和制动系统,而采用离散滑模变结构控制理论设计的驱动和制动系统的鲁棒控制器比传统的PID控制更有效地抑制了系统参数大范围摄动、强非线性以及外界干扰的影响,提高车辆的控制性能。
Global competition, energy shortages, environmental pollution problems have prompted people to consider fuel economy issues. Hybrid technology as an important branch, hydrostatic transmission hybrid vehicles have gradually led governments, research institutions and auto makers are highly valued.
     Hydrostatic transmission with secondary regulation is a new kind of transmission technology, which changes the swash angle of hydraulic pump/motor to adapt to the load change. Hydraulic accumulator has the advantage of higher power density and the ability to accept the high rates and high frequencies of charging and discharging, both of which are favorable for energy conversion and storage requirements during vehicle braking. In addition, hydrostatic transmission with secondary regulation has the advantages of continuously variable speed adjustment, easy to achieve positive inversion and prevent overload of engine and so on. Therefore hydraulic hybrid technology is well suited for luxury passenger cars, sport utility vehicles, light duty trucks and heavy-duty trucks. It is undoubtedly important to apply secondary regulation to developing and exploring new hybrid vehicles to save energy and protect environment. Based on the application of secondary regulation technology in hybrid vehicles, series hybrid vehicles of hydrostatic transmission with secondary regulation are studied and analyzed in depth and breadth in this article.
     After consulting a lot of related literatures and reference materials at home and abroad, this paper summarizes the development of hydrostatic transmission hybrid vehicles. Energy regeneration system and the engine in accordance with the different configurations, the hydraulic hybrid vehicles are divided into four forms, and the hydrostatic transmission characteristics of hybrid vehicles made related presentations.
     After studying the operation principle of hydrostatic transmission hybrid vehicles, and the typical work patterns. According to the control system requirements, are established electro-hydraulic servo valve, hydraulic pump / motors and hydraulic pump - energy storage combinations of dynamic performance of the mathematical model, and establish a hydraulic pump / motor loop control model.
     According to the characteristics of driving and braking system designed torque control mode and speed control mode, established the corresponding mathematical model and analyzed its stability. Under PID control and discrete characteristics of sliding mode control design the corresponding drive and brake system controller.
     Finally, research related to the contents of this simulation, and analysis of simulation results. The experimental results shown that torque control method is well suit for hydrostatic transmission hybrid system, discrete sliding mode robust controller is better than PID controller and hydraulic regenerative braking strategy and energy control strategy are quite effective.
引文
1 L. Mitchell. A Commentary on 'the Energy Review'. Power Engineering Journal. 2002, 16(4): 175~181
    2 V. L. Septimus. Bulk Energy Storage Potential in the USA, Current Developments and Future Prospects. Energy. 2006, 31(15): 3446~3457
    3方茂东.我国汽车的排放与控制.汽车技术. 2002, (6): 1~4
    4 Chan A. T, Chung M. W. Indoor–outdoor air quality relationships in vehicle: effect of driving environment and ventilation modes. Atmospheric Environment. 2003, 37(27): 3795~3808
    5 Wouk V. Hybrids: then and now. Spectrum, IEEE. 2005, 32(7): 16~21
    6 Lester B. L., Heather L. M. An environmental-economic evaluation of hybrid electric vehicles: Toyota's Prius vs. its conventional internal combustion engine Corolla. Transportation Research Part D: Transport and Environment. 2002, 7(2): 155~162
    7徐清富.汽车混合动力系统的研究.汽车研究与开发. 1999, (3): 34~37
    8魏英俊.新型液压驱动混合动力运动型多用途车的研究.中国机械工程. 2006, 17(15): 1645~1648
    9姜继海,刘宇辉.二次调节静液传动技术在矿井提升机中的应用.机床与液压. 1999, (4): 42~43
    10杜玖玉,苑士华,魏超,郭占正.车辆液压混合动力传动技术发展及应用前景.机床与液压. 2009, (02): 50~54
    11 Bonini, S. M. J., L. T. Mendonca, and J. M. Oppenheim, When social issues become strategic. McKinsey Quarterly, Nov. 27, 2007
    12 J.N. Marie-Francoise, H. Gualous, R. Outbib, A. Berthon, 42V Power Net with supercapacitor and battery for automotive applications ,Journal of Power Sources 143. 2005: 275~283
    13 US Environmental Protection Agency. World’s First Full Hydraulic Hybrid SUV Presented at 2004 SAE Wold Congress [2006-06-24]. http://www. epa.gov/otaq/technology/420f04019.pdf.
    14 Dr. Zbigniew Pawelski, Roberto P., Michael T.为老式市内公共汽车配备力士乐驱动装置. RIQ. 1997, (1): 27~28
    15高宗立.液压混合动力城市客车.城市车辆. 2007, (08): 35~40
    16廖抒华.汽车技术开发与环境保护.汽车研究与开发. 1999, (4): 31~34
    17 Close W. H. Analysis of performance and fuel consumption tests: Permo-drive regenerative drive shaft, 2002:90~95. http://www.permo-drive.com
    18陈杰.交大神舟,液压混合动力公交车―专家‖.城市车辆. 2008, (02): 20~24
    19徐清富.汽车混合动力系统的研究.汽车研究与开发. 1999, (3): 34~37
    20吴光强,罗邦杰.车辆混合动力传动系统开发现状与展望.汽车工程. 1997, 19(2): 78~82
    21 Hiroshi NAKAZAWA,Shinichi YOKOTA and Yasuo KITA.A Hydraulic Constant Pressure Drive System for Engine-flywheel Hybrid Vehicles.Third JHPS International Symposium on fluid power. 1996,ISBN4-931070-03-5
    22 John Henry Lumkes JR.Desing,Smiulation and Testing of An Energy Storage Hydraulic Vehicle Transmission and Controller.PH.D Thesis,University of Wisconsin-Madison, 1997: 16~21
    23 H.Murrehnolf,E.Weishaupt.Recent Developments for the Control of variable Displacement Motors with Impressed Perssure.Third JHPS International Symposium on fluid Power. OTkyo, Octorber 1996: 79~84
    24赵春涛,姜继海,高维忠,赵克定.新型二次调节静液汽车传动系统.汽车技术. 2001, (5): 4~6
    25赵春涛,姜继海,赵克定.采用准恒压系统的公交汽车主要元件参数匹配的研究.机床与液压. 2001, (2): 36~38
    26 Pourmovahed,A. Beachley.N.H and Fronczak,F.J.Modeling of a Hydraulic Energy Regeneration System. Part 1.Analytical Treatment.Joumal of Dynamic Systems. ,Measurement and Control, 1992, (114): 155~159
    27刘宏新.汽车电控液压复合驱动系统研究.东北农业大学, 2002: 10~15
    28 Shima T, Tanaka K, Takahashi H, Takahara M. Development of a Diesel-hybrid Bus.Journal of the Society of Automotive Engineers of Japan, 1996, 09: 30~34
    29 Beijing Chargebroad Energy-saving Vehicle Technologies CoLtd htt p://www.chargebroad.com/
    30黄德中.汽车液压或电力复合驱动系统及其展望.节能技术. 1993, (5): 10~11
    31赵克刚,罗玉涛.一种液压储能汽车的混联式新方案.液压与气动. 2007, (04): 20~25
    32 Z.Filipi,L.Louca,B.Daran ect.Combined Optimization of Design and PowerManagement of the Hydraulic Hybrid Propulsion System for the 6x6 Medium Truck.Int J.of Heavy Vehicle Systems,Vol.11,Nos 3/4, 2004: 12~15.
    33韩文.新型电控液驱车关键技术的研究——驱动/制动系统.南京理工大学博士学位论文. 2005: 20~35
    34刘涛,伊永亮,姜继海,孙辉.浅谈静液传动混合动力车辆的原理及应用.液压与气动. 2009, (02): 59~62.
    35 H. W. Nikolaus. Hydrostatische Fahr?und Windenantrieb mit Engrger ckgewinnung. O+P.《?lhydraulik und Pneumatik》. 1981, 25(3): 193~194
    36姜继海.二次调节静液传动系统及其控制技术的研究.哈尔滨工业大学博士论文. 1998: 5~50
    37曹辉.二次调节静液传动系统及控制性能研究.沈阳工业大学硕士论文. 2006: 20~30.
    38田联房.次级调节转矩伺服系统加载技术及其控制方法的研究.哈尔滨工业大学博士论文. 1997: 62~67
    39赵岩.并联液压混合动力汽车制动系统建模和仿真研究.吉林大学. 2009: 17~35
    40赵春涛.车辆串联混合系统中二次调节静液驱动技术的研究.哈尔滨工业大学博士论文. 2001: 18~30
    41刘晓峰.基于二次调节技术的液压混合动力汽车辅助动力单元研究.吉林大学. 2008: 15~50
    42战兴群.静液驱动二次调节技术控制特性的研究.哈尔滨工业大学博士论文. 1999: 31~48
    43李世刚,谭彧,谢斌.液压混合动力车辅助驱动单元的最优控制.石河子大学学报(自然科学版). 2008, (05): 40~43
    44 Metzer and H.?J. Fahl. Untersuchungungen an einetr serienmabigen drehzahlgeregelten Antriebs? Axial kolleneinheit In Schr?gscheiben?hauweise. O+P.《?lhydraulik und Pneumatik》. 2007, 31(1): 50~55
    45 Orschau. Leistungssteigerungen durch neue Antriebs? und Regelungskonzepte. O+P.《?lhydraulik und Pneumatik》. 2003, 37(4): 306~307
    46姜继海.二次调节静液传动技术.液压气动与密封. 2000, 12(6): 1~3
    47姜继海,刘宇辉,于庆涛等.二次调节静液传动液压抽油机.机床与液压. 2005, (8): 59~61
    48王鹏宇,王庆年,胡安平,于远彬.基于Simulink-AMESim联合仿真的混合动力客车再生制动系统分析.吉林大学学报(工学版). 2008, (S1): 60~62.
    49陈华志.车辆制动能回收与再利用系统及控制技术研究.北京理工大学硕士论文. 2003: 83~102
    50 F. Metzer. Kennwerte der Dynamik Sekund?rdrehzahlgeregelter Arialkolbeneinheiten am einsepr?gten Drucknetz. O+P.《?lhydraulik und Pneumatik》. 1986, 30(3): 184~201
    51王瑞明.交流伺服驱动系统新型控制策略研究.浙江大学博士学位论文. 2005: 43~70
    52杜福银.时变时滞系统滑模变结构智能控制策略研究.西南交通大学博士学位论文. 2006: 13~25
    53刘金琨.滑模变结构控制MATLAB仿真.清华大学出版社, 2005: 65~108
    54路华鹏,马彪,孙宪林等.轻型军用静液传动车辆的模糊控制.吉林大学学报(工学版). 2007, 37(2): 286~290
    55孙辉.串联式液压混合动力车辆研究.哈尔滨工业大学博士学位论文. 2008: 20~35
    56 Matheson, P. and Stecki, J. Modeling and simulation of a fuzzy logic controller for a hydraulic-hybrid powertrain for use in heavy commercial vehicles. 2003,
    30(3): 195~203
    57张庆永,常思勤.液驱混合动力车辆液压系统建模及仿真.南京理工大学学报(自然科学版). 2008, (06): 70~75
    58于宏超.液压混合动力汽车能量回收制动系统的研究.吉林大学. 2008: 20~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700