咪唑啉类缓蚀剂缓蚀机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐蚀是困扰油气工业发展的一个极为突出的问题。在众多的防腐蚀方法中,缓蚀剂因具有经济、高效、适应性强等优点,目前被广泛应用在石油石化领域,发挥着极其重要的作用。近年来,随着人们环保意识的增强,研发新型高效、环境友好的绿色缓蚀剂越来越受到重视;然而传统的缓蚀剂设计与评价是建立在猜测和大量探索性实验基础之上,成本高,周期长,工作带有一定的盲目性,因此设计开发新型缓蚀剂迫切需要理论指导。本论文以8种不同烷基链长的1-(2-氨乙基)-2-烷基-咪唑啉缓蚀剂((NH2)C2H4-C3H4N2-CH2(CH2)nCH3,n=5,7,9,11,13,15,17,19)为研究对象,采用量子化学计算、分子力学和分子动力学模拟相结合的分子模拟方法,对其抑制碳钢CO2腐蚀的缓蚀机理开展了多尺度模拟研究,分析了缓蚀剂分子的反应活性,考察了烷基链长对缓蚀剂缓蚀性能的影响规律,探索了溶剂化效应对缓蚀剂吸附成膜的作用机制,研究了缓蚀剂膜阻碍腐蚀粒子扩散的动力学过程。通过研究和分析,取得了如下研究成果:
     8种咪唑啉分子的反应活性区域均分布在分子的咪唑环及其极性官能团上。咪唑环和极性官能团上的3个N原子为亲电反应中心,可提供电子与金属表面形成配位键;咪唑环上成双键结构的C、N两原子为亲核反应中心,可接受金属表面提供的电子形成反馈键。烷基链长对分子的整体反应活性和活性区域分布基本不产生影响。吸附发生时,咪唑啉分子极性的头部因具有较强的电荷转移作用而优先吸附于金属表面,非极性的烷基长链则背离金属表面并以一定的倾角自组装成密排结构的疏水膜。随烷基链长的增加,缓蚀剂膜自身的稳定性以及膜与基体的结合强度逐步增强,因此链长增加有利于其缓蚀效率的提高。对于Fe和FeCO3两种表面,当烷基链长分别大于13和15时,缓蚀剂方可形成高覆盖度、致密的缓蚀剂膜,能有效阻碍腐蚀介质向Fe表面扩散,抑制Fe表面的阴阳极反应。但依此真空条件下的简单模型,8种缓蚀剂缓蚀性能的理论评价结果与文献中液相腐蚀体系的实验结果并不完全相符。
     液相条件下,烷基链长在7-15范围内时,缓蚀剂分子与Fe和FeCO3表面的结合强度随链长的增加而增大,并在链长为15时达到最大;随链长(17-21)的进一步增加,缓蚀剂分子的吸附稳定性则逐渐下降,这主要是由于水分子强烈的溶剂化作用导致长链缓蚀剂分子严重扭曲变形,进而影响其与表面的作用方式和强度所致。液相中的自组装成膜过程显示,链长为15的咪唑啉分子具有良好的团聚效应,长链间相互交织形成高度致密的疏水膜,能有效覆盖Fe和FeCO3表面,因而具有最好的缓蚀性能;而当分子烷基碳链较短或较长时,链间大部呈离散状态,膜疏松多孔,不能有效抑制腐蚀的进程,缓蚀性能较差。同种缓蚀剂在FeCO3表面比其在Fe表面的吸附更加稳定。考虑溶剂效应的计算模型能较准确地描述缓蚀剂在金属表面的吸附成膜行为,缓蚀性能的理论评价结果与文献实验结果基本吻合。
     自由体积、粒子与膜的相互作用以及膜的自扩散性能是影响缓蚀剂膜抑制腐蚀粒子扩散能力的三个决定性因素。同种缓蚀剂膜对正负离子(H3O+、Cl-和HCO3-)比对H2O分子具有更强的扩散抑制能力。短链缓蚀剂分子具有较强的刚性,成膜时分子链间交织并不明显,彼此间制约能力差,此时缓蚀剂膜不仅具有较强的自扩散性能,而且因存在相对较大的自由体积,腐蚀粒子与膜的相互作用也较弱,因此腐蚀粒子在短链分子膜中具有较强的扩散迁移能力;随链长的增加,分子的柔性增强,烷基链易卷曲形变而相互交织,造成膜的自扩散能力降低,自由体积减小,膜对粒子的包覆以及粒子与膜的相互作用增强,从而较好地阻碍腐蚀粒子在膜中扩散。因此,相对于短链分子,长链分子膜对腐蚀粒子具有更好的扩散抑制能力,但当链长大于15时,这种抑制能力不再明显增加。缓蚀性能的理论评价结果在链长为7-15范围内与文献实验结果一致。
Corrosion is one of the prominent problems in petroleum industry. Among the numerous corrosion-prevention approaches, inhibitor has been widely applied and played a significant role in petroleum and petrochemical fields, with its characteristic of economy, high-performance, and adoptability. And recently, with the recognition of environment protection, the development of new efficient and environment-friendly green inhibitors has gained more attention. Traditionally, design and evaluation of inhibitors are based on trial-and-error experiments, and bear the shortcomings of high-cost, long-cycle, and blindness to some extent. Hence, the theoretical guidance of the R&D for the new inhibitors is in urgent need. In this paper, 8 kinds of 1-(2-aminoethyl)-2-alkylimidazolines with various alkyl chain lengths ((NH2)C2H4-C3H4N2-CH2(CH2)nCH3,n=5, 7, 9, 11, 13, 15, 17, and 19) were chosen to explore their corrosion inhibition mechanism for CO2 corrosion of carbon steel with multi-dimensional simulation by quantum chemistry calculation, molecular mechanics and molecular dynamics modeling. The reactivity of these molecules was analyzed, the influence of alkyl chain length on corrosion performance was investigated, the membrane forming mechanism of these molecules in the presence of solvent was proposed, and the diffusion dynamics of corrosion particles inhibition by inhibitor membrane was studied. The research results are as follows.
     The reaction active areas of these 8 inhibitor molecules are homogeneously distributed on the imidazoline ring and its polar functional groups. The 3 nitrogen atoms on imidazoline ring and polar functional groups are electrophilic reactive centers, which can donate electrons to metal surface to form coordinate bond. And carbon and nitrogen atoms on both ends of the C=N double bonds are nucleophilic centers, which can accept electrons from metal surface to from back-donating bond. Alkyl chain length generally shows no significant influence on reactivity of the whole molecule and active area distribution. When the adsorption process occurs, the head of imidazoline molecule is preferentially adsorbed on metal surface because of its strong electron transferring effect, and the non-polar alkyl chain deviates from the surface with certain inclination angle and self-assemblies into a compactly-arranged hydrophobic membrane. With the alkyl chain length increases, the stability of the inhibitor membrane and the binding strength between the membrane and the metal substrate increase gradually, which means long alkyl chain is beneficial to inhibition efficiency of the inhibitors. For two kinds of surfaces of Fe and FeCO3, when the alkyl chain length respectively exceeds 13 and 15, the inhibitor can form a high-coverage and compact membrane on metal surface to prevent the corrosion media from diffusion to metal surface and reduce both anode and cathode reactions on Fe surface. But according to this simple model under vacuum conditions, the theoretical evaluation results of inhibited efficiency of the 8 inhibitors are not completely in correspondence with experimental results in literatures.
     In solutions, when the range of alkyl chain length is from 7 to 15, the binding energy between inhibitor molecules and metal surface increases with the alkyl chain length, and reaches maximum when chain length is 15. With further extension of the alkyl chain from 17 to 21, the adsorption stability decreases gradually, which is mainly because of twist of inhibitor molecules ascribed to the solvent effect of water molecules and its further influence on interaction mode and strength. The formation of self-assembly membrane in solution indicates that imidazoline with alkyl chain length of 15 has good clustering effect and best inhibition performance in that the long chains interweave to form compact hydrophobic membrane, which can cover the metal surface well. When the alkyl chain is shorter or longer than 15, the alkyl chains are mostly in discrete state and the membranes are loose and porous, which results in reduced inhibition performance. Identical inhibitor is adsorbed more stable on FeCO3 surface than on Fe surface. The calculation model considering solvent effect can describe the adsorption and membrane-forming behavior of inhibitors more accurately. And the theoretical evaluation results match well with experimental results in literatures.
     Free volume, interaction between particles and membrane, and self-diffusion performance of membrane are the 3 critical factors influencing the performance for prevention of corrosion particles diffusion by inhibitor membrane. Identical inhibitor membrane has more prevention ability for cations and anions (H3O+, Cl-, and HCO3-) than that for H2O molecules. Molecules with shorter chain have larger rigidity, which reduces the interweaving and interactions of molecule chains. Therefore, the inhibitor membrane has larger self-diffusion capacity and weaker interaction with corrosion particles with comparatively larger free volume. So the corrosion particles have stronger diffusion ability in short chain molecule membranes. As the alkyl chain extends, the molecular flexibility increases, which makes the alkyl chains easily twist and interweave, to reduce the membrane self-diffusion ability and free volume, and enhance the particles coating by membrane and interaction between particles and membrane, which prevents the corrosion particles from diffusing in membrane. Thus, compared to short chain molecules, long chain molecular membrane has better diffusion-reducing ability, which stops enlargement when alkyl chain length is longer than 15. Theoretical evaluation results were in good accordance with experimental results in literatures when the alkyl chain length is between 7 and 15.
引文
[1]李国敏,李爱魁,郭兴蓬.油气田开发中的CO2腐蚀及防护技术[J].材料保护, 2003, 36(6): 1-5.
    [2] Burke P. A., Hausler R. H. Assessment of CO2 Corrosion of in the Cotton Valley Lindestone Trend[J]. Materials Performance, 1985, 24(8): 726-738.
    [3]李鹤林,路民旭.腐蚀科学与防腐蚀工程技术新进展[M].北京:化学工业出版社, 1999: 16-27.
    [4]郑家燊,傅朝阳,刘小武.中原油田文23气田气井腐蚀原因分析[J].中国腐蚀与防护学报, 1999, 18(3): 227-233.
    [5]任俊.长庆气田腐蚀及防护[J].天然气工业, 1998, 18(5): 63-69.
    [6]刘绘新,苏永平.川东气田油管腐蚀现状的基本特征[J].天然气工业, 2000, 20(5): 77-86.
    [7] Waard C. D., Milliams D. E. Carbonic Acid Corrosion of Steel[J]. Corrosion, 1975, 31(5): 131-177.
    [8] Schmitt G. Fundamental Aspects of CO2 Corrosion. Houston: NACE International, 1983: 43-48.
    [9] Ogundele G. L., White W. E. Some observations on corrosion on carbon steel in aqueous environments containing carbon dioxide[J]. Corrosion, 1986, 42(2): 71-76.
    [10] Xia Z., Chou K. C., Smialowska Z. S. Pitting corrosion of carbon steel in CO2-containing NaCl brine[J]. Corrosion, 1989, 45(8): 636-648.
    [11] Nesic S., Postlethwaite J., Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion, 1996, 52(4): 280-294.
    [12] Hausler R. H., Stegmann D. W. CO2 corrosion and its prevention by chemical inhibition in oil and gas production[J]. Corrosion, 1988, 44(1): 5-9.
    [13] Linda G. S., Anderson G. Effect of and temperature an the mechanism of carbon dioxide. Houston: NACE International, 1990: 40-48.
    [14]吴荫顺,郑家燊.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社, 2006: 552-556.
    [15] Li D. G., Feng Y. R., Bai Z. Q., et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2[J]. Applied Surface Science, 2007, 253(20): 8371–8376.
    [16] Bai Z. Q., Chen C. F., Lu M. X. Analysis of EIS characteristics of CO2 corrosion of well tube steels with corrosion scales[J]. Applied Surface Science, 2006, 20(252): 7578-7584.
    [17] Deodeshmukh V. A., Venugopal D. Chandra. X-ray photoelectron spectroscopic analyses of corrosion products formed on rock bolt carbon steel in chloride media with bicarbonate and silicate ions[J]. Corrosion Science, 2004, 11(46): 2629-2649.
    [18] Mora-Mendoza J. L., Turgoose S. Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions[J]. Corrosion Science, 2002, 6(44): 1223-1246.
    [19] Omkar A., Nafday S. N. Iron carbonate scale formation and CO2 corrosion in the presence of acetic acid[J]. Corrosion, 2005, 10(43): 2132-2149.
    [20] Fajardo V., Canto C., Brown B. Effect of organic acids in CO2 corrosion[J]. Corrosion, 2007, 8(29): 2094-2115.
    [21]张天胜.缓蚀剂[M].北京:化学工业出版社, 2004: 116-136.
    [22] Hackerman N., Cook E. Effect of adsorbed polar organic compounds on activity of steel in acid solution[J]. Journal of The Electrochemical Society, 1950, 97(1): 1-9.
    [23]雷良才,肖恺,沈愚瑟.咪唑啉缓蚀剂的合成与缓蚀性能研究[J].腐蚀与防护, 2001, 22(10): 420-423.
    [24] Jovancicevic V., Ramachandran S., Prince P. Inhibition of CO2 Corrosion of Mild Steel by Imidazoline and Their Precursors[J]. Corrosion, 1999, 55(5): 449-455.
    [25] Hong T., Jepson W. P. Corrosion inhibitor studies in large flow loop at high temperature and high pressure[J]. Corrosion Science, 2001, 43(10): 1839-1845.
    [26] Gelder K. V. Environment Treatment &Control[M]. 1989: 50-55.
    [27] Wang D., Li S., Ying Y. Theoretical and experimental studies of structure an d inhibition efficiency of imidazoline derivatives[J]. Corrosion Science, 1999, 41(10): 1911-1919.
    [28]严川伟,林海潮,曹楚南. MBO缓蚀膜中Cu的价态及成膜机制[J].腐蚀科学与防护技术, 2001, 13(1): 12-15.
    [29]于辉,吴建华,钱建华.一种海水缓蚀剂缓蚀行为的研究[J].中国腐蚀与防护学报, 2003, 23(5): 295-298.
    [30]于凯,许淳淳.钼酸钠对铁质文物的缓蚀作用研究[J].北京化工大学学报, 2004, 31(4): 41-44.
    [31] Qun-Jie X., Guo-Ding Z., Zhu L. Sers study of corrosion inhibition of btah and its derivative on copper electrode in sulphuric acid solution[J]. Journal of Chinese Society for Corrosion and Protection, 2001, 21(3): 172-176.
    [32] Cruz J., Pandiyan T., Garc?a-Ochoa E. A new inhibitor for mild carbon steel: Electrochemical and DFT studies[J]. J. Electroanal. Chem., 2005, 583(1): 8-16.
    [33] Vosta J., Eliasek J. Study on corrosion inhibition from aspect of quantum chemistry[J]. Corros Sci, 1971, 11(4): 223-229.
    [34] Gómez B., Likhanova N. V., Domínguez Aguilar M. A. Theoretical Study of a New Group of Corrosion Inhibitors [J]. J. Phys. Chem. A., 2005, 109(39): 8950 -8957.
    [35] Ramachandran S., Tsai B.-L., Blanco M. Atomistic Simulations of Oleic Imidazolines Bound to Ferric Clusters[J]. J. Phys. Chem. A., 1997, 101(1): 83-88.
    [36] Lawrence T. S., Jr., Wei Y., Jansen S. A. Corrosion inhibition by aniline oligomers through charge transfer: a DFT approach [J]. Synthetic Metals, 2004, 143(1): 1-12.
    [37] Ramachandran S., Jovancicevic V. Molecular Modeling of the Inhibition of Mild Steel Carbon Dioxide Corrosion by Imidazolines[J]. Corrosion, 1999, 55(3): 259-267.
    [38] Kornherr A. Molecular dynamics simulations of the adsorption of industrial relevant silane molecules at a zinc oxide surface[J]. J. Chem. Phys., 2003, 119(18): 9719-9728.
    [39] Bartley J., Huynh N., Bcttle S. E. Computer simulation of the corrosion inhibition of copper in acidic solution by alkyl esters of 5-carboxybenzotriazole[J]. Corrosion Science, 2003, 45(10): 81-93.
    [40] Duda Y., Govea-Rueda R., Galicia M. Corrosion inhibitors: design, performance, and computer simulations [J]. J. Phys. Chem. B., 2005, 109(47): 22674-22684.
    [41] Fitzwater. Computer simulation of polyelectrolyte adsorption on mineral surfaces. Washington, DC ACS, 1995.
    [42] Duffy a D. M., Moona C., Rodger P. M. Computer-assisted design of oil additives: hydrate and wax inhibitors [J]. Molecular Physics, 2004, 102(2): 203-210.
    [43] Edwards A., Osborne C., Webster S. Mechanistic studies of the corrosion inhibitor oleic imidazoline[J]. Corrosion Science, 1994, 36(2): 315-319.
    [44] McMahon A. J., Donaldson C. C., Stweart R. F. characterisation of structure in suspensions[J]. Colloids Surfaces, 1986, 42(3): 373-393.
    [45] Joseph M., Hodge J., Klenerman D. Studies of the adsorption of a corrosion inhibitor onto mild steel using surface second-harmonic generation[J]. Faraday Discuss, 1992, 94(10): 273-281.
    [46] Joseph M., Klenerman D. A second-harmonic generation study of a corrosion inhibitor on a mild steel electrode [J]. Electroanalytical Chemistry, 1992, 340(1-2): 301-313.
    [47] Maechling C. R., Kliner D. A. V., Klenerman D. Sum Frequency Spectra in the C-H Stretch Region of Adsorbates on Iron [J]. Applied Spectroscopy, 1992, 47(2): 167-172.
    [48] Pebre N., Duprat M., Dabosi F. Corrosion inhibition study of a carbon steel in acidic media containing hydrogen sulphide and organic surfactants [J]. Applied Electrochemistry, 1988, 18(2): 225-231.
    [49] Ramachandran S., Tsai B. L., Blanco M. Self-Assembled Monolayer Mechanism for Corrosion Inhibition of Iron by Imidazolines[J]. Langmuir, 1996, 12(26): 6419-6428.
    [50]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社, 2007:1-48.
    [51] Raabe D.计算材料学[M].项金钟译.北京:化学工业出版社, 2002:68-79.
    [52]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社, 2002: 18-21.
    [53]林梦海.量子化学计算方法与应用[M].北京:科学出版社, 2004: 1-5.
    [54]杨小震.分子模拟与高分子材料[M].北京:科学出版社, 2002: 38-45.
    [55] Frenkel, Smit.分子模拟—从算法到应用[M].汪文川.北京:化学工业出版社, 2002: 51-65.
    [56] Thomas L. H. The calculation of atomic fields[J]. Proc. Cambridge Philos. Soc., 1927, 23(6): 542-548.
    [57] Hohenberg P., Kohn W. Inhomogeneous electron gas[J]. Phys. Rev., 1964, 136(9): 864-871.
    [58] Kohn W., Sham L. J. Self-consistent equations including exchange and correlationeffects [J]. Phys. Rev., 1965, 140(15): 1133-1138.
    [59] Becke A. D. A new mixing of Hartree-Fock and local density-functional theories[J]. J. Chem. Phys., 1993, 98(2): 1372-1377.
    [60] Becke A. D. Simulation of delocalized exchange by local density functionals [J]. J. Chem. Phys., 2000, 112(9): 4020-4026.
    [61] Alder B. J., Wainwright T. E. Phase Transition for a Hard Sphere System[J]. J. Chem. Phys., 1957, 27(5): 1208-1209.
    [62] Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[J]. Physical Review, 1967, 159(1): 98-103.
    [63] Szklarska-smialowska Z., Kaminski M. Effect of various substituents in thiophene on the inhibitor efficiency[J]. Corrosion Science, 1973, 13(1): 1-10.
    [64] Donahue F. M., Nobe K. Theory of organic corrosion inhibitors—adsorption and linear free energy relationships [J]. J. Electrochem. Soc., 1965, 112(9): 886-891.
    [65] Dupin P., De Savignac A., Lattes A. Free and Wilson correlation between the molecular structure of some imidazolines and their corrosion inhibiting properties[J]. Materials and Corrosion/Werkstoffe und Korrosion, 1982, 33(4): 203-206.
    [66] Aramaki K., Mochizuki J., Nishihara H. Effect of chloride ion on the relationship between the absorption of polar organic compounds on nickel or iron and the HSAB principle [J]. J. Electrochem. Soc., 1988, 135(1): 2427-2432.
    [67] Cruz J., Martínez-Aguilera L. M. R., Salcedo R., et al. Reactivity properties of derivatives of 2-imidazoline: an ab initio DFT study[J]. International Journal of Quantum Chemistry, 2001, 85(4-5): 546-556.
    [68] Rodriguez-Valdez L. M., Martinez-Villafane A., Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties[J]. Journal of Molecular Structure: THEOCHEM, 2005, 713(1-3): 65-70.
    [69] Lashkari M., Arshadi M. R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects[J]. Chemical Physics, 2004, 299(1): 131-137.
    [70]卑凤利,陈海群,杨绪杰等.苯并咪唑衍生物的合成、晶体结构及量子化学计算[J].有机化学, 2004, 24(03): 300-305.
    [71] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gaussian 03, Revision B.03. Pittsburgh, PA: Gaussian Inc. 2003.
    [72] Martin J. A., Valone F. W. The existence of imidazoline corrosion inhibitors[J]. Corrosion, 1985, 41(5): 281-287.
    [73] Bereket G., Hur E., Ogretir C. Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium[J]. Journal of Molecular Structure: THEOCHEM, 2002, 578(1-3): 79-88.
    [74] Parr R. G., Donnelly R. A., Levy M., et al. Electronegativity:The density functional viewpoint[J]. J. Chem. Phys., 1978, 68(8): 3801-3807.
    [75] Parr G. P., Weitao Y. Density functional approach to the frontier-electron theory of chemical reactivity[J]. J. Am. Chem. Soc., 1984, 106(14): 4049-4050.
    [76] Yang W., Parr R. G. Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(20): 6723-6726.
    [77] Parr R. G., Szentpaly L. V., Liu S. Electrophilicity Index[J]. J. Am. Chem. Soc., 1999, 121(9): 1922-1924.
    [78]徐群杰,万宗跃,印仁和. 3-氨基-1,2,4-三氮唑自组装膜对黄铜的缓蚀作用[J].物理化学学报, 2008, 24(1): 115-120.
    [79] Loepp G., Vollmer S., Witte G. Adsorption of Heptanethiol on Cu(110)[J]. Langmuir, 1999, 15(11): 3767-3772.
    [80] Haneda R., Aramaki K. Protective Films on Copper by Multistep Modification of an Alkanethiol Monolayer with Chlorosilanes and Alkanediol[J]. Journal of The Electrochemical Society, 1998, 145(8): 2786-2791.
    [81] Cheng L., Bocarsly A. B., Bernasek S. L. Coadsorption of Ethanethiol with Sulfur, Oxygen, and Water on the Fe(100) Surface[J]. Langmuir, 1996, 12(2): 392-401.
    [82] Kong D. S., Chen S. H., Wan L. J. The Preparation and in Situ Scanning Tunneling Microscopy Study of Fe(110) Surface[J]. Langmuir, 2003, 19(6): 1954-1957.
    [83] Kong D. S., Yuan S. L., Sun Y. X., et al. Self-assembled monolayer of o-aminothiophenol on Fe(110) surface: a combined study by electrochemistry, in situSTM, and molecular simulations[J]. Surface Science, 2004, 573(2): 272-283.
    [84] Liu X., Chen S., Zhai H. The study of self-assembled films of triazole on iron electrodes using electrochemical methods, XPS, SEM and molecular simulation[J]. Electrochemistry Communications, 2007, 9(4): 813-819.
    [85] San-Miguel M. A., Rodger P. M. The effect of corrosion inhibitor films on deposition of wax to metal oxide surfaces[J]. Journal of Molecular Structure: THEOCHEM, 2000, 506(1-3): 263-272.
    [86] Davies D. H., Burstein G. T. The effects of bicarbonate on the corrosion and passivation of iron[J]. Corrosion 1980, 36(8): 416-422.
    [87] Linter B. R., Burstein G. T. Reactions of pipeline steels in carbon dioxide solutions[J]. Corrosion Science, 1999, 41(1): 117-139.
    [88]王矜奉.固体物理教程[M].山东:山东大学出版社, 2004: 13-14.
    [89]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社, 2005: 136-146.
    [90] Nayak S. K., Nooijen M., Bernasek S. L. Electronic Structure Study of CO Adsorption on the Fe(001) Surface[J]. J. Phys. Chem. B, 2001, 105(1): 164-172.
    [91] Ramachandran S., Jovancicevic V., Ward M. B. Understanding interactions between corrosion inhibitors and iron carbonate films using molecular modeling[J]. Houston: NACE International, 1999: 62.
    [92] Heermann D. W.理论物理学中的计算机模拟方法[M].秦克成译.北京:北京大学出版社, 1996: 7-56.
    [93] Materials Studio 4.0, Discover/Accelrys, San Diego, CA, U.S.A. 2005.
    [94] Allen M. P., Tildesley D. J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987: 85-97.
    [95] Maitland G. C., Rigby M., B. S. E. Intermolecular forces: Their origin and determination [M]. London: Oxford University Press, 1987: 78-89.
    [96] Fermeglia M., Pricl S. Multiscale modeling for polymer systems of industrial interest[J]. Progress in Organic Coatings, 2007, 58(2-3): 187-199.
    [97] Berendsen H. J. C., Postma J. P. M., Funsteren W. F. Molecular dynamics with coupling to an external bath[J]. J. Chem. Phys., 1984, 81(4): 3684-3690.
    [98]张曙光,陈瑜,王风云.苯并三氮唑及其羧酸酯衍生物对铜缓蚀机理的分子动力学模拟研究[J].化学学报, 2007, 65(20): 2235-2242.
    [99] Kornherr A., French S. A., Sokol A. A. Interaction of adsorbed organosilanes with polar zinc oxide surfaces: a molecular dynamics study comparing two models for the metal oxide surface[J]. Chem. Phys. Lett., 2004, 393(1-3): 107-111.
    [100] Zhang J. Q., Zhang Q. Y., Ren H. Inhibition performance of 2-mercaptobenzothiazole derivatives in CO2 saturated solution and its adsorption behavior at Fe surface[J]. Appl. Surf. Sci., 2007, 253(18): 7416-7422.
    [101] Du H., Miller J. D. A molecular dynamics simulation study of water structure and adsorption states at talc surfaces[J]. Int. J. Miner. Process, 2007, 84(1-4): 172-184.
    [102] Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications- Overview with Details on Alkane and Benzene Compounds[J]. J. Phys. Chem. B., 1998, 102(38): 7338-7364.
    [103]樊康旗,贾建援.经典分子动力学模拟的主要技术[J].微纳电子技术, 2005, 3(2): 133-138.
    [104] Andersen H. C. Molecular dynamics simulations at constant pressure and/ or temperature[J]. J. Chem. Phys., 1980, 72(4): 2384-2393.
    [105] Prathab B., Aminabhavi Tejraj M., Parthasarathi R. Molecular modeling and atomistic simulation strategies to determine surface properties of perfluorinated homopolymers and their random copolymers[J]. Polymer, 2006, 47(19): 6914-6924.
    [106]陈大钧.油气田应用化学[M].北京:石油工业出版社, 2006: 42-48.
    [107] Kornherr A., Tortschanoff A., Erwin P. C. Modelling of aqueous salvation of eosin Y at the rutile TiO2 (110)/ water interface[J]. Chem. Phys. Lett., 2006, 430(4-6): 375-379
    [108]张曙光,王风云,雷武.水溶性聚合物与硬石膏晶体相互作用的分子动力学模拟[J].化学学报, 2007, 65(20): 2249-2256.
    [109]范洪波.新型缓蚀剂的合成与应用[M].北京:化学工业出版社, 2004: 9-14.
    [110] Rodrigo S. N., Artur J. M., Rui P S. F. Modelling water adsorption on Au (210) surfaces:Ⅱ. Monte Carlo simulations[J]. J. Electroanalytical. Chem., 2008, 612(2): 179-185.
    [111] Tan Y. J., Bailey S., Kinsella B. An investigation of the formation and destruction ofcorrosion inhibitor films using electrochemical impedance spectroscopy (EIS)[J]. Corros. Sci., 1996, 3(8): 1545-1561.
    [112] Stupni?ek-Lisac E., Brnada A., Mance A. D. Secondary amines as copper corrosion inhibitors in acid media[J]. Corros. Sci., 2000, 42(2): 243-257.
    [113] Buschhorn D., Pink M., Fan H. Nitrogen-ligated iron complexes: photolytic approach to the FeN+ moiety[J]. Inorg. Chem., 2008, 47(12): 5129-5135.
    [114] Banas J., Lelek-Borkowska U., Mazurkiewicz B. Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water[J]. Electrochimica Acta, 2007, 52(18): 5704-5714.
    [115] Zhi Y. J., Yu C., Zhu Ai Mei. Analyzing diffusion behaviors of methanol/water through MFI membranes by molecular simulation[J]. Journal of Membrane Science, 2008, 318(2): 327-333.
    [116] Zhou J. H., Zhu R. X., Zhou J. M. Molecular dynamics simulation of diffusion of gases in pure and silica-filled poly(1-trimethylsilyl-1-propyne)[PTMSP][J]. Polymer, 2006, 47(14): 5206-5212.
    [117] Charati S. G., Stern S. A. Diffusion of gases in silicone polymers:Molecular Dynamics Simulation[J]. Macromolecules, 1998, 31(2): 5529-5535.
    [118] Andrea T. A., Swope W. C., Andersen H. C. The role of long ranged forces in determining the structure and properties of liquid water[J]. J. Chem. Phys., 1983, 79(4): 4576-4584.
    [119] Lin Y. C., Chen X. Investigation of moisture diffusion in epoxy system:Experiments and molecular dynamics simulations[J]. Chemical Physics Letters, 2005, 412(4): 322-326.
    [120] Johnson P. A., BABB A. L. Liquid Diffusion of Non-Electrolytes. Department of Chemical Engineering. Washington: University of Washington, 1956.
    [121] Choi K., Jo W. H. Effect of chain ?exibility on selectivity in the gas separation process: Molecular dynamics simulation[J]. Macromolecules, 1995, 28(4): 8598-8603.
    [122] Tung K. L., Lu K. T. Effect of tacticity of PMMA on gas transport through membranes: MD and MC simulation studies[J]. Journal of Membrane Science, 2006, 272(1-2): 37-49.
    [123] Yang H., Liu Y., Zhang H., et al. Diffusion of single alkane molecule in carbon nanotube studied by molecular dynamics simulation[J]. Polymer, 2006, 47(21): 7607-7610.
    [124] Xu W. Advanced Chemical Engineering Thermodynamics[M]. Tian Jin: Tianjin University Press, 2004.
    [125] Lehmann A., Konig G., Rieder K.-H. Water Absorption on Perfect CaF2(111) Studied with He Scattering: Experimental Evidence for Ordering of Nanoclusters[J]. Physical Review Letters, 1994, 73(23): 3725-3128.
    [126]陈正隆.分子模拟[M].东营:石油大学出版社, 2000: 15-18.
    [127] Bernard M. C., Duval S., Joiret S. Analysis of corrosion products beneath an epoxy-amine varnish film[J]. Progress in Organic Coatings, 2002, 45(4): 399-404.
    [128] Hansen M. Hansen solubility parameters a user's handbook(Second Edition)[M]. London:CRC Press, 2007: 67-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700