舱外航天服关节力学特性测试机器人系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天服是载人航天必不可少的防护装备,是航天员个人生命保障系统中最重要的分系统。随着载人航天的深入,我国航天员将实现舱外行走。舱外航天服既要为航天员提供基本的生命保障,还应具有高的活动性能,尤其是上肢的活动性能,是航天员能够有效地完成各种舱外作业的保证。目前我国舱外服的设计加工工作已基本完成,为了能够检验和评价自行研制的舱外航天服,迫切需要航天服性能检测系统。本文结合国家“载人航天”工程项目“舱外航天服关节力学测试系统”的研制,提出新的航天服关节力学特性测量方法,研究和发展基于新的测量方法的理论体系,搭建测试系统平台,通过具体实践检验理论体系的正确性和可行性。
     舱外航天服关节力学特性的测量包括航天服手臂关节力学特性测量和航天服手套关节的力学特性测量。舱外航天服手臂关节力学特性测量装置是利用现有的舱内航天服手臂关节力矩测试装置,在保持其机械和电路部分不变,解决舱外航天服手臂的运动学和静力学算法问题,并对软件部分进行扩展,使其同时具备对舱外航天服手臂的测试能力。本文还提出基于机器人理论的舱外航天服手套关节力学特性测量方法,并针对这一测量方法,研制了外骨骼三指测量机器人测试系统。
     研制的新型外骨骼手指利用平行四边形连杆机构使手指关节在旋转的同时能够伸长,可实现对手套的包络运动避免了干涉情况。单手指关节之间利用齿轮-连杆组合机构实现运动的耦合,减少了系统自由度,降低了设计的复杂性和成本,减轻了系统的重量。外骨骼手指的多连杆系统对其运动学研究带来困难,利用其运动特点,通过建立虚拟手指,很好的解决了正运动学问题。
     外骨骼三指测量机器人集机构、驱动、传感、控制为一体,基于FPGA的从控制器,不仅实现各手指传感器信息的采集、电机的驱动还完成与主控制器间的点对点高速串行通讯高速通讯。作为主控制器DSP/FPGA控制卡完成手指的轨迹规划和控制算法,机器人的这种分级控制结构满足实时控制和力学特性测量精度的要求。
     本文提出了基于扰动观测器(DOB)和鲁棒反馈控制器的双回路控制策略。DOB作为内环补偿器,通过估计系统的干扰来减小其对系统造成的不良影响;在外骨手指动力学研究基础上,对系统模型进行了线性化处理和不确定分析,并基于结构奇异值理论设计了外环反馈控制器,对系统的不确定性仍可实现系统性能要求。这种控制策略不但可以保证系统的鲁棒性能,而且可以克服外界的强干扰,对于系统动力学的不确定都具有很好的鲁棒性。
     本文分别建立了舱外航天服手套和手臂的数学模型并对逆运动学算法进行了研究。针对舱外航天服手臂的特殊软关节结构和多自由度的特点,提出基于最近邻的快速逆运动学解法,能够保证在任何测量位置都会得到航天服关节角度的近似解。提出的空间分块二步搜索策略解决了基于最近邻方法求解舱外航天服手臂逆运动学,内存占用量大和效率低的缺点。仿真结果表明基于最近邻的快速逆运动学解法在计算精度和实时性上均能满足测试系统的要求。
     本文最后在实际的测试系统平台上进行舱外航天服手套和手臂关节力学特性测试实验,并对航天服手臂的测量提出了卡具重力补偿和关节重力补偿,提高了测量的精度。实验结果证明舱外航天服手套和手臂力学特性测试系统完全能够满足航天服上肢关节力学特性测量的要求。
Spacesuit is the necessary protective equipment of manned spaceflight. It is the most important component of life security system of astronaut. With the development of manned spaceflight, astronaut will make astronauts’extravehicular walking possible in the near future in my country. EVA spacesuit provides not only life security system for astronaut but also excellent movability performance, especially the movability performance of upper limbs can ensure astronauts to complete EVA tasks smoothly. Currently, the EVA spacesuit’s design and processing has almost been completed. A spacesuit measuring system is required to verify and evaluate our own spacesuits. This dissertation comes from the design and manufacture of measuring system for spacesuit joint’s damping parameters, which is applied in National Manned Spaceflight Project. A novel method of measuring spacesuit joints’damping parameters has been put forward. A theoretical system based on this method has been developed. The test has been built. Experiments prove that the correctness and validity of the measuring principle have been done.
     The test of EVA spacesuit’joint damping parameters include EVA spacesuit arm and EVA spacesuit glove. The testing device of EVA spacesuit arm joint damping parameters is the same as IVA spacesuit joint torque testing device. Keeping the original mechanical devices and hardware unchanged, this project will mainly focus on solving the kinematics and dynamic algorithm problem of EVA spacesuit arm and meanwhile extending the software making it qualified both in testing EVA and IVA spacesuit arms. Based on the theory of robotics a novel measuring method for EVA spacesuit glove has been put forward. Based on the novel measuring method, a three fingers exoskeleton robot system has been developed.
     A new type of exoskeleton manipulator based on planar four-bar parallelogram mechanism was developed. This kind of manipulator joint could rotate about a fixed center that can avoid disturbance between exoskeleton fingers and glove. The relative motion of finger different joint is coupled through gear-linkages. This design can reduce DOF and complexity of finger system. It is difficult to calculate kinematics for mlti-linkages system. Rely on manipulator special motion character a kinematics model of the manipulator is given through built a virtual finger.
     The mechanical components, drive components, sensor components and control components are integrated in one exoskeleton finger. The slave controller (FPGA) not only realizes all sensors information acquisition, motor drive, but also realizes the high-speed point to point communication with master controller. The DSP/FPGA control card as master controller realizes control algorithm and trajectory planning. The distributing control strategies of robot satisfy real time control and the requirements of glove measuring.
     Based on disturbance observer (DOB) and robust feedback controller, a new two-loop control strategy is proposed. In the inner-loop, DOB is designed to compensate effect of disturbance. Depend on the dynamic of exoskeleton finger the proper linear plant mathematical model is built that load dynamics are represented by a feedback uncertainty model, and system uncertainties are analyzed. Based on structure singular value theory outer-loop feedback controller is designed, for system uncertainties which ensure system performance. Applied two-loop control strategy, the system can restrain big disturbance and has robust performance and robust stability for model uncertainties.
     The models of EVA spacesuit arm and glove have been built and kinematics algorithm has been developed. Based on EVA spacesuit arm special flexible joint structure, a new and high efficiency inverse kinematics algorithm, nearest neighbor algorithm is presented. It can obtain approximate spacesuit joint angle on anyone measuring position. Presented spatial sphere two steps searching method solve the defects of large memory and low searching efficiency. The emulator results from the SGI work station verify that the new algorithm can meet the testing system’s need very well in calculation precision and real-time capability.
     Measuring experiments of spacesuit joint damping parameters have been done on the actual platform. For improving EVA spacesuit arm joint measure precision, the compensation of chuck weight and joint gravity is used. Experimental results proved that the theoretical system is correct and available, and the measuring system have high preciseness.
引文
1 Carr C E, Schwartz S J. A wearable computer for support of astronaut extravehicular activity. Wearable Computers. 2002: 23-30
    2 Wheelwright C D, Toole J R. Spacecraft lighting systems. Industry Applications Society Annual Meeting. 1992, 2:1840-1845.
    3周前详.舱外航天服的工效学问题及其研究方法.上海航天. 2005,3:47-51.
    4贾司光,陈景山.航天服工效学问题.航天医学与医学工程, 1999,12(5):371-375.
    5 H.C.Vykukal, B.Webbon. Pressure Suit Joint Analyzer. NASA Case. 1980,1(7):2-5.
    6李谭秋.国外中长期载人航天医学工程关键技术信息研究专题资料第一集出舱航天服及其系统.航天医学工程研究所, 2001: 323~325.
    7陈景山.航天员系统和生命保障系统专题研究资料第十二集国外航天服的研制与发展.航天医学工程研究所, 2000:33~42.
    8 D. J. Newman, P. B. Schmidt, D. Rahn, N. Badler, and D. Metaxas. Modeling the Extravehicular Mobility Unit (EMU) Space Suit: Physiological Implications for Extravehicular Activity (EVA). SAE Technical Paper. 30th International Conference on Environmental Systems Toulouse, France. 2000:1~9.
    9 Reinhardt. Results and Applications of a Space Suit Range-of-Motion Study. 19th Intersociety Conference on Environmental Systems, San Diego, CA.1989:1~13.
    10 F. Pardue, A. K. Pandya, J. Maida. Creation of the Advanced Extravehicular Mobility Unit (EMU) Computer Graphics Model. GRAF Facility, Lyndon B. Johnson Space Center, Houston, TX. 1996:1~8.
    11 L. R. Price, M. A. Fruhwirth, J. G.. Knutson. Computer Aided Design andGraphics Techniques for EVA Analysis. 24th International Conference on Environmental Systems and 5th European Symposium on Space Environmental Control Systems, Friedrichshafen, Germany. 1994:121~127.
    12 S. Dionne. AX-5, Mk III, and Shuttle Space Suit Comparison Test Summary. 91-SAE/SD-004, NASA Ames Research Center, Moffett Field, CA. 1991:8~14.
    13 D. A. Morgan, R. P. Wilmington, A. K. Pandya. Comparison of Extravehicular Mobility Unit (EMU) Suited and Unsuited Isolated Joint Strength Measurements. Technical Paper 3613, Lyndon B. Johnson Space Center, Houston, TX.1996:1~12.
    14 P. R. West, S. Trausch, C. Stelly. Space Suit Component Unmanned Torque and Range Measurement Test Plan. CTSD-SS-329, Lyndon B. Johnson Space Center. 1989:1~8.
    15 D. J. Newman, G. Schaffner. Computational Dynamic Analysis of Extravehicular Activity: Large Mass Handling, AIAA Journal of Spacecraft and Rockets, 1998, 35(2):225~227.
    16 V. Menendez, X. Labourdett, J. M. Baez. Performance of EVA Suit Mobility Joints: Influence of Driving Parameters. 23rd International Conference on Environmental Systems, Colorado Springs, CO. 1989:110~118.
    17赵京东.航天服柔性关节的建模及其阻尼力矩测量.哈尔滨工业大学硕士学位论文. 2002.6:20~35.
    18王昊.基于随动式机器人的航天服关节力学特性测试系统研究.哈尔滨工业大学博士学位论文2004.4. :10~50.
    19杜立彬.航天服关节阻尼力矩的机器人测试系统.航天医学与医学工程. 2003, (3):187~192.
    20王昊.航天服关节力学测试系统的测量原理与实验分析.航天医学与医学工程. 2003, (5):349~353.
    21王昊.航天服手臂运动学建模及其关节力学特性的测试.机器人. 2004, (3):212~217.
    22赵京东.基于测量机器人的三自由度航天服柔性关节阻尼力矩特性的测量方法研究.机器人(增刊). 2002,24(7):753~755.
    23 H. Wang, X. H. Gao, M. H. Jin, et al.“A Passive Robot System for Measuring Spacesuit Joint Damping Parameters”, IEEE International Conference on Robotics & Automation, 2003.9:3249~3253.
    24 Grant Ryan Lee. Development of a Mechanical Test Apparatus for Spacesuit Gloves. A Dissertation for the Degree of Master. Maryland :Space systems laboratory of university of Maryland, 2001:1~45.
    25 S. C. Jacobsen, E.K. Iversen, D. F. Knutti, et al. Design of the Utah/MIT Dexterous Hand, Proc. IEEE Int. Con. Robotics and Automation, IEEE, pp.1520-1532, 1986.
    26 Matthew DiCicco. Comparison of Control Strategies for an EMG Controlled Orthotic Exoskeleton for the Hand. Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, pp.1110-1115, 2004.
    27 G D Kesslen, L F Hodges, N Walker. Evaluation of the CyberGlove as a Whole-hand Input Device. ACM Transactions on Computer-Human Interaction. 1995, 3:276~282.
    28 T Koyama, I Yamano, K Takemura, et al. Multi-Fingered Exoskeleton Haptic Device Using Passive Force Feedback for Dexterous Teleoperation. Proceedings of the 2002 IEEE/RSJ. Conference on Intelligent Robots and Systems. Lausanne, Switzerland. 2002:2905~2910.
    29 A Frisoli, F Simoncini, M Bergamasco. Mechanical Design of a Haptic Interface for the Hand. ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference. Montreal, Canada. 2002: 1~8.
    30 S Nakagawara, H Kajimoto, N Kawakami, et al. An Encounter-Type Multi-fingered Master Hand Using Circuitous Joints. Proceedings of the 2005IEEE International Conference on Robotics and Automation. Barcelona,Spain. 2005: 2667~2672.
    31徐元昌.工业机器人.北京:中国轻工业出版社. 1998: 9~11.
    32梅志千.机电伺服系统中的补偿技术研究.上海交通大学博士学位论文2003,5:55~84.
    33 K Ohnishi. A New Servo Method in Mechatronic. Transactions of Japanese Society of Electrical Engineers. 1987, 107: 83~86.
    34 T Umeno, Y Hori. Robust Speed Control of DC Servomotors Using Modern Two Degree-of-freedom Controller Design. IEEE Transaction on Industrial Electronics. 1991, 38(5): 363~368.
    35 S Kawaji, Y Suenaga, T Maeda et al. Control of Cutting Torque in the Drilling Process Using Disturbance Observer. In Proc.of ACC. Seattle, WA. 1995, 1: 723~728
    36 R Bickel, M Tomizuka. Disturbance Observer Based Hybrid Impedance Control. In Proc. of ACC. Seattle, WA. 1995, 1: 729~733
    37 J Profeta, W Vogt, M Mickle. Disturbance Estimation and Compensation in Linear Systems. IEEE Transaction on Aerospace Electronics. 2002, 26(2): 225~231
    38 H Coelingh, E Schrijver, T D Vries et al. Design of Disturbance Observers for the Compensation of Low-Frequency Disturbances. Proc. of Int. Conf. Motion and Vibration Control. Sydney. 2000: 75~80.
    39 K Fujiyama, R Katayama, T Hamaguchi et al. Digital Controller Design for Recodable Optical Disk Player Using Disturbance Observer. In Proc. Adv. Mot. Contr. 2000: 141~146.
    40 M T White, M Tomizuka, C Smith. Improved Track Follwing in Magnetic Disk Drives Using a Disturbance Observer. IEEE/ASME Trans. Mechatron. 2000, 5(1): 3~11.
    41 B K Kim, W K Chung. Advanced Disturbance Observer Design for Mechanical Positioning Systems. IEEE Trans. Ind. Electron. 2003, 30(6): 1207~1216.
    42 Tesfaye, H S Lee, M Tomizuka. A Sensitivity Optimization Approach to Design of a Disturbance Observer in Digital Motion Control Systems. IEEE/ASME Trans. On Mechatronics. 2000,5(1): 32~38.
    43 K Ohnishi. Microprocessor-Controlled DC Motor for Load Insensitive Position Systems. IEEE Trans. Ind. Electron. 1987, 34: 44~49
    44 H S Lee, M Tomizuka. Robust Motion Controller Design for High-Accuracy Positioning Systems. IEEE Trans on Industrial Electronics. 1996, 43(1): 48~55.
    45 T Umeno, T Kaneko, Y Hori. Robust Servo System Design with Two Degree of Freedom and Its Application to Novel Motion Control of Robot Manipulators. IEEE Trans. Ind. Electron. 1993, 40: 473~485.
    46 K Yamada, S Komada, M Ishida et al. Analysis and Classical Control Design of Servo System Using High Order Disturbance Observer. In Proc. IEEE Int Conf. Industrial Electronics Control and Instrumentation. 1997: 4~9.
    47 J R Ryoo, T Y Doh, M J Chung. A QFT Design of Disturbance Observer for thr Track-Following Control System of an Optical Disk Drive. AMC2002, Slovenia. 2002: 209~214.
    48王英,熊振华,丁汉.直线电机运动控制中的干扰观测器研究.中国机械工程.2004, 15(7): 1549~1522.
    49 R Bickel, M Tomizuka. Passivity-Based Versus Disturbance Observer Based Robot Control: Equivalence and Stability. ASME Journal of Dynamic Systems. Messurement and Control. 2001, 121: 41~47.
    50 C J Kempf, S Kobayashi. Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table. IEEE Trans. Contr. Syst. Technol. 1999,7: 513~526.
    51 J R Ryoo, K B Jin, J H Moon et al. Track-Following Control Using a Disturbance Observer with Asymptotic Disturbance Rejection in High-Speed Optical Disk Drives. IEEE Transaction on Consumer Electronics. 2003, 49(4): 1178~1185.
    52 Y Choi, K Yang, W K Chung et al. On the Robustness and Performance of Disturbance Observer for Second-Order Systems. IEEE Transactions on Automatic Control. 2003, 48(2): 315-320
    53 J Hahn. Nonlinear Vehicle Stability Control Using Disturbance Observer. Proc. of the 2002 IEEE International Conf. On Control Applications. Glasgow. 2002: 441~446
    54 S Park, B K Kim, and Y Youm. Single Mode Vibration Suppression for a Beam-Mass-Cart System Using Input Preshaping With a Robust Internal Loop Compensator. Journal Sound Vibration. 2001, 241(4): 693~716.
    55 M Green, D J Limber. Linear Robust Control. Englewood Cliffs, NJ: Prentice-Hall, 1995.
    56代颖.不确定机器人鲁棒自适应控制方法研究.西安交通大学博士论文. 1997,4:31~62
    57 C Abdallah, D M Dawson, P Dorato, et al. Survey of Robust Control for Rigid Robots. IEEE Control Systems. 1991, 11(2): 24~30.
    58施颂椒,代颖,谢明江,等.机器人鲁棒控制研究进展.机器人. 2000, 22(1): 73~79.
    59 Z Man, M Palaniswami. Robust Tracking Control for Rigid Robot Manipulators. IEEE Trans. On Automatic Control. 1994, 39(1): 154~159
    60 M W Spong, M Vidyasagar. Robust Linear Compensator Design for Nonlinear Robotic Control. IEEE Trans. on Robotic and Automation. 1987, 3(8): 345~351
    61 K Yong. Controller Design for a Manipulator Using Theory of Variable Structure Systems. IEEE Trans. on System, Man and Cybernetics. 1978, 8(2):210~228.
    62 W Son, J Choi, O Kwon. Robust Control of Feedback Linearizable System with the Parameter Uncertainty and Input Constrain. Proceedings of the 40th SICE International Conference. 2001: 407~411.
    63 F J Chang, S H Twu, S Chang. Adaptive Chattering Alleviation of VariableStructrue Systems Control. IEE Proceeding D. 1990, 137(1): 31~39.
    64 K K Shyu. A Modified Variable Structure Controller. Automatica. 1992, 28(6):1209~1213.
    65 Zames G. Feedback and Optimal Sensitivity: Model Reference, Transformations, Multi-plicative Seminorms, and Approximate Inverses. IEEE Transaction Automatic Control. 1981, 26(4): 301~320.
    66 M M Moghaddam, A A Goldenberg. Robustness and Performance Tradeoffs in Torque Control of Robots with Harmonic Drive Transmission. Proceedings of 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico. 1997: 2365~2370
    67 Doyle J C. Analysis of Feedback Systems with Structured Uncertainties. IEEE Proceedings. Part D. 1982, 129(6)242~250.
    68 Doyle J C. Structured Uncertainty in Control System Design. IEEE Conf. on Decision and Control. 1985(24):260~265.
    69 Zhou K, Dolye J C, Glover K.鲁棒与最优控制(毛剑琴,钟宜生,林岩等译).北京:国防工业出版社, 2002:110~240.
    70 X Qian, Y Wang, M L Ni. Robust Position Control of Linear Brushless DC Motor Drive System Based onμ-synthesis. IEE Proc. Electr. Power. 2005, 152(2): 341~351
    71 J D Wu, Jia-Hong Lin. Implementation of an active Vibration Controller for Gear-set Shaft Usingμ-analysis. Journal of Sound and Vibration. 2005, 281:1037~1055.
    72 R Castellanos, A R Messina, H Sarmiento. Robust Stability Analysis of Large Power Systems Using the Structured Singular Vale Theory. Electrical Power and Energy Systems. 2005, 27: 389~397.
    73 Kiyanoosh Razzaghi, Farhad Shahraki. Robust Control of an Ill-conditioned Plant usingμ-synthesis: A Case Study for High-purity Distillation. Chemical Engineering Science. 2007, 62: 1543~1547.
    74 S Lignon, J J Sinou, L Jezequel. Stability Analysis andμ-synthesis Controlof Brake Systems. Journal of Sound and Vibration. 2006, 298:1073~1087.
    75 Z B Kang, T Y Chai, K Oshima, et al. Robust Vibration Control for SCARA-Type Robot Manipulators. Control Eng. Practice. 1997, 5(7): 907~917.
    76 Mansour Karkoub, Kumar Tamma. Modelling andμ-synthesis Control of Flexible manipulators. Computers and Structures. 2001, 79: 543~551
    77 Satinder Pannu, Greg Becker, H Kazerooni. Stability of a One Legged Robot Usingμ-synthesis. IEEE International Conference on Robotics and Automation. 1995: 685~690
    78赵慧,张辉,张尚盈,等.μ理论在柔顺力控制中的应用.机械工程学报. 2007, 43(12): 97~102
    79 Figliolini G, Ceccarelli M. A novel articulated mechanism mimicking the motion of index. Robotica. 2002,20:13~22.
    80 J.W. Lee, K. Rim. Maximum finger force prediction using a planar simulation of the middle finger. Proceedings of Instrumentation Mechanical Engineering. 1990,204:160~178.
    81杨磊.基于指尖力传感器的机器人灵巧手阻抗控制[D].哈尔滨工业大学博士学位论文. 2004,6:11~40.
    82 Analog Devices Incorporated. +2.7 V to +5.25 V, Micropower, 8-Channel, 125 kSPS, 12-Bit ADC in 16-Lead TSSOP. REV.0. 1999:1~16.
    83付旭东,徐冰,薛必春,颜闽秀.电动机转速的数字检测.控制工程. 2003,10(2):186~189.
    84 Eduardo Galvan, Antonio Torralba. ASIC implementation of a digital tachometer with high precision in a wide speed range. IEEE Transactions on Industrial Electronics. 1996, 43(6):655~661.
    85许大中,贺益康.电机控制.浙江大学出版社, 2002:8~24.
    86陈维山,赵杰.机电系统计算机控制.哈尔滨工业大学出版社, 1999:248~260.
    87张健. LVDS技术原理和设计简介.电子技术应用. 1999,(6):30~33.
    88 Manocha D, Canny J F. Efficient Inverse Kinematics for General 6r Manipulator. IEEE Trans. On Robotics and Automation. 1994,10(5):648~657.
    89 Lee G C S. Robot Arm Kinematics, Dynamics and Control. Computer. 1982,15 (12):62~79.
    90 Featherstone R. Position and Velocity Transformation between Robot End-effector Coordinate and Jointangle. The International Journal of Robotics Research,1983,2(2):35~45.
    91 Korein J U, Balder N I.“Techniques for Generating the Goal-Directed Motion of Articulated Structures”. IEEE Computer Graphics and Application,1982,2(9):71~81.
    92 Yang Y, Liu X. A re-wxamination of text categorization methods. Proceeding of 22nd Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, Berkeley, 1999
    93 Cover TM, Hart PE. Nearst neighbor pattern classification. IEEE Transactions on Information Theory. 1968,13:21~27.
    94熊邦书,何明一,俞华璟.三维散落数据的K个最近邻域快速搜索算法.计算机辅助设计与图形学学报. 2004,16(7):909~911.
    95 Goodsell GE. On finding p-th nearest neighbors of scattered points in two dimensions for small p. Computer Aided Geometric Design. 2000,17(4):387-392.
    96 Dickerson MT, Drysdale RLS, Sack JR.Simple algorithms for enumerating interpoint distances and finding k nearest neighbors. International Journal of Computational Geometry and Applications. 1992,2(3):221~239.
    97卫炜,张丽艳,周来水.一种快速搜索海量数据集K-近邻空间球算法.航空学报. 2006,27(5):944~948.
    98 Zhou Rurong,Zhang Liyan, Su Xu,et al.Algorithmic research on surface reconstruction from dense scattered points. Journal on Software. 2001,12(2):249~255.
    99 Piegl LA, Tiller W. Algorithm for finding all k nearest neighbors. Computer Aided Design. 2002, 34(2): 167~172.
    100 C.Kempf, S.Kobayashi. Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table. IEEE Transactions on Control Systems Technology. 1996,7(5):3~10
    101 M.Iwasaki, T.Shibata, N.Matsui. Disturbance-Observer-Based Nonlinear Friction Compensation in Table Drive System. IEEE/ASME Transactions on Mechatronics. 1999,4(1):65~68
    102 B.Yao.Adaptive Robust Control of Nonlinear Systems with Application to Control of Mechanical Systems. PH.D.Dissertation. 1996:30~71.
    103 B.Choi, C.Choi, H.Lim. Model Based Disturbance Attenuation for CNC Matchining Centers in Cutting Process. IEEE/ASME Transactions on Mechatronics. 1999,4(2):3~93
    104 Y.Fujimoto, A.Kawamura. Robust Servo-system Based on Two-degree-of-freedom Control with Sliding Mode. IEEE Trans.on Industrial Electronics. 1995,42(3):272~280
    105 A.Kawamura, H. Itoh, K.Sakamoto. Chattering Reduction of Disturbance Observer Based Sliding Mode Control. IEEE Transactions on Industry Applications. 1999,30(2):11~16.
    106 S.Kwon, W.Chung, Y.Youm. Robust and Time-Optimal Control Strategy for Coarse/Fine Dual-Stage Manipulators. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. Leuven, Belgium. 2000:2075~2080
    107 C.Liu, H.Peng. Disturbance Observer Based Tracking Control. Transactions of ASME. 2000,20(5):547~560
    108 F.Lin, C.Lin, C.Hong. Robust Control of Linear Synchronous Motor Servodrive using Disturbance Observer and Recurrent Neural Nerwork Compensator. IEE Proceedings of Electrical. Power Application. 2000,147(4):1064~1087
    109 H.S.Lee, M.Tomizuka. Robust Motion Controller Design for High-accuracy Positioning Systems. IEEE Transactions on Industrial Electronics. 1996, 43:48~55
    110 S.Endo, H.Kobayashi, C.J.Kempf et al. Robust Digital Tracking Controller Design for High-speed Positioning Systems. Control Engineering Practice. 1996,4(4):527~536
    111 R.Bickel, M. Tomizuka. Passivity-based Versus Disturbance Observer Based Robot Control: Equivalence and Stability. ASME Journal of Dynamic Systems, Measurement, and Control. 1999,121:41~47.
    112 T.Umeno, T.Kaneko, Y.Hori. Robust servosystem Design with Two Degrees of Freedom and Its Application to Novel Motion Control of Robot Manipulators. IEEE Trans.Ind.Electron. 1993:473~479
    113 J K.Hu, Christian Bohn, HR.Wu. Systematic Hinf Weighting FunctionSelection and Its Application to The Real-time Control of A Vertical Take-off Aircraft. Control Engineering Practice. 2000,8:241~252
    114 K. S. Fu, R. C. Gonzalez, C. S. G. Lee. Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill Book Company. 1987:149~200
    115 Donald Hearn and M.Pauline Baker. Computer Graphics, C Version, 2nd Ed. Prentice Hall, Inc. 1997:15~70.
    116孙家广,计算机图形学,清华大学出版社. 1994:84~221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700