血管内膜巨噬细胞浸润与冠状动脉粥样硬化斑块构成及进行性狭窄的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 巨噬细胞浸润在动脉粥样硬化斑块的构成、发展和破裂的过程中占有重要的作用,严重者这一过程可导致急性冠脉综合症。本研究评估内膜巨噬细胞的浸润与冠状动脉进行性狭窄的关系,以及与巨噬细胞的浸润相关的趋化因子(MCP-1)和核因子(NF-κB)它们在巨噬细胞浸润过程中所起到的作用。
     方法 从 39 例尸检标本中获得 39 个冠状动脉左前降支的标本。应用弹力纤维染色及电脑软件分析系统,测量其狭窄程度,并根据其狭窄程度将其分为 3 组(A 组:〈50%;B 组:50%-75%;C 组:〉75%)。根据炎细胞浸润到外膜、中膜和内膜的程度和数量,我们将炎症反应分为 5 级,即 G-0 到 G-IV。免疫组织化学的方法用来检测巨噬细胞( CD68 ), 检 测 单 核 细 胞 趋 化 蛋 白 - 1 ( Monocyte chemotacticprotein-1,MCP-1)和核因子-kappa B(Nuclear factor-kappa B,NF-κB)在冠状动脉局部组织中的表达情况。
     结果 我们发现血管进行性狭窄有明显的粥样斑块的形成,显示 C组的斑块面积大于 B 组的斑块面积(P<0.001),然而在 A 组没有粥样斑块形成。粥样斑块形成过程中伴有明显的炎症反应及大量巨噬细胞浸润(C 组>B 组>A 组)。三组内膜面积与中膜面积的比值 B 组和 C 组明显大于 A 组(P<0.001),而三组中膜面积无显著性差异。B 组与 C 组
Macrophages play an important role in atherosclerotic plaqueformation, progression and rupture, which are responsible for the majorityof acute coronary syndromes. This study was to assess the relationshipbetween intimal macrophage infiltration and the progressive stenosis incoronary arteries. And at the same time we examined the relationshipbetween the MCP-1 and NF-κB expression and macrophage infiltration.
     Thirty-nine left anterior descending coronary arteries in 39 autopsiedcases were enrolled. The arteries were analyzed and divided into 3 groupsaccording to the degree of stenosis (group A: < 50% stenosis; group B:50% ~75% stenosis; group C: >75% stenosis). Inflammatory response wasgraded from G-0 to G-4 according to inflammatory cell infiltration inadventitia, media and intima. Immunohistochemistry was used to visualizethe presence of macrophages (CD68) and to examine the MCP-1 andNF-κB expression, so that we can find the relationship betweenmacrophage infiltration and these cytokines.
     Vascular progressive stenosis with significant atherosclerotic plaqueformation was recognized, showing plaque area in group C larger than ingroup B (p<0.001), while there was no plaque in group A. Inflammatoryresponse was related to the degree of vascular stenosis and plaqueformation. Significant macrophage infiltration in intima was recognized ingroup B and C, mainly appearing in the plaque area. Ratio of IT/media in
    different groups had obvious difference (group B and group C versus groupA, p<0.0001). But there was no difference in the cross sectional area ofmedia. According to the percent of the plaque in the intima, we dividedgroup B and group C into two sub-groups respectively, B1 and B2sub-groups, C1 and C2 sub-groups. Then we found the plaque area andmacrophages counting of B2 and C2 are obvious larger than B1 and C1(p<0.0001 and p<0.00001, respectively). About the macrophage countingin three groups, we found the group B and C is much more than group A.MCP-1 immunoreactivity was found strongly in atherosclerotic plaque ofgroup B and group C, and the same result was found in NF-κB. And therewas positive relationship between MCP-1 and NF-κB.
     Our study has demonstrated that coronary artery progressive stenosisis caused by intimal hyperplasia. Plaque is the most capital component ofthe intima. Macrophage infiltration in arterial intima plays an importantrole in coronary artery progressive stenosis by plaque formation. MCP-1and NF-κB might regulate this progression. We concluded that the degreeof luminal stenosis much more related to the macrophage infiltration andplaque formation.
引文
1. 万峰,王京生主编《现代冠心病外科治疗学》,第一版,北京,中国协和医科大学出版社,2003,4,11-12。
    2. 杨光华主编《病理学》,第五版,北京,人民卫生出版社,2001,2,122-128。
    3. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon T. Macrophage infiltration in acute coronary syndromes: Implications for plaque rupture. Circulation 1994; 90: 775– 778.
    4. Ross R. Atherosclerosis. An inflammatory disease. N Engl J Med 1999; 340:115–26.
    5. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657– 671.
    6. Moreno PR, Bernardi VH, Lopez-Cuellar J, Murcia AM, Palacios IF, Gold HK, Mehran R, Sharma SK, Nemerson Y, Fuster V, Fallon JT. Macrophages, smooth muscle cells, and tissue factor in unstable angina: Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 1996; 94: 3090– 3097.
    7. Libby P, Aikawa M. Evolution and stabilization of vulnerable atherosclerotic Plaques. Jpn Circ J 2001; 65: 473- 479.
    8. Ueda H, Imazu M, Hayashi Y, Ono K, Yasui W, Yamakido M. Immunohistochemical analysis of hepatocyte growth factor in human coronary atherectomy specimens: Comparison with transforming growth factor beta isoforms. Virchows Arch 1997; 430: 407-415.
    9. Landau C, Lange RA, Hillis LD. Percutaneous transluminal coronary angioplasty. N Engl J Med. 1994; 330:981–993.
    10. Libby P, Ganz P. Restenosis revisited: new targets, new therapies. N Engl J Med. 1997; 337:418–419.
    11. Schillinger M, Exner M, Mlekusch W, Rumpold H, Ahmadi R, Sabeti S, Haumer M, Wagner O, Minar E. Vascular inflammation and percutaneous transluminal angioplasty of the femoropopliteal artery: association with restenosis. Radiology 2002; 225:21-6.
    12. Drachman DE, Simon DI. Inflammation as a mechanism and therapeutic target for in-stent restenosis. Curr Atheroscler Rep. 2005; 7:44-9.
    13. Schillinger M, Haumer M, Schlerka G, Mlekusch W, Exner M, Ahmadi R, Minar E. Restenosis after percutaneous transluminal angioplasty in the femoropopliteal segment: the role of inflammation. J Endovasc Ther. 2001; 8:477-83.
    14. Tashiro H, Shimokawa H, Sadamatsu K, Aoki T, Yamamoto K. Role of cytokines in the pathogenesis of restenosis after percutaneous transluminal coronary angioplasty. Coron Artery Dis. 2001 Mar; 12:107-13.
    15. Kudrjashova E, Bashtrikov P, Bochkov V, Parfyonova Y, Tkachuk V, Antropova J, Iljinskaya O, Tararak E, Erne P, Ivanov D, Philippova M, Resink TJ. Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochem Cell Biol. 2002;118:281-90.
    16. Hayashi S, Watanabe N, Nakazawa K, et al. Roles of P-selectin in inflammation, neointimal formation, and vascular remodeling in ballooninjured rat carotid arteries. Circulation 2000; 102:1710–1717.
    17. Nelken NA, Coughlin SR, Gordon D, Wilcox JN. Monocyte chemoattractant protein-1 in human atheromatous plaques. J Clin Invest 1991;88:1121–7.
    18. Viedt C, Vogel J, Athanasiou T, Shen W, Orth SR, Kubler W, Kreuzer J. Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol. 2002 ; 22:914-20.
    19. 许良中,杨文涛。免疫组织化学反应结果的判断标准. 中国癌症杂志,1996; 6:229-231.
    20. Varnava AM, Davies MJ. Relation between coronary artery remodelling (compensatory dilatation) and stenosis in human native coronary arteries. Heart. 2001; 86:207-11.
    21. Koyama N, Morisaki N, Saito Y, Yoshida S. Inhibitory effect of ginsenosides on migration of arterial smooth muscle cells. Am J Chin Med. 1992; 20:167-73.
    22. Sho M, Sho E, Singh TM, Komatsu M, Sugita A, Xu CP, Nanjo H, Zarins CK, Masuda H. Subnormal shear stress-induced intimal thickening requires medial smooth muscle cell proliferation and migration. Expt Mol Path 2002; 72:150-160
    23. Sho E, Sho M, Singh TM, Nanjo H, Komatsu M, Xu CP, Masuda H, Zarins CK. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Path 2002; 73:142-153
    24. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KEJ, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang I-K, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W, Jr., Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part II. Circulation. 2003;108:1772–1778. foam cells in fatty streak lesions. Artery. 1980;8:208 –214.
    25. Behr TM, Wang X, Aiyar N, Coatney RW, Li X, Koster P, Angermann CE, Ohlstein E, Feuerstein GZ, Winaver J. Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure. Circulation. 2000; 102:1315–1322.
    26. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell. 1998; 2:275–281.
    27. Belperio JA, Keane MP, Burdick MD, Lynch JP III, Xue YY, Berlin A, Ross DJ, Kunkel SL, Charo IF, Strieter RM. Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J Clin Invest. 2001; 108:547–556.
    28. Boring L, Gosling J, Cleary M, Charo I. Decreased lesion formation in CCR2–/– mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394: 894– 897.
    29. Yl?-Herttuala S, Lipton BA, Rosenfeld ME, Sarkioja T, Yoshimura T, Leonard EJ, Witztum JL, Steinberg D. Expression of monocyte chemoattractant protein-1 in macrophage-rich areas of human and rabbit athero-sclerotic lesions. Proc Natl Acad Sci U S A. 1991; 88:5252–5256.
    30. Mulvihill NT, Foley JB. Inflammation in acute coronary syndromes [J]. Heart, 2002; 87;201-204.
    31. Brand K, Paes S, Roger G, etal. Activiated transcription factor nuclear factor κB ispresent in the atherosclerotic lesion[J]. J Clin Invest, 1996; 97:1715-1722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700