海洋弧菌Vibrio sp. QY101褐藻胶裂解酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
褐藻胶是一种来源丰富、用途广泛的酸性海洋多糖,由α-L-古罗糖醛酸(G)及β-D-甘露糖醛酸(M)随机组合形成的线性高分子量聚合物。褐藻多糖及其降解产物褐藻低聚糖已广泛应用于制药、食品、化工等多个领域。研究证明褐藻寡糖在抗肿瘤、抗艾滋病、抗老年痴呆等方面有显著作用,具有广阔的发展前景。褐藻胶裂解酶是通过β消去机制降解褐藻胶,它不但作为工具酶用于褐藻寡糖的制备,而且本身具有一定的药用价值,褐藻胶裂解酶可降解胞外褐藻多糖生物膜恢复病原菌对抗生素的敏感性,在治疗囊性纤维化(CF)患者肺部感染时效果明显。另外,褐藻胶裂解酶还用于藻类原生质体的制备,对藻类生理生化特征等基础研究具有重要作用。然而,由于褐藻胶裂解酶的分离纯化困难以及已发现的酶活性低等原因,导致迄今为止没有一种酶产业化。因此,寻找高活力的新褐藻胶裂解酶具有重要的理论意义和明确的应用前景。
     本论文使用选择性培养基广泛地筛选高产褐藻胶裂解酶的菌株,已发现50余株产酶菌株,其中菌株QY101同其它菌株相比,具有酶活高、降解速率快等特点,我们以它作为研究对象进行了本课题的研究工作。
     首先对菌株QY101进行了鉴定。菌种鉴定采用形态观察和生理生化反应以及16s rRNA技术,实验结果表明菌株QY101可以鉴定为弧菌属Vibrio,命名为Vibrio.sp.QY 101。
     其次,我们进行了Vibrio.sp.QY 101胞外褐藻胶裂解酶的分离纯化。
    
    叮brz’o.sp.QY 101以褐藻胶培养基25℃发酵培养,使用80%硫酸按沉淀发
    酵液上清中的蛋白质,得到粗酶液;将粗酶液上样于以20Inlnol/L pH7.5磷酸盐
    缓冲液平衡的DEAE一sePharose Fast Flow柱,进行离子交换层析,以8.0 g/L、
    18.0叭、以及58.0叭Nacl浓度梯度洗脱,分部收集洗脱组分,紫外吸收法检
    测酶活,发现酶活集中在18.0叭梯度处,大量收集活性组分;DEAE一sepharose
    Fast Flow纯化得到的活性组分上样于用2伪皿01/L PH7.5磷酸盐缓冲液平衡的
    sul姆rdex 75 HR凝胶过滤柱,收集活性组分。sDs一PAGE电泳结果表明,得到的
    褐藻胶裂解酶已达到电泳纯,分子量为39kD;酶反应最适PH为7.5,最适反应
    温度为30℃:Na‘、Caz+、Mn卜对酶活性有促进作用,FeZ’、Ni”以及EDTA对酶
    活性有抑制作用。酶的底物专一性分析结果表明,该酶同时具有降解多聚古罗
    糖醛酸poly(G)及多聚甘露糖醛酸poly(M)的活性。进一步的研究表明,该
    酶对于细菌所产的乙酞化褐藻胶同样具有降解作用,这一特性为迄今已发现的酶
    所不具有的。因此,该酶在降解细菌生物膜多糖、恢复其对抗生素的敏感性方面
    具有良好的应用前景。
     在分离纯化过程中,我们发现除了目的收集组分外,尚有一个小的组分有活
    性,但由于含量低,难以分离纯化。在这种情况下,我们针对该组分更易降解
    poly(G)的特性,根据已知的褐藻胶裂解酶基因的同源性设计引物,使用简并
    PCR与反向PCR技术从叮厉z’o.印.QY 101中克隆到一个褐藻胶裂解酶基因
    二厅yIo基因序列分析发现a1少yI由编码338个氨基酸的IO14bP的开放阅读
    框组成,其编码的蛋白分子量为38.4 kDa,其中包括分子量大约为4.4 kDa
    的一段信号肤。利用pET24a(+)建立了a厅叮的高效表达载体,并使用Ni”
    亲和柱分离得到AlyVI。酶学性质研究表明:Alyv工分子量约为34 kDa,在l
    mM ZnC12存在的情况下,AlyVI的酶活最适温度为40℃,最适PH为7.5。序
    列分析表明,AlyVI含有“YXRSELREM”,这9个氨基酸的保守序列仅仅存在
    于poly(G)活性的褐藻胶裂解酶中。本实验中得到的Al yVI同时具有poly
     (G)与poly(M)的活性,但是AlyVI对poly(G)的km比对poly(M)的km
    低一个数量级,说明这个保守序列可能与底物特异性有关。分子量与酶学性质
    
    表明AlyVI与层析技术分离纯化得到的褐藻胶裂解酶为两种不同的酶。
     综上所述,本论文克服了褐藻胶裂解酶分离纯化过程中酶与底物结合紧密的
    困难,建立了褐藻胶裂解酶分离纯化的技术平台。利用硫酸按沉淀、离子交换层
    析及凝胶过滤层析技术从发酵液上清中分离到电泳纯的褐藻胶裂解酶,具有poly
    (M)与poly(G)的降解活性,同时具有降解细菌产乙酸化褐藻胶的能力,这
    一特性在国际上属于首次报道。对于这种酶,每升发酵液中可获得IOmg,比活
    力为163.IU/mg,回收率为47.32%,为大量制备与获得创造了条件。同时,对
    于无法从天然菌株中分离纯化的另一种酶,使用PcR技术克隆了基因a了少yI,建
    立了重组酶的高效表达工程菌株和分离纯化技术平台。AlyVI具有更高的活性
    与产量,比活力为6830U/mg,产量为12mg纯酶/L。以上两种酶的高活性,以
    及它们在底物特异性上的多样性,很好的说明了叮brz’口.sp.QY101活力高、
    降解底物褐藻胶快速的现象。因此,这两种新褐藻胶裂解酶的发现,有助于深
    入探讨褐藻胶裂解酶的分子作用机制,推动了海洋寡糖类创新药物的研究与
    开发,为耐药细菌生物膜的研究与治疗创造了条件。
Alginates are linear polysaccharides in which p-D-mannuronic acid (M) and a-L-guluronic acid (G) are (l,4)-linked to form blocks of consecutive G residues (G blocks), consecutive M residues (M blocks), and alternating M and G residues (MG blocks). Alginate and alginate-derived oligosaccharides have been applied as raw materials in pharmaceutical, food, textile, agricultural and oil industries. Studies have shown that alginate oligosaccharides exhibit high activity on antitumor, anti-AIDS and so on. Alginate lyases catalyze the depolymerization of alginates by p-elimination of the 4-O-glycosidic bond. Alginate lyase can not only be used as useful biological tool to prepare alginate oligosaccharides, but also can be used in combination with other chemotherapeutics in the treatment of cystic fibrosis (CF) patients who are infected with alginate-producing Pseudomonas aeruginosa. Otherwise, alginate lyases have been applied successfully to the extraction of protoplasts for basic study of a variety of algal specie
    s. However, there is no alginate lyase purified to high levels of purity and yield for the tightly combination between alginate lyase and alginate substrate resulting the difficulties of purification. In conclusion, it is important to search novel alginate lyase having high activity.
    In our study, more than 50 alginate lyase-producing marine bacterium strains have been isolated by selective medium, in which strain QY101 has more activity and degrade alginate faster compared with other alginate lyases. Using morphologic observation, physiological and biochemical methods and 16S rRNA methods,
    
    
    marine bacteria QY101 has been identified as Vibrio sp., and named as Vibrio sp. QY101.
    Extracellular alginate lyase secreted by Vibrio sp. QY101 has been purified to homogeneity by a combination of ammonium sulfate precipitation, DEAE-Sepharose Fast Flow anion-exchange chromatography and Superdex 75 gel filtration chromatography. Its molecular mass is 39 kD as determined by SDS-PAGE analysis. The enzyme has an optimal temperature of 30 C for its activity, and is most active at pH 7.5. The thermal and pH stability are 0-30"C, and pH 6.5-8.5, respectively. The enzyme activity is stimulated by 0.5 mol/L NaCl, 1.0 mmol/L Ca2+ or 5.0 mmol/L Mn2+, and inhibited by 5.0 mmol/L Ni2+, 1.0 mmol/L Fe2+ or 1.0 mmol/L EDTA. Preliminary analysis on substrate specificity shows that this alginate lyase have both poly- a 1,4-Z-guluronate and poly- 3 1,4-D-mannuronate substrate activity. More relative analysis shows that this alginate lyase can degrade O-acetylated alginate of Pseudomonas aeruginosa ATCC9027, which is different from the alginate lyase reported. It is likely that this alginate lyase would be used in degrading O-acetylated alginate in bacteria biofilms to make the bacteria more sensitive to the antibiotics that it was resistant before.
    There is another fraction having alginate lyase activity during above experiments. Since it is little to get by chromatography methods, a strategy combined degenerate PCR and long range-inverse PCR (LR-IPCR) has been used to clone the gene alyVI encoding another alginate lyase of Vibrio sp. QY101. Gene alyVI is composed of a 1014 bp open reading frame encoding 338 amino acid residues. The calculated molecular mass of alyVI product is 38.4 kDa. With a signal peptide cleaved off, the mature protein is of 34 kDa. The alyVI gene has been cloned into pET-24a(+) plasmid and AlyVI has been purified from culture supernatants to electrophoretic homogeneity using Ni2+ affinity chromatography.
    
    AlyVI is most active at pH7.5 and 40 C in the presence of 1 mM ZnCh. A 9-amino-acid consensus region (YXRESLREM), which is only found in polyguluronate lyases, is also observed in the amino-terminal region of AlyVI. Though AlyVI can degrade both M block and G block, the difference of Km of AlyVI to different substrate supports the hypothesis that this region is related to substrate recognization.
    In conclusion, though alginate lyase is difficult to purify, an effective method system to purify alginate lyase ha
引文
[1.] Gacesa P., Alginates. Carbohydr. Polym. 1988.8: 161-182
    [2.] Grasdalen H., High-field, 1H-n.m.r. spectroscopy of alginate: sequential strueture and linkage conformations. Carbohydr. Res. 1983.118: 255-260
    [3.] Haug A, Larsen B, Smidsrφl O., Studies on the sequence of uronic acid residues in alginic acid. Acta Chem. Stand. 1967. 21: 691-704
    [4.] Rees DA., Shapely polysaccharides. Biochem. J. 1972.126: 257-73
    [5.] Rees DA., Polysaccharide shapes and their interactions: some recent advances. Pure Appl. Chem. 1981.53: 1-14
    [6.] Donnan FG, Rose RC., Osmotic pressure, molecular weight and viscosity of sodium alginate. Can. J. Res. Sect. B 1950. 28: 105-113
    [7.] Caswell RC, Gacesa P, Lutrell KE, Weightman AJ., Molecular cloning and heterologous expression of a Klebsiella pneumoniae gene encoding alginate lyase. Gene 1989.75: 127-34
    [8.] Geddie JL, Sutherland IW., The effect of acetylation on cation binding by algal and bacterial polysaccharides. Biotechnol. Appl. Biochem. 1994.20: 117-129
    [9.] Skj°ak-Braek G, Zanetti F, Paoletti S., Effect of aeetylation on some solution and gelling properties ofalginates. Carbohydr. Res. 1989.185: 131-138
    [10.] Albersheim P, Darvill AG., Oligosaccharins. Sci. Am. 1985. 253: 58-64
    [11.] Akiyama H, Endo T, Nakakita R, Murata K, Yonemoto Y, Okayama K., Effect of depolymerized alginates on the growth of bifidobacteria. Biosci. Biotechnol. Biochem. 1992. 56: 355-356
    [12.] Murata K, Inose T, Hisano T, Abe S, Yonemoto Y, et al., Bacterial alginate lyase: enzymology, genetics and application. J. Ferment. Bioeng. 1993.76: 427-437
    [13.] Yonemoto Y, Tanaka H, Yamashita T, Kitabatake N, Ishida Y, et al., Promotion of germination and shoot elongation of some plants by alginate oligomers prepared with bacterial alginate lyase. J. Ferment. Bioeng. 1993.75: 68-70
    [14.] Natsume M, Kamo Y, Hirayama M, Adachi T., Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydr. Res.
    
    1994.258: 187-197
    [15.] Tomoda Y, Umemura K, Adachi T., Promotion of barley root elongation under hypoxic conditions by alginate lyase-lysate. Biosci. Biotechnol. Biochem.. 1994.58: 202-203
    [16.] Kawada A, Hiura N, Shiraiwa M, Tajima S, Hiruma M, et al., Stimulation of human keratinocyte growth by alginate oligosaccharides, a possible co-factor for epidermal growth factor in cell culture. FEBS Lett. 1997.408: 43-46
    [17.] Fujihara M, Nagumo T., An influence of the structure of alginate on the chemotactic activity of macrophages and the antiturnor activity. Carbohydr. Res. 1993.243: 211-216
    [18.] Fujihara M, Nagumo T., The effect of the content of D-mannuronic acid and L-guluronic acid blocks in alginates on antitumor activity. Carbohydr. Res. 1992.224: 343-347
    [19.] Otterlei M, stgaard K, Sj°ak-Braek G, Smidsrφd O, Soon-Shoing, Espevik T., Induction of eytokine production from human monocytes stimulated with alginate. J. Immunother. 1991.10: 286-291
    [20.] Fujihara M, Iizima N, Yamamoto I, Nagumo T., Purification and chemical and physical characterization of an antitumor polysaccharide from the brown seaweed Sargassum fulvellum. Carbohydr. Res. 1984.125: 97-106
    [21.] Madgwick J, Haug A, Larsen B., Alginate lyase in the brown alga Laminaria digitata(Huds.) Lamour. Acta Chem. Scand. 1973.27: 711-712
    [22.] Madgwick J, Haug A, Larsen B., Ionic requirements of alginate-modifying enzymes in the marine alga Pelvetia canaliculata(L.) Done. et Thur. Bot. Mar. 1978.21: 1-3
    [23.] Watanabe T, Nisizawa K., Enzymatic studies on alginate lyase from Undaria pinnatifida in relation to texturesoftening prevention by ash-treatment(Haiboshi). Bull. Jpn. Soc. Sci. Fish. 1982.48: 243-249
    [24.] Muramatsu T, Hirose S, Katayose M., Isolation and properties of alginate lyase from the mid-gut gland of wreath shell Turbo cornutus. Agric. Biol. Chem. 1977.41: 1939-1946
    [25.] Favorov VV., Purification of alginases by affinity chromatography on a Bio-Gel alginate column, Int. J. Biochem. 1973.4: 107-110
    [26.] Nisizawa K, Fujibayashi S, Kashiwabara Y., Alginate lyases in the hepatopancreas of a
    
    marine mollusc, Dolabella auricula Solander. J. Biochem. 1968.64: 25-37
    [27.] Seiderer LJ, Newell RC, Cook PA., Quantitative significance of style enzymes from two marine mussels(Choromytilus meridionalis Krauss and Pernaperna Linnaeus) in relation to diet. ar. Biol. Lett. 1982.3: 257-271
    [28.] Bartell PF, Orr TE, Lain GKH., Polysaccharide depolymerase associated with bacteriophage infection. J. Bacteriol. 1966.92: 56-62
    [29.] Davidson IW, Lawson CJ, Sutherland IW., An alginate lyase from Azotobacter vinelandii phage. J. Gen. Microbiol. 1977.98: 223-229
    [30.] Suda K, Tanji Y, Hori K, Unno H., Evidence for a novel Chlorella virusencoded alginate lyase. FEMS Microbiol. Lett. 1999.180: 45-53
    [31.] Brown BJ, Preston JF Ⅲ., LGuluronan-specific alginate lyase from a marine bacterium associated with Sargassum. Carbohydr. Res. 1991.211: 91-102
    [32.] Doubet RS, Quatrano RS., Isolation of marine bacteria capable of producing specific lyases for alginate degradation. Appl. Environ. Microbiol. 1982.44: 754-756
    [33.] Doubet RS, Quatrano RS., Properties of alginate lyases from marine bacteria. Appl. Environ. Microbiol. 1984.47: 699-703
    [34.] Nakada HI, Sweeny PC., Alginie acid degradation by eliminases from abalone hepatopancreas. J. Biol. Chem. 1967.242: 845-851
    [35.] Schaumann K, Weide G., Enzymatic degradation of alginate by marine fungi. Hydrobiologia 1990.204/205: 589-596
    [36.] Gacesa P., Alginate-modifyiag enzymes: a proposed unified mechanism of action for the lyases and epimerases. FEBS Lett. 1987.212: 199-202
    [37.] Gaeesa P., Enzymie degradation of alginates. Int. J. Biochem. 1992.24: 545-552
    [38.] Baron AJ, Wong TY, Hicks SJ, Gacesa P, Willcock D, McPherson MJ., Alginate lyase from Klebsiella pneumoniae, subsp, aerogenes: gene cloning, sequence analysis and high-level production in Escherichia coll. Gene 1994.143: 61-66
    [39.] Gacesa P, Wusteman FS., Plate assay for simultaneous detection of alginate lyases and determination of substrate specificity. Appl. Environ. Microbiol. 1990. 56: 2265-2267
    
    
    [40.] Romeo T, Preston JF Ⅲ., Purification and structural properties of an extracellular (1-4)-_-D-mannuronanspceific alginate lyase from a marine bacterium. Biochemistry 1986.25:8385-8391
    [41.] von Riesen VL., Digestion of algin by Pseudomonas maltophilia and Pseudomonas putida. Appl. Environ. Microbiol. 1980.39:92-96
    [42.] Chavagnat F, Duez C, Guinand M, Potin P, BarbeyronT, et al., Cloning, sequencing and overexpression in Escherichia coli of the alginate-lyase-encoding aly gene of Pseudomonas alginovora: identification of three classes of alginate lyases. Biochem. J. 1996.319:575-583
    [43.] Kitamikado M, Yamaguchi K, Tseng CH, Okabe B., Method designed to detect alginate-degrading bacteria. Appl. Environ. Microbiol. 1990.56:2939-2940
    [44.] Caswell RC, Gacesa P, Weightman AJ., Detection of alginate lyases by isoelectic focusing and activity staining. Int. J. Biol. Macromol. 1986.8:337-341
    [45.] Sawabe T, Ohtsuka M, Ezura Y., Novel alginate lyases from marne bacterium Alteromonas sp. strain H-4. Carbohydr. Res. 1997.304:69-76
    [46.] Sawabe T, Sawada C, Suzuki E, Ezura Y., Intracellular alginateoligosaccharide degrading enzyme activity that is incapable of degrading intact sodium alginate from a marine bacterium Alteromonas sp. Fish, Sci. 1998.64:320-334
    [47.] Preiss J, Ashwell G., Alginic acid metabolism in bacteria. Ⅰ. Enzymatic formation of unsaturated oligosaecharides and 4-deoxy-L-erythro-5-hexoseulose uronic acid. J. Biol. Chem. 1962.237:309-316
    [48.] Stevens RA, Levin RE., Viscometric assay of bacterial alginase. Appl. Environ. Microbiol. 1976.31:896-899
    [49.] Stevens RA, Levin RE., Purification and characteristics of an alginase from Alginovibrio aquatilis. Appl. Environ. Microbiol. 1977.33:1156-1161
    [50.] Boyd J, Turvey JR., Isolation of a poly-_-L-guluronate lyase from Klebsiella aerogenes. Carbohydr. Res. 1977.57:163-171
    [51.] Dunne WM Jr, Buckmire FLA., Partial purification and characterization of a polymannuronic acid depolymerase produced by a mucoid strain of Pseudomonas aeruginosa isolated from a
    
    patient with cystic fibrosis. Appl. Environ. Microbiol. 1985.50: 562-567
    [52.] Kaiser P, Le Borgne L, Hatdisson C, Pignaud G, Vidal G., Etude d'une alginate-lyase exocellulaire isol'ee des cultures de Clostridium alginolyticum. C. R. Acad. Sci. D 1968.267: 376-379
    [53.] Kennedy L, McDowell K, Sutherland IW., Alginases from Azotobacter species. J. Gen. Microbiol. 1992. 138: 2465-2471
    [54.] Kraiwattanapong J, Motomura K., Ooi T, Kinoshita S., Characterization of alginate lyase(ALYⅡ) from Pseudomonas sp. OS-ALG-9 expressed in recombinant Escherichia coli. World J. Microbiol. Biotechnol. 1999. 15: 117-122
    [55.] Matsubara Y, Kawada R, Iwasaki K, Oda T, Muramatsu T., Extracellular poly(_-L-guluronate) lyase from Corynebacterium sp.: purification, characteristics and conformational properties. J. Protein Chem. 1998. 17: 29-36
    [56.] Nakagawa A, Ozaki T, Chubachi K, Hosoyama T, Okubo T, et al., An effective method for isolating alginate lyase-producing Bacillus sp. ATB-1015 strain and purification and characterization of the lyase. J. Appl. Microbiol. 1998.84: 328-335
    [57.] Nibu Y, Satoh T, Nishi Y, Takeuchi T, Murata K, Kusakabe I., Purification and characterization of extracellular alginate iyase from Enterobacter cloacae M-1. Biosci. Biotechnol. Biochem. 1995.59: 632-637
    [58.] Peci~na A, Paneque A., Detection of alginate lyase by activity staining after sodium dodecil sulfate-polyacrylamide gel electrophoresis and subsequent renaturation. Anal. Biochem. 1994.217: 124-127
    [59.] Haugen F, Kortner F, Larsen B., Kinetics and specificity of alginate lyases. I. A case study. Carbohydr. Res. 1990.198: 101-109
    [60.] Shimokawa T, Yoshida S, Takeuchi T, Murata K, Kobayashi H, Kusakabe I., Purification and characterization of extracellular poly(_-D-1, 4-mannuronide) lyase from Dendryphiella salina IFO 32139. Biosci. Biotechnol. Biochem. 1997.61: 636-640
    [61.] Yoon H-J, Hashimoto W, Katsuya Y, Mezaki Y, Murata K, Mikami B., Crystallization and preliminary X-ray crystallographic analysis of alginate lyase A1-Ⅱ from Sphingomonas
    
    species A1. Biochim. Biophys. Acta 2000.1476: 382-385
    [62.] Rehm BHA., Alginate lyase from Pseudomonas aeruginosa CF1/M1 prefers the hexameric oligomannuronate as substrate. FEMS Microbiol. Lett. 1998.165: 175-180
    [63.] stgaard K, Knutsen SH, Dyrset N, Aasen IM., Production and characterization of guluronate lyase from Klebsiella pneumoniae for applications in seaweed biotechnology. Enzyme Microb. Technol. 1993.15: 756-763
    [64.] Fujiyarna K, Maid H, Kinoshita S, Yoshida T., Purification and chaxacterization of the recombinant alginate lyase from Pseudomonas sp. leaked by Escherichia coli upon addition of glycine. FEMS Microbiol. Lett. 1995.126: 19-24
    [65.] Malissard M, Chavagnat F, Duez C, Vacheron M-J, Guinand M, et al., Overproduction and properties of the mannuronate alginate lyase AlxMB. FEMS Microbiol. Lett. 1995.126: 105-112
    [66.] Ertesv°ag H, Erlien F, Skj°ak-Braek G, Rehm BHA, Valla S., Biochemical properties and substrate specificities of a recombinantly produced Azotobacter vinelandii alginate lyase. J. Bacteriol. 1998.180: 3779-3784
    [67.] Peci~na A, Pascual A, Paneque A., Cloning and expression of the algL gene, encoding the Azotobacter chroococcum alginate lyase: purification and characterization of the enzyme. J. Bacteriol. 1999. 181: 1409-1414
    [68.] Boyd A, Ghosh M, May TB, Shinabarger D, Keogh R, Chakrabarty AM., Sequence of the algL gene of Pseudomonas aeruginosa and purification of its alginate lyase product. Gene 1993. 131: 1-8
    [69.] Eftekhar F, Schiller NL., Partial purification and characterization of a mannuronan-specific alginate lyase from Pseudomonas aeruginosa. Curr. Microbiol. 1994.29: 37-42
    [70.] Svanem BIG, Skjiak-Br.k G, Ertesviag H, Valla S., Cloning and expression of three new Azotobacter vinelandii genes closely related to a previously described gene family encoding marmuronan C-5-epimerases. J. Bacteriol. 1999. 181: 68-77
    [71.] Shimokawa T, Yoshida S, Kusakabe I, Takeuchi T, Murata K, Kobayashi H., Some properties and action mode of(1!4)-_-L-guluronan lyase from Enterobacter cloacae M-1.
    
    Carbohydr. Res. 1997. 304: 125-132
    [72.] Takeshita S, Sato N, Igarashi M, Muramatsu T., A highly denaturantdurable alginate lyase from a marine bacterium: purification and properties. Biosci. Biotechnol. Biochem. 1993.57: 1125-1128
    [73.] Kraiwattanapong J, Ooi T, Kinoshita S., Cloning and sequence analysis of the gene(alyⅡ) coding for an alginate lyase of Pseudomonas sp. OS-ALG-9. Biosci. Biotechnol. Biochem. 1997.61: 1853-1857
    [74.] Fujiyama K, Maki H, Kinoshita S, Yoshida T., High gene expression in Escherichia coil of recombinant alginate lyase as a fused protein with _-galactosidase _-peptide. FEMS Microbiol. Lett. 1995.126: 13-18
    [75.] Hisano T, Nishimura M, Yamashita T, Sakaguchi K, Takagi M, et al., Production of bacterial alginate-specific lyase by recombinant Bacillus subtilis. J. Ferment. Bioeng. 1994.78: 79-83
    [76.] Mikami B, Hisano T, Yamashita T, Inose T, Takagi M, et al, Crystallization and preliminary X-ray diffraction studies of bacterial alginate lyase. J. Ferment. Bioeng. 1994. 77: 691-692
    [77.] Zhang HC, Zheng HH, Zhang QZ, Wang JJ, Konno M., The interaction of sodium alginate with univalent cations. Biopolymers 1998.46: 395-402
    [78.] Muramatsu T, Egawa K., Isozymes of alginate lyase in the mid-gut gland of Turbo cornutus. Agric. Biol. Chem. 1980. 44: 2587-2594
    [79.] Boyen C, Kloareg B, Polne-Fuller M, Giber A., Preparation of alginate lyases from marine molluscs for protoplast isolation in brown algae. Phycologia 1990. 29: 173-181
    [80.] Jacober LF, Rice C, Rand AG Jr., Characterization of the carbohydrate degrading enzymes in the Surf Clam crystalline style. J. Food Sci. 1980.45: 381-385
    [81.] Heyraud A, Colin-Morel P, Girond S, Richard C, Kloareg B., HPLC analysis of saturated or unsaturated oligoguluronates and oligomannuronates: application to the determination of the action pattern of Haliotis tuberculata alginate lyase. Carbohydr. Res. 1996.291: 115-126
    [82.] Muramatsu T, Yamada K, Date M, Yoshioka S., Action of poly(_-Dmannuronate) lyase from Turbo cornutus on oligomeric substrates. Biosci. Biotechnol. Biochem. 1993.57: 1990-1994
    
    
    [83.] Favorov VV, Vozhova EI, Denisenko VA, Elyakova LA., Astudy of the reaction catalysed by alginate lyase Ⅵ from the sea mollusc, Littorina sp. Biochim. Biophys. Acta 1979.569: 259-266
    [84.] Shiraiwa Y, Abe K, Sasaki SF, Ikawa T, Nisizawa K., Alginate lyase activities in the extracts from several brown algae. Bot. Mar. 1975.18: 97-104
    [85.] Boyen C, Bertheau Y, Barbeyron T, KloaregB., Preparation of guluronate lyase from Pseudomonas alginovora for protoplast isolation in Laminaria. Enzyme Microb. Technol. 1990.12: 885-890
    [86.] Sawabe T, Ezura Y, Kimura T., Purification and characterization of an alginate lyase from marine Alteromonas sp. Nippon Suisan Gakkaishi 1992.58: 521-527
    [87.] Preston JF Ⅲ, Romeo T, Bromley JC, Robinson RW, Aldrich HC., Alginate lyase-secreting bacteria associated with the algal genus Sargassum. Dev. Ind. Microbiol. 1985.26: 727-740
    [88.] Kitamikado M, Tseng C-H, Yamaguchi K, Nakamura T., Two types of bacterial alginate lyases. Appl. Environ. Microbiol. 1992.58: 2474-2478
    [89.] Haraguchi K, Kodama T., Purification and properties of poly(_-Dmannuronate) lyase from Azotobacter chroococcum. Appl. Microbiol. Biotechnol. 1996.44: 576-581
    [90.] Schiller NL, Monday SR, BoydCM, Keen NT, Ohman DE., Characterization of the Pseudomonas aeruginosa alginate lyase gene(algL): cloning, sequencing, and expression in Escherichia coil J. Bacteriol. 1993.175: 4780-4789
    [91.] Sutherland IW, Keen GA., Alginases from Beneckea pelagia and Pseudomonas spp. J. Appl. Biochem. 1981.3: 48-57
    [92.] Kinoshita S, Kumoi Y, Ohshima A, Yoshida T, Kasai N., Isolation of an alginate-degrading organism and purification of its alginate lyase. J. Ferment. Bioeng. 1991.72: 74-78
    [93.] Maki H, Mori A, Fujiyama K, Kinoshita S, Yoshida T., Cloning, sequence analysis and expression in Escherichia coli of a gene encoding an alginate lyase from Pseudomonas sp. OS-ALG-9. J. Gen. Microbiol. 1993. 139: 987-993
    [94.] Hisano T, Nishimura M, Yamashita T, Sakaguchi K, Murata K., On the selfprocessing of bacterial alginate lyase. J. Ferment. Bioeng. 1994.78: 109-110
    
    
    [95.] Hisano T, Nishimura M, Yonemoto Y, Abe S, Yamashita T, et al., Bacterial alginate lyase highly active on acetylated alginates. J. Ferment. Bioeng. 1993.75: 332-335
    [96.] Yoon H-J, Mikami B, Hashimoto W, Murata K., Crystal structure of alginate lyase Al-Ⅲ from Sphingomonas species A1 at 1.78 A resolution. J. Mol. Biol. 1999.290: 505-514
    [97.] Hansen JB, Doubet RS, Ram J., Alginase enzyme production by Bacillus circulans. Appl. Environ. Microbiol. 1984. 47: 704-709
    [98.] Wicker-Bi§ockelmann U, Wingender J, Winkler UK., Alginate lyase releases cell-bound lipase from mucoid strains of Pseudomonas aeruginosa. Zentralb. Bakteriol. Mikrobiol. Hyg. Abt. 1987.266: 379-389
    [99.] Hansen JB, Nakamura LK., Distribution of alginate lyase activity among strains of Bacillus circulans. Appl. Environ. Microbiol. 1985.49: 1019-1021
    [100.] Larsen B, Hoφen K, stgaard K., Kinetics and specificity of alginate lyases. Itydrobiologia 1993.260/261: 557-561
    [101.] Matsubara Y, Iwasaki K, Muramatsu T., Action of poly(_-L-guluronate) lyase from Corynebacterium sp. ALY-1 strain on saturated oligoguluronates. Biosci. Biotechnol. Biochem. 1998.62: 1055-1060
    [102.] Wainwright M., Alginate dagradation by the marine fungus Dendryphiella salina. Mar. Biol. Lett. 1980. 1: 351-354
    [103.] Wainwright M, Sherbrock-Cox V., Factors influencing alginate degradation by the marine fungi: Dendryphiella salina and D. arenaria. Bot. Mar. 1981.24: 489-491
    [104.] Barker T, Eklund C, Wyss O., Physical differences of virus-associated depolymerases. Biochem. Biophys. Res. Commun. 1968.30: 704-710
    [105.] Eklund C, Wyss O., Enzyme associated with bacteriophage infection. J. Bacteriol. 1962.84: 1209-1215
    [106.] Pike L, Wyss O., Isolation and characterization of phage-resistant strains of Azotobacter vinelandii. J. Gen. Microbiol. 1975.89: 182-186
    [107.] Muramatsu T, Komori K, Sakurai N, Yamada K, Awasaki Y, et al., Primary structure of mannuronate lyases SP1 and SP2 from Turbo cornutus and involvement of the hydrophobic
    
    C-terminal residues in the protein stability. J. Protein Chem. 1996.15: 709-719
    [108.] Kaneko Y, Yonemoto Y, Okayama K, Kimura A, Murata K., Bacterial alginate lyase: properties of the enzyme formed in a mixed culture of bacteria isolated from soil. J. Ferment. Bioeng. 1990.70: 147-149
    [109.] Kaneko Y, Yonemoto Y, Okayama K, Kimura A, Murata K., Symbiotic formation of alginate lyase in mixed culture of bacteria isolated from soil. J. Ferment. Bioeng. 1990. 69: 192-194
    [110.] Romeo T, Preston JF Ⅲ., Depolymerization of alginate by an extracellular alginate lyase from a marine bacterium: Substrate specificity and accumulation of reaction products. Biochemistry 1986.25: 8391-8396
    [111.] Romeo T, Preston JF Ⅲ., Liquidchromatographic analysis of the depolymerization of(114)-_-D-marmuronan by an extracellular alginate lyase from a marine bacterium. Carbohydr. Res. 1986.153: 181-193
    [112.] Sutherland IW., Polysaccharide lyases. FEMS Microbiol. Rev. 1995.16: 323-347
    [113.] Nguyen LK, Schiller NL., Identifi-cation of a slime exopolysaccharide depolymerase in mucoid strains of Pseudomonas aeruginosa. Curr. Microbiol. 1989. 18: 323-329
    [114.] Chitnis CE, Ohman DE., Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol. Microbiol. 1993. 8: 583-590
    [115.] Pe~naloza-V'azquez A, Kidambi SP, Chakrabarty AM, Bender CL., Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae. J. Bacteriol. 1997. 179: 4464-4472
    [116.] Rehm BH, Ertesv°ag H, Valla S., A new Azotobacter vinelandii mannuronan C-5-epimerase gene(algG) is part of an alg gene cluster physically organized in a manner similar to that in Pseudomonas aeruginosa. J. Bacteriol. 1996.178: 5884-5889
    [117.] Gacesa P, Russell NJ., Pseudomonas Infection and Alginates: Biochemistry, Genetics and Pathology. London: Chapman & Hall. 1990.pp.233
    [118.] Russell NJ, Gacesa P., Chemistry and biology of the alginate of mucoid strains of
    
    Pseudomonas aeruginosa in cystic fibrosis. Mol. Asp. Med. 1988.10: 1-91
    [119.] Govan JRW, Deretic V., Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 1996. 60: 539-574
    [120.] May TB, Shinabarger D, Maharaj R, Kato J, Chu L, et al., Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients. Clin. Microbiol. Rev. 1991.4: 191-206
    [121.] Baynham PJ, Brown AL, Hall LL, Wozniak DJ., Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol. Microbiol. 1999.33: 1069-1080
    [122.] Chakrabarty AM., Nucleoside diphosphate kinase: role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol. Microbiol. 1998.28: 875-882
    [123.] Mathee K, McPherson CJ, Ohman DE., Posttranslational control of the algT(algU)-encoded_22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB(AIgN). J. Bacteriol. 1997. 179: 3711-3720
    [124.] Schurr MJ, Deretic V., Microbial pathogenesis in cystic fibrosis: coordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa. Mol. Microbiol. 1997.24: 411-420
    [125.] Monday SR, Schiller NL., Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL(alginate lyase) and AlgX. J.. Bacteriol. 1996.178: 625-632
    [126.] May TB, Chakrabarty AM., Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol. 1994.2: 151-157
    [127.] Boyd A, Chakrabarty AM., Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 1994. 60: 2355-2359
    [128.] Page WJ, Sadoff HL., Relationship between calcium and uronic acids in the encystment of Azotobacter vinelandii. J. Bacteriol. 1975.122: 145-151
    [129.] Sadoff HL., Encystment and germination in Azotobacter vinelandii. Bacteriol. Rev. 1975.39: 516-539
    
    
    [130.] Higgins DG, Thompson JD, Gibson TJ., Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996. 266: 383-402
    [131.] Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ., Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 1998.23: 403-405
    [132.] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997.25: 4876-4882
    [133.] Kraiwattanapong J, TsurugaH, Ooi T, Kinoshita S., Cloning and sequencing ofa Delaya marina gene encoding for alginate lyase. Biotechnol. Lett. 1999.21: 169-174
    [134.] Malissard M, Duez C, Guinand M, Vacheron M-J, Michel G, et al., Sequence of a gene encoding a(poly ManA) alginate lyase active on Pseudomonas aeruginosa alginate. FEMS Microbiol. Lett. 1993.110: 101-106
    [135.] Redenbach M, Kieser HM, Denapaite D, Eichner A, Cullum J, et al., A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 1996.21: 77-96
    [136.] Takeshita S, Oda T, Muramatsu T., Spectroscopic studies on denaturants and guluronate lyase from a marine bacterium. Biosci. Biotechnol. Biochem. 1995.59: 881-885
    [137.] Muramatsu T, Imasato F., The role of sulfhydryl groups of alginate lyases as evidenced by loss of activity and circular dichroic spectral change caused by chemical modification. Agric. Biol. Chem. 1987.51: 1169-1171
    [138.] Muramatsu T, Hashimoto H, Takahashi T., Physicochemical characteristics and conformational features of alginate lyase isozymes from Turbo cornutus. Agric. Biol. Chem. 1984.48: 79-85
    [139.] Heyraud A, Gey C, Leonard C, Rochas C, Girond S, Kloareg B., NMR spectroscopy analysis of oligoguluronates and oligomannuronates prepared by acid or enzymatic hydrolysis of homopolymeric blocks of alginic acid: application to the determination of the substrate specificity ofHaliotis tuberculata alginate lyase. Carbohydr. Res. 1996.289: 11-23
    [140.] Franklin MJ, Chitnis CE, Gacesa P, Sonesson A, White DC, Ohman DE., Pseudomonas
    
    aeruginosa AIgG is a polymer level alginate C5-mannuronan epimerase. J. BacterioL 1994. 176: 1821-1830
    [141.] Ertesv°ag H, Doseth B, Larsen B, Skj°ak-Braek G, Valla S., Cloning and sequencing of an Azotobacter vinelandii mannuronan C-5-epimerase gene. J.. Bacteriol. 1994.176: 2846-2853
    [142.] Ertesv°ag H, Hoidal HK, Hals IH, Rian A, Doseth B, Valla S., Afamily of modulsr type mannuronan C-5-epimerase genes controls alginate structure in Azotobacter vinelandii. Mol. Microbiol. 1995.16: 719-731
    [143.] Muramatsu T, Egawa IC, Chemical composition of alginate lyases from the mid-gut gland of Turbo eornutus and chemical modification of Cys, Trp and Lys residues. Agric. Biol Chem. 1982.46: 883-889
    [144.] Hicks SJ, Gacesa P., Chemical modification of the alginate lyase from Klebsiella pneumoniae. Biochem. Soc. Trans. 1994. 22: S309
    [145.] YoderMD, KeenNT, Jurnak F., New domain motif: structure of pectate lyase C, a secreted plant virulence factor. Science 1993. 260: 1503-1507
    [146.] Yoder MD, Lietzke SE, Jurnak F., Unusual stuctural features of the parallel_-helix. Structure 1993.1: 241-251
    [147.] Lietzke SE, Keen NT, Yoder MD, Jurnak F., The three-dimensional structure of pectate lyase E, a plant virulence factor from Erwinia chrysanthemi. Plant Physiol. 1994. 106: 849-862
    [148.] Pickersgill R, Jenkins J, Harris G, Nasser W, Robert-Baudouy J., The structure of Bacillus subtilis pectate lyase in complex with calcium. Struct. Biol. 1994. 1: 717-723
    [149.] Higgins DG, Sharp PM., CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Gene 1988.73: 237-244
    [150.] Higgins DG, Sharp PM., Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 1989.5: 151-153
    [151.] Keen NT, Tamaki S., Structure of two pectate lyase genes from Erwinia chrysanthemi EC16 and their high-level expression in Escherichia coli. J. Bacteriol. 1986.168: 595-606
    
    
    [152.] Yonemoto Y, Murata K, Kimura A, Yamaguchi H, Okayama K., Bacterial alginate lyase: characterization of alginate lyase-produeing bacteria and purifi-cation of the enzyme. J. Ferment. Bioeng. 1991.
    [153.] Aleshin EA, Golubev A, Firsov LM, Honzatko RB., Crystal structure of glueoamylase from Aspergillus awamori var. X100 to 2.2° A resolution. J. Biol. Chem. 1992. 267: 19291-19298
    [154.] Sevc'k J, Solovicov'a A, Hostinov'a E, Gasper'k J, Wilson KS, Dauter Z., Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7°A resolution. Acta Crystallogr. D 1998.54: 854-866
    [155.] Juy M, Amit AG, Alzari PM, Poljak RJ, Claeyssens M, et al., Threedimensional structure of a thermostable bacterial cellulase. Nature 1992. 357: 89-91
    [156.] Alzari PM, Souchon H, Dominguez R., The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum. Structure 1996. 4: 265-275
    [157.] Sakon J, Irwin D, Wilson DB, Karplus PA., Structure and mechanism of endo/exocellulase E4 from Thermomonosporafusca. Nat. Struct. Biol. 1997. 4: 810-817
    [158.] Quiocho FA., Carbohydratebinding proteins, tertiary structures and protein-sugar interactions. Annu. Rev. Biochem. 1986.55: 287-315
    [159.] Vyas NK., Atomic features of protein-carbohydrate interactions. Curr. Opin. Struct. Biol. 1991.1: 732-740
    [160.] Rao MN, Kembhavi AA, Pant A., Role of lysine, tryptophan and calcium in the_-elimination activity of a low-molecular-mass pectate lyase from Fusarium moniliformae. Biochem. J. 1996.319: 159-164
    [161.] Okada G, Takayanagi T, Miyahara S, Sawai T., An isomalto-dextranase accompanied by isopullulanase activity from Arthrobacter globiformis T6. Agric. Biol. Chem. 1988.52: 829-836
    [162.] Ohno N, Nono I, Yadomae T., Enzymic and physicochemical properties of an exo-(1!3)-_-D-glucanase from Rhizoctonia solani. Carbohydr. Res. 1989. 194: 261-271
    [163.] Keskar SS, Srinivasan MC, Deshpande VV., Chemical modification of a xylanase from
    
    a thermotolerant Streptomyces: evidence for essential tryptophan and cysteine residues at the active site. Biochem. J. 1989.261: 49-55
    [164.] Ozaki K, Ito S., Purification and properties of an acid endo-1, 4-_-glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 1991.137: 41-48
    [165.] Ohba H, Yamasaki N, Funatsu G., Chemical modification of tryptophan residues in Abrin-a. Agric. Biol. Chem. 1991.55: 1579-1585
    [166.] Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, et al., Highresolution native and complex structures of thennostable_-mannanase from Thermomonospora fusca: substrate specificity in glycosyl hydrolase family 5. Structure 1998.6: 1433-1444
    [167.] Quiocho FA., Protein-carbohydrate interactions: basic molecular features. Pure Appl. Chem. 1989.61: 1293-1306
    [168.] Rouvinen J, Bergfors T, Teeri T, Knowles JKC, Jones TA., Three-dimensional structure of cellobiohydrolase Ⅱ from Trichoderma reesei. Science 1990. 249: 380-386
    [169.] Spezio M, Wilson DB, Karplus PA., Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 1993.32: 9906-9916
    [170.] Spurlino JC, Rodseth LE, Quiocho FA., Atomic interactions in pwteincarbohydrate complexes: tryptophan residues in the periplasmic maltodextrin receptor for active transport and chemotaxis. J. Mol. Biol. 1992.226: 15-22
    [171.] Dominguez R, Souchon H, Lascombe MB, Alzari PM., The crystal structure of a family 5 endoglucanase mutant in complexed and uncomplexed forms reveals an induced fit activation mechanism. J. Mol. Biol. 1996.257: 1042-1051
    [172.] Davies GJ, Dauter M, Brzozowski AM, Bjrnvad ME, Andersen KV, Sch¨ulein M., Structure of the Bacillus agaradherans family 5 endoglucanase at 1.6° A and its cellobiose complex at 2.0°A resolution. Biochemistry 1998. 37: 1926-1932
    [173.] Ducros V, Czjzek M, Belaich A, Gaudin C, Fierobe H-P, et al., Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 1995.3: 939-949
    [174.] Sakon J, Adney WS, Himmel ME, Thomas SR, Karplus PA., Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with
    
    cellotetraose. Biochemistry 1996.35: 10648-10660
    [175.] Sanford PA, Baird J., Industrial utilization of polysaccharides. See Ref. 8a, 1983. pp. 411-490
    [176.] Skj°ak-Braek G, Martinsen A., Applications of some algal polysaceharides in biotechnology. In Seaweed Resources in Europe: Uses and Potential, ed. MD Guiry, GBlunden, 1991.pp. 219-257. NewYork: Wiley & Sons
    [177.] Skj°ak-Braek G, Grasdalen H, Larsen B. 1986. Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr. Res. 154: 239-50
    [178.] Sutherland IW., Novel and established applications of microbial polysaccharides. Trends Biotechnol. 1998. 16: 41-46
    [179.] Boyd J, Turvey JR., Structural studies of alginic acid, using a bacterial poly-_-Lguluronate lyase. Carbohydr. Res. 1978. 66: 187-194
    [180.] Chitnis CE, Ohman DE., Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. J. Bacteriol. 1990.172: 2894-2900
    [181.] Davidson IW, Sutherland IW, Lawson CJ., Purification and properties of an alginate lyase from a marine bacterium. Biochem. J. 1976.159: 707-713
    [182.] Fujibayashi S, Habe H, Nisizawa K., Heterogeneity of alginate in special reference to the enzymatic degradation. J. Biochem. 1970.67: 37-45
    [183.] Kashiwabara Y, Suzuki H, Nisizawa K., Alginate lyases of Pseudomonads. J. Biochem. 1969.66: 503-512
    [184.] Min KH, Sasaki SF, Kashiwabara Y, Suzuki H, Nisizawa K., Multiple components of endo-polyguluronide lyase of Pseudomonas sp. J. Biochem. 1977.81: 539-546
    [185.] Min KH, Sasaki SF, Kashiwabara Y, Umekawa M, Nisizawa K., Fine structure of SMG alginate fragment in the light of its degradation by alginate lyases of Pseudomonas sp. J. Biochem. 1977. 81: 555-562
    [186.] stgaard K., Enzymatic microassay for the determination and characterization of alginates. Carbohydr. Polym. 1992. 19: 51-59
    [187.] stgaard K., Determination of alginate composition by a simple enzymatic assay.
    
    Hydrobiologia 1993.260/261: 513-520
    [188.] Butler DM, Ostgaard K, Boyen C, Evans LV, Jensen A, Kloareg B., Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata. J. Exp. Bot. 1989.40: 1237-1246
    [189.] Ducreux G, Kloareg B., Plant regeneration from protoplasts of Sphacelaria(Phaeophyceae). Planta 1988. 174: 25-29
    [190.] Kloareg B, Poine-Fuller M, Gibor A., Mass production of viable protoplasts from Macrocystis pyrifera(L.) C. Ag.(Phaeophyta). Plant Sci. 1989.62: 105-112
    [191.] Kloareg B, Quatrano RS., Isolation of protoplasts from zygotes of Fucus disticus(L.) Powell(Phaeophyta). Plant Sci. 1987. 50: 189-194
    [192.] Saga N, Sakai Y., Isolation of protoplasts from Laminaria and Porphyra. Bull. Jpn. Soc. Sci. Fish. 1984.50: 1085
    [193.] Tokuda H, Kawashima Y., Protoplast isolation and culture of a brown alga, Undaria pinnatifida. In Agal Biotechnology, ed. 1988.
    [194.] Millner PA, Callow ME, Evans LV., Preparation of protoplasts from the green alga Enteromorpha intestinalis(L.) Link. Planta 1979. 147: 174-177
    [195.] Saga N., Isolation of protoplasts from edible seaweeds. Bot. Mag. 1984.97: 423-427
    [196.] Saga N, Polne-Fuller M, Gibor A., Protoplasts from seaweeds: production and fusion. Beih. Nova Hedwigia 1986.83: 37-43
    [197.] Quatrano RS, Stevens PT., Cell wall assembly in Fucus zygotes. Ⅰ. Characterization of the polysaccharide components. Plant Physiol. 1976. 58: 224-231
    [198.] VreelandV, LaetschWM., Agelling carbohydrate in algal cell wall formation. In Organization and Assembly of Plant and Animal Extracellular Matrix, ed. WS Adair, RP Mecham, 1990.pp. 137-171. San Diego, CA: Academic
    [199.] Currie AJ, Turvey JR., An enzymatic method for the assay of D-mannuronan C-5 epimerase activity. Carbohydr. Res. 1982.107: 156-159
    [200.] Piggott NH, Sutherland IW, Jarman TR., Enzymes involved in the biosynthesis of alginate by Pseudomonas aeruginosa. Eur. J. Appl. Microbiol. Biotechnol. 1981.13: 179-183
    
    
    [201.] Heyraud A, Colin-Morel P, Gey C, Chavagnat F, Guinand M, Wallach J., An enzymatic method for preparation of homopolymannuronate blocks and strictly alternating sequences of mannuronic and guluronic units. Carbohydr. Res. 1998.308: 417-422
    [202.] Ochi.Y, Takeuchi T, Murata K, Kawabata Y, Kusakabe I., Asimple method for preparation of poly-mannuronate using poly-guluronate lyase. Biosci. Biotechnol. Biochem. 1995.59: 1560-1561
    [203.] Mrsny RJ, Daugherty AL, Short SM, Widmer R, SiegelMW, Keller G-A., Distribution of DNA and alginate in purulent cystic fibrosis sputum: implications to pulmonary targeting strategies. J. Drug Target. 1996.4: 233-243
    [204.] Fuchs HJ, Borowitz DS, Christiansen DH, Morris EM, Nash ML, et al., Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N. Engl. J. Med. 1994. 331: 637-642
    [205.] Mrsny RJ, Lazazzera BA, Daugherty AL, Schiller NL, Patapoff TW., Addition of a bacterial alginate lyase to purulent CF sputum in vitro can result in the disruption of alginate and modification of sputum viscoelasticity. Pulm. Pharmacol. 1994.7: 357-366
    [206.] Bayer AS, Speert DP, Park S, Tu J, Witt M, et al., Functional role of mucoid exopolysaccharide(alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect. Immun. 1991.59: 302-308
    [207.] Eftekhar F, Speert DP., Alginase treatment of mucoid Pseudomonas aeruginosa enhances phagoeytosis by human monocyte-derived macrophages. Infect. Immun. 1988.56: 2788-2793
    [208.] Bayer AS, Park S, Ramos MC, Nast CC, Eftekhar F, Schiller NL., Effects of alginase on the natural history and antibiotic therapy of experimental endocarditis caused by mucoid Pseudomonas aeruginosa. Infect. Immun. 1992.60: 3979-3985
    [209.] Hatch RA, Schiller NL., Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1998. 42: 974-977
    
    
    [210.] Soothill JS., Treatment of experimental infections of mice with bacteriophages. J. Med. Microbiol. 1992.37: 258-261
    [211.] Soothill JS., Bacteriophage prevents destruction of skin grails by Pseudomonas aeruginosa. Burns 1994.20: 209-211
    [212.] Acart¨urk F, Takka S., Calcium alginate microparticles for oral administration. Ⅱ. Effect of formulation factors on drug release and drug entrapment efficiency. J. Microencapsul. 1999.16: 291-301
    [213.] Takka S, Acarti§urk F., Calcium alginate microparticles for oral administration. Ⅰ. Effect of sodium alginate type on drug release and drug entrapment effi-ciency. J. Microencapsul. 1999.16: 275-290
    [214.] Quong D, Neufeld RJ., DNAprotection from extracapsular nucleases, within chitosanor poly-L-lysine-coated alginate beads. Biotechnol. Bioeng. 1998.60: 124-134
    [215.] Aggarwal N, HogenEsch H, Guo P, North A, Suckow M, Mittal SK., Biodegradable alginate micwspheres as a delivery system for naked DNA. Can. J. Vet. Res. 1999. 63: 148-152
    [216.] Ross CJD, Ralph M, Chang PL., Delivery of recombinant gene products to the central nervous system with nonautologous cells in alginate microcapsules. Hum. Gene Ther. 1999.10: 49-59
    [217.] Ayni'e I, Vauthier C, Chacun H, FattalE, Couvreur P., Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 1999.9: 301-312
    [218.] Kiss MA, Venyige T, Stefanovits-Banyai E, Sisak Cs, Boross L., Extractive fermentation of ethanol using alginate gel co-entrapped yeast cells(Saccharomyces bayanus) and lipase enzyme. Acta Aliment. 1999.28: 49-57
    [219.] Al-Hajry HA, Al-Maskry SA, Al-Kharousi LM, El-Mardi O, Shayya WH, Goosen MFA., Electrostatic encapsulation and growth of plant cell cultures in alginate. Biotechnol. Prog. 1999.15: 768-774
    [220.] Torres LG, Sianchez-de-la-Vega A, Beltrian NA, Jimienez BE., Production and
    
    characterization of a Ca-alginate bioeatalyst for removal of phenol and chlorophenols from wastewaters. Process Biochem. 1998.33: 625-634
    [221.] Navon A, Keren S, Salame L, Glazer I., An edible-to-insects calcium alginate gel as a carder for entomopathogenie nematodes. Biocontrol Sci. Technol. 1998.8: 429-437
    [222.] Oerther S, Le Gall H, Payan E, Lapicque F, Presle N, et al., Hyaluronatealginate gel as a novel biomaterial: mechanical properties and formation mechanism. Biotechnol. Bioeng. 1999.63: 206-215
    [223.] Kim H-J, Lee C-H, Oh J-S, Shin B-A, Oh C-S, et al., Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application. J. Biomater. Sci. Polym. Ed. 1999.10: 543-556
    [224.] Lin S-S, Ueng SWN, Lee S-S, Chan EC, Chert K-T, et al., In vitro elution of antibiotic from antibiotic-impregnated biodegradable calcium alginate wound dressing. J. Trauma 1999. 47: 136-141
    [225.] Lindenhayn K, Perka C, Spitzer R-S, Heilmann H-H, Pommerening K, et al., Retention of hyaluronic acid in alginate heads: aspects for in vitro cartilage engineering. J. Biomed. Mater. Res. 1999.44: 149-155
    [226.] Martinsen A, Skj°ak-Braek G, Smidsrd O., Alginate as immobilization material. Ⅰ. Correlation between chemical and physical properties of alginate gel beads.Biotechnol. Bioeng. 1989. 33: 79-89
    [227.] Skj°ak-Braek G, Murano E, Paoletti S., Alginate as immobilization material. Ⅱ. Determination of polyphenol contaminants by fluorescence spectroscopy, and evaluation of methods for their removal. Biotechnol. Bioeng. 1989. 33: 90-94
    [228.] Skj°ak-Braek G, Smidsrd O, Larsen B., Tailoring of alginates by enzymatic modification in vitro. Int. J. Biol. Macromol. 1986.8: 330-336
    [229.] Grasdalen H, Larsen B, Smidsrod O., A P.M.R. study of the composition and sequence of uronate residues in alginates. Carbohydr. Res. 1979.68: 23-31
    [230.] Haug A, Larsen B., Quantitative determination of the uronie acid composition of alginates. Acta Chem. Scand. 1962.16: 1908-1918
    
    
    [231.] Larsen B, Smidsrd O, Haug A, Painter T., Determination by a kinetic method of the nearest-neighbour frequencies in a fragment of alginic acid. Acta Chem. Scand. 1969.23: 2375-2388
    [232.] Morris ER, Rees DA, Robinson G, Young GA., Competitive inhibition of interchain interactions in polysaccharide systems. J.. Mol. Biol. 1980. 138: 363-374
    [233.] Penman A, Sanderson GR., A method for the determination of uronic acid sequence in alginates. Carbohydr. Res. 1972.25: 273-282
    [234.] Smidsrd O, Haug A., Properties of poly(1, 4-hexauronates) in the gel state. Ⅱ. Comparison of gels of different chemical composition. Acta Chem. Scand. 1972.26: 79-88
    [235.] Smidsrd O, Haug A, Lian B., Properties of poly(1, 4-hexauronates) in the gel state. Ⅰ. Evaluation of a method for the determination of stiffness. Acta Chem. Scand. 1972. 26: 71-78
    [236.] Smidsrd O, Haug A, Whittington SG., The molecular basis for some physical properties ofpolyuronides. Acta Chem. Scand. 21972.6: 2563-2566
    [237.] Sutherland IW., Microbial exopolysaccharides: structural subtleties and their consequences. Pure Appl. Chem. 1997.69: 1911-1917
    [238.] Min KH, Sasaki SF, Kashiwabara Y, Nisizawa K., Substrate specificity of endo-polyguluronide lyases from Pseudomonas sp. on the basis of their kinetic properties. J. Biochem. 1977.81: 547-553
    [239.] Brown BJ, Preston JF Ⅲ, Ingram LO., Cloning of alginate lyase gene(alxM) and expression in Escherichia coli. Appl. Environ. Microbiol. 1991.57: 1870-1872
    [240.] Cohen GH, Johnstone DB., Extracellular polysaccharides of Azotobacter vinelandii. J. Bacteriol. 1964.88: 329-338
    [241.] Gorin PAS, Spencer J-FT., Exocellular alginic acid from Azotobacter vinelandii. Can. J. Chem. 1966.44: 993-998
    [242.] Lawson GJ, Stacey M., Immunopolysaccharides. Ⅰ. Preliminary studies of a polysaccharide from Azotobacter chroococcum, containing a uronic acid. J. Chem. Soc. 1954: 1925-1931
    [243.] Haug A, Larsen B, Smidsrd O., Uronic acid sequence in alginate from different sources.
    
    Carbohydr. Res. 1974.32: 217-25
    [244.] Painter TJ., Algal polysaceharides. See Ref. 8a, 1983. pp. 195-285
    [245.] Oppenhimer CH., Zobell CE., The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J Mar Res, 1952, 11: 10~18.
    [246.] Furniss AL, Lee JV, Donovan TJ., Public health laboratory service, Monograph series No.11[M]. London: Her Majesty's Stationery Office, 1978.4.
    [247.] 沈萍,范秀容,李广武.微生物学实验.北京:高等教育出版社,1999.26~46.
    [248.] Holt JG., Krieg NR., Sneath PHA., et al., Bergey's Manual of Determinative Bacteriology. 9th ed. Baltimore: William and Wilkins, 1994. 260~274.
    [249.] 奥斯伯 F,布伦特 R,金斯顿 R E,等.精编分子生物学实验指南.北京:科学出版社,1998.39.
    [250.] Oliver JD., Taxonomic scheme for the identification of marine bacteria. Deep Sea Res, 1982, 29: 795~798.
    [251.] Lowry, O.H., Rosebrough, N.J., Farr, A.L. Randall, R.L., Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951.193, 265-275.
    [252.] Laemmli UK., Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature, 1970, 227(259): 680-685
    [253.] Yoshiko I, Ryoko A, Ken-ichi I, Tatsuya O, Hisataka F, Shinziro H, Tsuyoshi M., Purification and Characterization of Bifunctional Alginate Lyase from Alteromonas sp. strain No. 272 and its action on saturated oligomeric substrates. Biosci Biotechnol Biochem, 2001, 65(1): 133-142
    [254.] Tseng CH, Yamaguchi K, Kitamikado M., Two types of alginate lyase from a marine bacterium Vibrio sp. AL-9. Nippon Suisan Gakkaishi, 1992, 58(4): 743-749
    [255.] 宋凯,于文功,韩峰,韩文君,李京宝,海洋弧菌褐藻胶裂解酶的分离纯化及性质,生物化学与生物物理学报,2003,35(5),473-477.
    [256.] Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual(3rd Edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 2001
    [257.] Marmur, J., A procedure for the isolation of deoxyribonucleic acid from microorganisms.
    
    J. Mol. Biol. 1961.3, 208-218.
    [258.] Marki, H., Mori, A., Fujiyama, K., Kinoshita, S. and Yoshida T., Cloning, sequence analysis and expression in Escherichia coli of a gene encoding an alginate lyase from Pseudomonas sp. OS-ALG-9. J. Gen. Microbiol. 1993.139, 987-993.
    [259.] Ertesvag, H., Erlien, F., Skjak-Braek, G., Rehm, B.H. and Valla, S., Biochemical properties and substrate specificities of a recombinantly produced Azotobacter vinelandii alginate lyase. J. Bacteriol. 1998.180, 3779-3784.
    [260.] Pecina, A., Pascual, A. and Paneque, A.,. Cloning and expression of the algL gene, encoding the Azotobacter chroococcum alginate lyase: purification and characterization of the enzyme. J. Bacteriol. 1999.181, 1409-1414.
    [261.] Preston, L.A., Wong, T.Y., Bender, C.L. and Schiller, N.L., Characterization of alginate lyase from Pseudomonas syringae pv. Syringae. J. Bacteriol. 2000.182, 6268-6271.
    [262.] Sugimura, I., Sawabe, T. and Ezura, Y., Cloning and sequence analysis of Vibrio halioticoli genes encoding three types of polyguluronate lyase. Mar. Biotechnol. 2000.2, 65-73.
    [263.] Sawabe, T., Takahashi, H., Ezura, Y. and Gacesa p., Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene(alyPEEC) encoding the extracellular alginate lyase. Carbohydr. Res. 2001.335, 11-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700