用户名: 密码: 验证码:
脓毒症时内皮细胞损伤与肾、肺功能损害间关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
创伤、感染均可诱发全身炎症反应综合征(Systemic Inflammatory Response Syndrome,SIRS),其中由感染引起的SIRS被称为脓毒症(Sepsis)。最近美国和欧洲的流行病学调查表明,脓毒症的发病率约为住院病人的2-11%,其中重症脓毒症和脓毒性休克患者死亡率则高达30-50%以上。由于目前脓毒症的治疗措施尚无显著进展,只有早期诊断、早期治疗才有助于降低其死亡率。内皮细胞既是脓毒症中的效应细胞和靶细胞,又在维持机体正常生理中扮演重要角色。因此,我们推测反映内皮细胞损伤的指标能间接反映脓毒症时组织损伤程度。监测内皮细胞状态可望能更早、更敏感地判断机体脏器功能损害程度。
     目的
     本研究通过检测脓毒症动物模型外周血液及肺、肾组织中内皮细胞特异性分子-1 (ESM-1)表达水平的变化,从而了解脓毒症时内皮细胞损伤的程度,同时观察肺、肾组织学和功能的改变,分析内皮细胞损伤与其功能损害间的关系。同时选择35例多发伤病例,研究其内皮细胞损伤情况与全身病情变化的关系,为多发伤患者脏器功能损害的评估提供实验依据。
     方法
     1、大鼠脓毒症模型的制作36只清洁级雄性SD大鼠按完全随机分组分为6组,即正常对照组,假手术(sham)组,盲肠结扎穿孔(cecal ligation and puncture,CLP)3h组,CLP6h组,CLP12h组和CLP24h组,每组6只。CLP大鼠结扎盲肠全长,16号针头穿孔3个;sham组仅做剖腹术。
     2、炎症反应(sirs)的检测36只大鼠(每组6只),观察呼吸、体温变化,鼠尾采血计数全血白细胞数量,外周血检测IL-6水平变化。
     3、大鼠CLP后ESM-1表达变化的检测36只大鼠(每组6只)相应时间点采集血清ELISA法检测外周血ESM-1表达水平;通过免疫组化方法检测肺、肾组织ESM-1表达情况。
     4、大鼠CLP后肺、肾功能变化的检测应用全自动生化分析仪检测36只大鼠(每组6只)BUN和Cr的水平,血气分析仪检测氧分压、二氧化碳分压、PH等血气变化;同时HE染色观察肺脏、肾脏的病理组织学变化。
     5、分析大鼠ESM-1表达水平变化与肾、肺功能改变的相关性。
     6、多发伤及并发脓毒症患者内皮细胞损伤与病情变化的相关性分析选择多发伤并发脓毒症患者35例,在入院后第1、3、7天采血, ELISA法检测患者外周血ESM-1、VEGF表达水平,将其变化与ISS评分及并非脓毒症与否进行相关性分析。
     结果
     1、大鼠脓毒症模型的一般评价正常对照和sham组的白细胞数量、体温无显著差异。CLP3h组白细胞数量、体温显著升高(P<0.05),之后逐渐下降;CLP各组呼吸频率随时相点的变化显著增快(P<0.01);CLP组血清IL-6表达水平随时间的延长持续增长,但直到CLP后6h时IL-6增高幅度才具有统计学意义(P<0.05),12h组、24h组IL-6表达水平进一步增加(P<0.01)。
     2、CLP后ESM-1表达变化与正常对照组和sham组比较,血清ESM-1水平在CLP后6h出现明显升高(P<0.05),在CLP后12h、24h出现显著升高(P<0.01);CLP3h组肺组织ESM-1免疫组化染色阳性表达增多,CLP12h、24h组肺组织ESM-1的积分光密度值和平均光密度值有显著增高(P<0.05);CLP各组肾组织ESM-1的表达均明显增高(P<0.01);随时相点的变化其表达呈进行性增高,与CLP3h、6h组比较,CLP12h、24h组肾组织ESM-1的积分光密度值和平均光密度值有显著差异(P<0.05)。
     3、大鼠CLP后肺、肾脏功能变化CLP3h时部分肺泡扩张或塌陷,6h和12h时可见较大面积的肺泡闭塞,且肺泡内红细胞渗出明显,有微血栓形成。CLP24h可见较广泛的肺泡内出血,肺间质水肿,局灶性肺不张,与正常对照组相比,CLP组3h即出现PaO_2、PH下降,且随时间变化呈进行性下降,而PaCO_2持续升高,均在CLP6h后具有统计学意义(P<0.05)。CLP后3h即可见肾小球毛细血管淤血,并在CLP6h与12h组逐渐加重。CLP后24h可见小管内有脱落的上皮细胞。BUN水平在CLP后12h出现显著升高(P<0.05);Cr水平在CLP后24h出现显著升高(P<0.05)。
     4、脓毒症大鼠ESM-1表达与PaO_2、PaCO_2、BUN、Cr、肺及肾组织损伤的相关分析相关分析表明,血清ESM-1表达水平变化与PaO_2、PaCO_2和肺组织损伤呈显著相关性(r=-0.659,P=0.000;r=0.559,P=0.000;r=0.825,P=0.000);肺组织中ESM-1表达水平变化与PaO_2、PaCO_2和肺组织损伤呈显著相关性(r=-0.994,P=0.000;r=0.996,P=0.000;r=0.978,P=0.001);血清ESM-1表达水平变化与BUN、Cr和肾组织损伤呈显著正相关(r=0.799,P=0.000;0.514,P=0.002;r=0.802,P=0.000);肾组织中ESM-1的表达水平变化与BUN、Cr和肾组织损伤呈显著正相关(r=0.946,P=0.000;r=0.860,P=0.028;r=0.980,P=0.001)。
     5、多发伤并发脓毒症患者ESM-1、VEGF表达水平的变化与正常对照组比较,血清ESM-1重伤组第7天表达水平显著增高,血清VEGF轻伤组及重伤组均显著增高,差异有统计学意义(P<0.01);重伤组第7天较轻伤组的血清ESM-1浓度显著增高,差异有统计学意义(P<0.05)。重伤组较轻伤组的血清VEGF含量显著增高(P<0.01)。并发脓毒症组与非脓毒症组间比较,第3、7天血清ESM-1含量比较均有显著增高,第1、3、7天血清VEGF含量均显著增高,差异有统计学意义(P<0.01)。
     结论
     1、CLP后外周血中ESM-1表达水平持续性升高,大鼠肺、肾脏组织学水平进行性损伤加重,肺脏及肾脏组织中ESM-1表达持续增高。
     2、CLP后大鼠肺、肾脏组织学检查进行性损伤,PaO_2进行性降低,PaCO_2、BUN、Cr显著增高,功能出现明显异常,其损害程度与ESM-1表达水平呈显著正相关关系,提示ESM-1表达水平的变化对创伤后脏器功能损害的评估具有较重要意义。
     3、多发伤患者外周血ESM-1、VEGF的表达水平进行性升高,并发脓毒症患者外周血ESM-1、VEGF的表达水平增高更为显著,能间接反映脓毒症时内皮细胞损伤程度,其表达水平与ISS评分及并发脓毒症与否呈明显正相关关系,可能对脓毒症时器官损害有一定临床意义。
Sepsis is a systemic inflammatory response syndrome induced by infection. Recently, American and European surveys indicated that the incidence of sepsis occupyed 2-11% of all inpatients. Despite improved supportive care, the hospital mortality reached to 30%-50% by severe sepsis and septic shock. As there is no significant improvement in treatment for sepsis, only early diagnosis and treatment are available to reduce the mortality of sepsis. Endothelial cell is a key involved in the pathogenesis of sepsis as both a target cell and an effector cell. Besides, endothelial cell plays important roles under physiologic conditions. Therefore, we hypothesized that marker of endothelial cell damage could indirectly reflect the severity degree of tissue damage in sepsis and monitoring endothelial cell status could more sensitively to detect organ function damage in early phase.
     Objective
     In this experiment, the damages of endothelial cells will be evaluated by ESM-1 in peripheral blood, kidney, and lung in rats with sepsis resulting from cecal ligation and puncture(CLP). Meanwhile, the changes of histology and function of lung and kidney were observed to analyze their relationships with endothelial damages. Meanwhile,35 cases of multiple injury patients were applied to explore the correlation between endothelial damage and the wounded’conditions,which may supply the experimental basement for evaluation of multiple injury patient’s organ damage.
     Material and Methods
     1. Preparation the model of rat with sepsis 36 rats were randomly divided into 6 groups:normal control, sham operation, CLP3h, CLP6h, CLP12h and CLP24h, with 6 rats in each group. CLP was performed as ligating the cecum below the ileocecal valve and puncturing thrice with a 16-gauge needle.Sham surgery was only performed laparotomy.
     2. Determination of SIRS Body temperature and breathing frequency of 36 rats were monitored. Blood were collected from tail vein to count the number of leucocytes.The serum IL-6 was measured by enzyme linked immunosorbent assay(ELISA)simultaneously.
     3. ESM-1 were determined in sepsis rats The serum ESM-1 was measured by ELISA and the expression of ESM-1 in the kidney and the lung were determined by immunohistochemistry at every time point.
     4. Functional changes of the kidney and the lung The levels of BUN and Cr of all rats were measured by automatic biochemistry analyzer. PaO_2, PaCO_2 and PH were measured by blood gas analyzer. The histologic change of lung and kidney were observed with H.E.staining.
     5. The correlation analysis between ESM-1 and functional changes of the rats’kidney and lung.
     6. The correlation analysis between endothelial cells’damages and severity of multiple injury patients blood of trauma patients, who were divided into sepsis and non-sepsis group, were collected on day 1,3,7 after admission. The serum ESM-1 and VEGF were measured by ELISA. Then analyzed the correlation of ESM-1, VEGF, Injury Severity Score, and sepsis.
     Results
     1. General evaluation of rat CLP model There was no significant difference between the normal and sham group. The amount of leukocyte and body temperature rosed in CLP3h group (P<0.05)and then decreased gradually; the breath frequency of all CLP group were quicker than others(P<0.01).The levels of IL-6 increased continuously with time passing after CLP operation.
     2. The change of ESM-1 after CLP Compared with the normal control and sham groups,the levels of serum ESM-1 increased after CLP 6h(P<0.05)and obviously in CLP12h and 24h(P<0.01). Immunohistochemistry result displayed that positive staining of ESM-1 singnificantly higher in kidney and lung tissue in CLP3h、6h、12h、24h group than normal control group ( P<0.01); in CLP12h、24h group ESM-1 integral luminosity, average luminosity singnificantly increased than CLP3h、6h group(P<0.05) .
     3. The function change of rat’s lung and kidney after CLP Part alveolar ectasia or collapse imerged at 3h after CLP, and large area atelectasis are found in CLP6h and CLP12h group with erthrocyte exdudation, and microthrombosis in pulmonary alveoli. Extensive intra-alveolar hemorrhage, pulmonary mesenchymal edema, and focal atelectasis were observed at 24h after CLP. Compared with the normal controls, the PaO_2 and pH decreased at 3h after CLP and decreased continuously, while PaCO_2 continuously increased.Renal glomerulus engorgement imerged at 3,6,12h after CLP and tuble epithelial cells cast were observed at 24h after CLP. BUN and Cr were first increased remarkably in CLP12h and 24h respectively(P<0.05).
     4. Correlation between ESM-1 of rat with sepsis and PaO_2,PaCO_2,BUN,Cr,lung and kidney damage Serum ESM-1 had significantly negative correlation with PaO_2(P<0.01) and it had significantly positive correlation with PaCO_2 and lung tissue injury.The result of ESM-1 in the lung was as the same as that in serum. ESM-1 in the Serum was positively correlated with BUN、Cr, and kidney tissue injury. ESM-1 in the kidney was positively correlated with BUN、Cr, and kidney tissue injury.
     5. Changes of ESM-1 and VEGF in multiple trauma patients with sepsis Compared with the normal control group,the levels of serum ESM-1 increased in severe injury group at 7d, and serum VEGF increased in minor injury group and severe injury group(P<0.01). Moreover, the levels of serum ESM-1 in severe injury group were obviously higher than that of minor injury group at 7d. However the levels of serum VEGF in severe injury group were obviously higher than that of minor injury group at every time point. Compared with non-septic trauma patients,the levels of serum ESM-1of trauma patients with sepsis increased remarkably at 3d and 7 d and the levels of serum VEGF increased at every time point.
     Conclusion
     1. After CLP, the level of ESM-1 in peripheral blood and in kidney and lung tissue increased continuously meanwhile lung and kidney tissue damages aggravated continuously.
     2. Lung and kidney tissue damages aggravated continuously after CLP with decreasing PaO_2 but increasing PaCO_2,BUN and Cr,moreover the level of ESM-1 was significantly positively correlated with tissue injury.Thus the results indicated that the changes of ESM-1 played important role in evaluation of organ function after trauma.
     3. The level of serum ESM-1and VEGF increased continuosly in multiple injury patients, moreover the level of serum ESM-1and VEGF was even higher in the trauma patients with sepsis. The level of serum ESM-1and VEGF may indirectly reflect the endothelial damages and they had significantly positive correlation with ISS and incidence of sepsis, so they were clinically available in organ injury in sepsis.
引文
1. Bone RC,Balk RA,Cerra FB,et al.Definitions for sepsis and organ failure andguidelines for the use of innovative therapies in sepsis.The ACCP/SCCMConsensus Conference Committee[J].American College of Chest Physicians/Society of Critical Care Medicine. Chest,1992,101(6):1644-1655.
    2.姚咏明,盛志勇.我国创伤脓毒症基础研究新进展[J].中华创伤杂志,2003,19(1):9-12.
    3. Henneke P,Golenbock DT.Innate immune recognition of lipopolysaccharide by endothelial cells[J].Crit Care Med,2002,30(5 Suppl):S207-S213.
    4. Volk T,Kox WJ.Endothelium function in sepsis[J].Inflamm Res,2000,49(5):185-198.
    5. Scaffidi P,Misteli T,Bianchi ME.Release of chromatin protein HMGB1 by necrotic cells triggers inflammation[J].Nature,2002,418(6894):191-195.
    6. Lorraine BW,Mark DE.Significance of Von Willebrand Factor in Septic and Nonseptic patients with Acute Lung Injury[J].Am J Respir Crit Care Med,2004,170(7):766-772.
    7. Gong M,Wilson M,Kelly T,et al.HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner[J].Clin Invest,2003, 111(10):1579-1587.
    8. Makin AJ,Blann AD,Chung NA,et al,Assessment of endothelial damage in atherosclerotic vascular disease by quantification of circulating endothelial cells.Relationship with von Willebrand factor and tissue factor[J].Eur Heart,2004, 25(5):371-376.
    9. Chong AY,Lip GY,Freestone B,et al.Increased circulating endothelial cells in acute heart failure:comparison with von Willebrand factor and soluble E-selectin[J].Eur J Heart Fail,2006,8(2):167-172.
    10. Megarbane B,Marchal P,Marfaing-Koka A,et al.Increased diffusion of soluble adhesion molecules in meningitis,severe sepsis and systemic inflammatory response without neurological infection is associated with intrathecal shedding in cases of meningitis[J]. Intensive Care Med,2004,30(5):867-874.
    11. Erdbruegger U,Haubitz M,Woywodt A ,et al.Circulating endothelial cells:a novel marker of endothelial damage[J].Clin Chim Acta,2006,373(1-2):17-26.
    12. Lassalle P, Molet S, Janin A, et al.ESM-1 is a novel human endothelial cell-specificmolecule expressed in lung and regulated by cytokines[J].Biol Chem,1996, 271:20458–20464.
    13. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med, 2001, 29:1303–1310.
    14. Aird WC: The role of the endothelium in severe sepsis and multiple organ dysfunction syndromes [J]. Blood, 2003,101:3765–3777.
    15. Bechard D, Meignin V, Scherpereel A, et al.Characterization of the secreted form of endothelial-cell-specific molecule 1 by specific monoclonal antibodies [J]. Vasc Res, 2000,37:417–425.
    16. Bechard D, Gentina T, Delehedde M, etnal.Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity [J]. Biol Chem,2001,276:48341–48349.
    17. Bechard D, Scherpereel A, Hammad H, et al.Human endothelial-cell specific molecule-1 binds directly to the integrin CD11a/CD18 (LFA-1) and blocks binding to intercellular adhesion molecule-1[J]. Immunol, 2001,167:3099–3106.
    18. A. Scherpereel, T.Gentina, B.Grigoriu, S.Senechal, A.Janin, A.Tsicopoulos, F.Plenat, D. Bechard, A.B. Tonnel, P. Lassalle, Overexpressionof endocan induces tumor formation[J], Cancer Res,2003,63:6084–6089.
    19. J.C. Tsai, J. Zhang, T. Minami, C. Voland, S. Zhao, X. Yi, P. Lassalle, P.Oettgen, W.C. Aird, Cloning and characterization of the human lung endothelial-cell-specific molecule-1 promoter[J].Vasc. Res,2002,39:148–159.
    20. M. Aitkenhead, S.J. Wang, M.N.Nakatsu,J.Mestas, C.Heard,C.C.Hughes, Identification of endothelial cell genes expressed in an in vitromodel of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM[J],Microvasc. Res, 2002,63:159–171.
    21. Abid, M.R.Schoots, I.G, Spokes, K.C.Wu, S.Q, Mawhinney, C, Aird,W.C., Vascular endothelial growth factor-mediated nduction of manganesesuperoxide dismutase occurs through redox-dependent regulation of forkhead and IkappaB/NF- kappaB[J]. Biol. Chem, 2004,279:44030–44038.
    22. Bussolati B,Dunk C,Grohman M,et al.Vascular endothelial growth factorreceptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitricoxide[J].Am J Pathol,2001,159(3):993-1008.
    23. Lee OH,Xu J,Fueyo J,et al.Expression of the receptor tyrosine kinase tie2 in neoplastic glial cells is associated with integrin beta1-dependent adhesion to the extracellular matrix[J].Mol Cancer Res,2006,4(12):915-926.
    24. Mauro E, Rigolin GM, Fraulini C, et al.Mobilization of endothelial progenitor cells in patients with hematological malignancies after treatment with filgrastim and chemotherapy for autologous transplantation [J].Eur J Haematol,2007, 78(5):374-380.
    25.曹红卫,郭毅斌,王宁等.青蒿素对脓毒症大鼠的保护作用[J].第三军医大学学报,2005,27(17):1769-1772.
    26. Wichmann MW,Haisken JM,Ayala A,et al.Melatonin administration following hemorrhagic shock decreases mortality from subsequent septic challenge[J].Surg Res,1996,65:109-114.
    27. Zegdi R, Fabre O, Cambillau M, et al.Exhaled nitric oxide and acute lung injury in a rat model of extracorporeal circulation [J].Shock,2003, 20(6):569-574.
    28. Jablonski P, Howden BO, Rae DA, et al. An experimental model for assessment of renal recovery from warm ischemia [J].Transplantation,1983,35:198-204.
    29. Aird WC: The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome[J]. Blood, 2003,101:3765–3777.
    30. Marshall JC, Vincent JL, Fink MP, et al: Measures, markers, and mediators: Toward a staging system for clinical sepsis. A report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25–26, 2000[J].Crit Care Med, 2003,31:1560–1567.
    31. Roch A, Allardet-Servent J, Michelet P, et al. NH2 terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients [J]. Crit Care Med ,2005, 33:1001–1007.
    32. Gibot S, Cravoisy A, Kolopp-Sarda MN, et al.Time-course of sTREM (soluble triggering receptor expressed on myeloid cells)-1, procalcitonin, and C-reactive protein plasma concentrations during sepsis [J]. Crit Care Med, 2005, 33:792–796.
    33. Scherpereel, A, Depontieu, F, Grigoriu, B, et al.Endocan, a new endothelial marker in human sepsis [J]. Crit. Care Med,2006, 34,532–537.
    34. Shih, S.C, Robinson, G.S, Perruzzi, C.A, et al. Molecular rofiling of angiogenesis markers[J]. Am. J. Pathol,2002,161, 35–41.
    35. Remick DG,Newcomb DE,Bolgos GL,et al.Comparison of the mortality and inflammatory response of two models of sepsis:lipopolysaccharide vs.cecal ligation and puncture[J].Shock,2000,13(2):110-116.
    36. Fein AM,Calalang-Colucci MG,Calalang-Colucci MG.Acute lung injury and acute respiratory distress syndrome in sepsis and septic shock[J].Crit Care Clin,2000, 16(3):289-317.
    37.谢艳萍,王建春,陈才平等.LPS对鼠肺微血管内皮细胞水通道蛋白-1表达及其功能的影响[J].中国病理生理杂志,2005,21(1):104-7.
    38. Meduri G U.Clinical review:a paradigm shift:the directional effect of inflammation on bacterial growth.Clinical implications for patients with acute respiratory distress syndrome[J].Crit Care,2002,6(1):24-9.
    39. Laterre PF,Wittebole X,Dhainaut JF.Anti-coagulant therapy in acute lung injury[J].Crit Care Med,2003,31(Suppl4):S329-36.
    40. Tsokos M,Fehlauer F.Post-mortem markers of sepsis:an immuno histochemical study using VLA-4(CD49d/CD29)and ICAM-1(CD54)for the detection of sepsis-induced lung injury[J].Int J Legal Med,2001,114(4-5):291-94.
    41. LameireN,VanBiesenW,VanholderR,Aeuterenalfailure[J].Laneet,2005,365:417-430.
    42. R Oneon C.Aeute Daialysis Quality Initiative (ADQI): The PASSPORT Project [J].The Intemaional of Aitifieial Organs,2005,28:(5)438-440.
    43. RabbH.InununeModulationofAeuteKidneyInjury[J].Am SoeNe Phrol,2006,17:604-606.
    44. FlierlMA,SehreiberH,HuberLangMS.TheroleofeomPlement,CsaanditsreeePtorsinsePsisandmultiorgan sfunetionsyndrome[J].InvestSurg,2006,19:255-265.
    45. Assadian A,AssadJan O,Senekowitsch C,et al,Plasma D-lactate a potential early marker for colon ischaemia after open aortic DD construction [J].Eur J Vasc Endovasc Surg,2006,31(5):470-474.
    46.张淑文.危重病严重程度评分法介绍[J].急诊医学,1995,4(4):195-202.
    47.王正国.道路交通伤研究和思考[J].中国医学科学院学报,2007,29(4):456-458.
    48.黄志强.肝外伤治疗观念上的转变[J].中华创伤杂志,2000,16(4):255-256.
    49. Rittirsch D,Hoesel LM,Ward PA.The disconnect between animal models of sepsis and human sepsis[J]. Leukocyte Biol,2006,81(1):137-143.
    50. Riedemann NC,Guo R F,Ward P A.Novel strategies for the treatment of sepsis[J].NatMed,2003,9(5):517-524.
    51. Hoesel LM,Ward PA.Mechanisms of inflammatory response syndrome insepsis[J].Drug Discovery Today Disease Mechanisms,2003,1:345-350.
    52.周健,林水金,杨映波等.严重多发伤后循环内皮细胞体外培养及其影响因素[J].第三军医大学学报,1998,(2):16-18.
    53. Bercault N, Wolf M, Runge I, et al. Intrahospital transport of critically ill ventilated patients: a risk factor for ventilator-associated pneumonia a match cohort study[J]. Crit Care Med,2005,33:2471-2478.
    54. Martin M, Salim A, Murray J, et al. The decreasing incidence and mortality of acute respiratory distress syndrome after injury: a 5-year observational study[J]. Trauma, 2005,59:1107-1113.
    55. Fink MP, Delude RL. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunctions at the cellular level [J]. Crit Care Clin, 2005,21(2):177-96.
    56. Wang J, Qiao WH. Study on vascular endothelial injuries and inflammation related cytokines in patients with multiple organ dysfunction syndromes[J]. Zhongguo Weizhongbing Jijiu Yixue,2006,18(2):82-4.
    1. Baue AE,Durham R,Faist E.Systemic inflammatory re-sponse syndrome(SIRS), ultiple organ dysfunction syn-drome(MODS),multiple organ failure(MOF):are we win-ning the battle? [J]Shock,1998,10(2):79~89.
    2. Marshall J C.Inflammation,coagulopathy,and the patho-genesis of multiple organ dysfunction syndrome[J].Crit Care Med,2001,29(7 Suppl):S99~S106.
    3. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference:definitions for sep-sis and organ failure and guidelines for the use of innovative therapies in sepsis[J].Crit Care Med,1992,20(6):864~874.
    4. Vaudo G, Marchesi S, Gerli R, et al. Endothelial dysfunction in young patients with rheumatoid arthritis and low disease activity[J]. Ann Rheum Dis, 2004,63:31–35.
    5. Johnson SR, Harvey PJ, Floras JS, et al. Impaired brachial artery endothelium dependent flow mediated dilation in systemic lupus erythematosus:preliminary observations[J]. Lupus, 2004,13:590–593.
    6. Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL. Serial evaluation of the SOFA score to predict outcome in critically ill patients[J]. AMA,2001,286:1754–8.
    7. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction:testing and clinical relevance[J]. Circulation, 2007,115:1285–1295.
    8. Madjid M, Naghavi M, Litovsky S, CasscellsW. Influenza and cardiovascular disease[J]. Circulation ,2003,108:2730–2736.
    9. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care[J]. Crit Care Med, 2001,29:1303–1310.
    10. Ohsawa M,Koyama T,Nara N,et al.Induction of tissue factor expression in human monocytic cells by protease inhibitors through activating activator protein-1(AP-1)with phosphorylation of Jun-N-terminal kinase and p38[J].Thromb Res,2003,112(5-6): 313~320.
    11. Beutler B, Poltorak A: Sepsis amd evolution of the innate immune response[J]. Crit Care Med, 2001, 29 (7 suppl): 2-6.
    12. Quinn iV, Slotman GJ. Platelet-activating factor and arachidonic acid metabolitesmediate tumor necrosis factor and eicosanoid kinetics and cardiopul-Monary dysfunction during bacteremic shock[J]. Crit Care Med, 1999, 27: 2485-2494.
    13. Ten Cate H. Pathophysiology of disseminated intravaseular coagulation in sepsis[J]. Crit Care Med, 2000, 28 (suppl): 9-11.
    14. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recom binant human activated protein C for severe sepsis[J]. N Engl J Med, 2001, 344: 699-709.
    15. Czermak BJ, Sarma V, Pierson CL, et al. Protective effects of C5a blockade in sepsis[J]. Nat Med, 1999, 5: 788-792.
    16. Ley K,Tedder T F.Leukocyte interactions with vascular endothelium.New insights into selectin-mediated attach-ment and rolling[J].Immunol,1995,155(2):525-528.
    17. Ding Z,Xiong K,Issekutz T B.Chemokines stimulate hu-man T lymphocyte transendothelial migration to utilize VLA-4 in addition to LFA-1[J].Leukoc Biol,2001,69(3):458-466.
    18. Uchiba M,Okajima K,Kaun C,et al.Gabexate mesilate,a synthetic anticoagulant,inhibits the expression of endothe-lial leukocyte adhesion molecules in vitro[J].Crit Care Med,2003,31(4):1147-1153.
    19. Conkling P R,Greenberg C S,Weinberg J B.Tumor necrosis factor induces tissue factor-like activity in human leukemia cell lineU937 and peripheral blood monocytes[J].Blood,1988,72(1):128-133.
    20. Sprong T, Pickkers P, Geurts-Moespot A, et al. Macrophage migration inhibitory factor (MIF) in meningococcal septic shock and experimental human endotoxemia[J]. Shock, 2007,27:482-487.
    21. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock[J]. Crit Care Med ,2004,32:858-73.
    22. Levy MM, Fink MP, Marshall JC, et al.2001 SCCM/ESICM/ACCP/ ATS/SIS International Sepsis Definitions Conference[J]. Crit Care Med,2003,31:1250-1256.
    23. Tsiotou AG, Sakorafas GH, Anagnostopoulos G, Bramis J. Septicshock; current pathogenetic concepts from a clinical perspective[J]. MedSci Monit, 2005,11:76-85.
    24. Haberichter SL,Jacobi P,Montgomery RR.Critical independent regions in the vWFpropeptide and mature vWF that enable normal vWF storage[J].Blood,2003, 01(4):1384-1391.
    25. Wu DM,Vanhoorelbeke K,Cauwenberghs N,et al.Inhibition of the von Willebrand vWF)-ollagen interaction by an antihuman vWF monoclonal antibody results inabolition of in vivo arterial platelet thrombus formation in baboons[J]. lood,2002,99(10):3623-3628.
    26. Abraham E.Coagulation abnormalities in acute lung injury and sepsis[J].Am J Respeir Cell Mol Biol,2000,22(3):402-404.
    27.刘效华,王海滨,陈继玲.急性冠状动脉综合征血小板表面P-选择素的变化及意义[J].中国心血管病研究杂志,2004,2(8):649-50.
    28. Nasraway SA.The problems and challenges of immunotherapy in sepsis[J].Chest,2003, 23(5Suppl):451-459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700