人类锌指蛋白家族新基因ZNF552的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌指蛋白家族是最大的转录因子家族之一,它们在细胞增殖、细胞分化、细胞凋亡过程中发挥着重要的作用。研究表明,许多锌指基因的突变或表达异常会导致人类疾病的发生。克隆新的锌指基因及阐明其生物学功能,对于理解人类疾病的发生机理和利用基因治疗技术根治人类遗传疾病具有十分重要的理论和实践意义。
     ZNF552是本文作者在利用生物信息学方法筛选人类心脏发育候选基因的过程中发现的一个人类新基因。ZNF552具有三个外显子和两个内含子,并且定位于19号染色体上;其cDNA全长2352个碱基,包括一个长为1224个碱基的开放阅读框(ORF),编码一个长407个氨基酸残基的蛋白质;该蛋白包含一个KRAB框和七个C2H2型锌指结构域。组织表达分析表明该基因只有一个大约2.4 kb的转录本,在成体中的肝脏、肺、肾、脾以及睾丸组织中表达,其中肺和睾丸组织中表达水平较高。亚细胞定位分析表明ZNF552蛋白主要在细胞核和细胞质中表达;报告基因信号途径分析表明,该蛋白作为一个转录抑制子对AP-1和SRE信号途径起着极强的抑制作用,基因分段研究揭示了该抑制作用通过KRAB框表现出来。RNA干扰实验能够解除ZNF552对AP-1和SRE信号途径的抑制作用。这些结果证明ZNF552是一个锌指蛋白抑制因子。
     另外,本人还做了其它两方面的工作。首先是利用酵母双杂交系统筛选基因TRIM45的相互作用蛋白,得到两个候选相互作用蛋白SLC25A3(登录号为NM-005888)和DnaJB6(登录号为NM-005494),但还需进一步证实其相互作用的真实性。其次,成功克隆了一个人类心脏发育候选基因POPDC2,相关工作正在开展之中。
The zinc finger protein family is one of the largest transcription factor families in the human genome and play important roles in various cellular functions, including cell proliferation, differentiation, and apoptosis. It is demonstrated that, mutations and mal-function of zinc finger genes are frequently targeted for disruption in many human diseases and cancers. The cloning of novel zinc finger genes and the illustration of their biological function is very important for us to understand the mechanism of the human disease and to explore new strategy for genetic disease by applying the gene therapy treatment.
     In this study, we report the identification and characterization of a novel C2H2 zinc finger protein, ZNF552, from a human embryonic heart cDNA library. A search of the human genome sequence (NCBI) indicates ZNF552 is composed of three exons and two introns and maps to chromosome 19q13.43. The complete sequence of the ZNF552 cDNA is 2352-bp in length and contains a putative open reading frame(ORF) of 1224 nucleotides, which encodes a putative protein of 407 amino acid protein with an amino-terminal KRAB domain and seven carboxyl-terminal C2H2 zinc finger motifs. Northern blotting analysis indicated that a 2.4-kb transcript specific for ZNF552 was expressed in liver, lung, spleen, testis, kidney, and especially at a higher level in the lung and testis in human adult tissues. ZNF552 protein was located both in the nucleus and cytoplasm when it was overexpressed in cultured cells. Reporter gene assays showed that ZNF552 was a transcriptional repressor, and overexpression of ZNF552 in the HEK 293T cells inhibited the transcriptional activities of AP-1 and SRE. Deletion studies showed that the KRAB domain of ZNF552 may be involved in this inhibition. However, the inhibition of which ZNF552 acted on AP-1 and SRE can be relieved through RNAi analysis. These results clearly indicate that ZNF552 is a member of the zinc finger transcription factor family.
     In addition, another two researches have been performed. Firstly, screening for TRIM45 interacting proteins was carried out by using the Matchmaker SystemⅡand two interacting protein candidates, SLC25A3 (NM-005888), and DnaJB6 (NM-005494) were obtained. Further research confirming the reality of interaction between them needs to be done in future. Secondly, POPDC2, a human heart development-related candidate gene was cloned and further studies are in process.
引文
[1] 吴秀山主编.信号调控与心脏发育.北京:化学工业出版社,2006.3.
    [2] 吴秀山主编.心脏发育研究.湖南长沙:湖南科学技术出版社,2004.
    [3] 吴秀山主编.心脏发育概论.北京:科学出版社,2006.2.
    [4] ZHU H, NGUYEN V T, BROWN A B, et al. A novel,tissue-restricted zinc finger protein(HF-1b) binds to the cardiac regulatory element(HF-1b/MEF-2)in the rat myosin light-chain 2 gene[J]. Mol Cell Biol, 1993,13,4432-4444
    [5] SS. Krishna, I. Majumdar, and NV. Grishin. Structural classification of zinc fingers. Nucl Acids Res 2003. 31: 532-550.
    [6] Hammarstrom,A.,Berndt,K.D.,Sillard, R.,Adermann,K.,and Otting, G.. Solution structure of a naturally-occurring zinc-peptide complex demonstrates that the N-terminal zinc-binding module of the Lasp-1 LIM domain is an independent folding unit.Biochemistry. 35(1996)12723-12732
    [7] Barlow,P.N.,Luisi,B.,and Milner,A. and Everett,R.Structure of the C3H4 domain by H-muclear magnetic resonance spectroscopy. A new structural class of zinc-finger.J.Mol.Biol.237(1994)201-211
    [8] Laity,J.H., Lee,B.M. and Wright,P.E.(2001)Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol.,11, 39-46.
    [9] Leon,O. and Roth,M.(2000)Zinc fingers: DNA binding and protein-protein interactions. Biol. Res., 33, 21-30.
    [10] Klug,A. and Schwabe,J.W.(1995)Protein motifs 5. Zinc fingers. FASEB J., 9, 597-604.
    [11] Fox,A.H., Liew,C., Holmes,M, Kowalski,K., Mackay, J. and Crossley, M.(1999) Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J., 18, 2812-2822.
    [12] Evans S. M. Vertebrate tinman homologues and cardiac differentiation, [J]. Cell Biol, 1999, 10(1): 73-83.
    [13] Morin S, Charron F, Robitaille L, et al. GATA2 dependent recruitment of MEF1 proteins to target promoters[J]. EMBO J, 2000,19 (9):2046- 2055.
    [14] Bruneau B G, Bao Z Z, Tanaka M et al. Cardic expression of the ventricle-specific homeobox gene irxis modulated by nkx2-5 and dHand [J]. Dev Boil. 2000, 217:266-277.
    [15] Yamagishi H, Yamagishi C, Nakagawa O et al. The combinatorial activities of NKX2.5 and dHand are essential for cardiac ventricle formation [J]. Dev Biol. 2001,239:190-203.
    [16] Kingsley D.M. What do BMPs do in mammals? Clues from the mouse short-ear mutation. Trends Genet, 1994, 10: 16-20
    [17] Riley E.H, Lane J.M, Urist M.R, et al. Bone morphogenetic protein-2: Biology and Application. Clin Orthop and Related res. 1996, 324: 39-44.
    [18] Derynck R, Zhang Y. Intracellular signalling: the mad way to do it. Curr Biol 1996, 6:1226-1229.
    [19] Graff J.M, Bansal A, Melton D.A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell 1996, 85:479-487.
    [20] Hoodless P.A, Haerry T, Abdollah S, Stapleton M, O'Connor MB, Attisano L, Wrana J.L. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 1996, 85:489-500
    [21] Macias-Silva M, Abdollah S, Hoodless P.A, Pirone R, Attisano L, Wrana J.L. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling.Cell 1996, 87: 1215-1224.
    [22] Massague J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell, 1996, 85:947-950.
    [23] Dudley A.T, Robertson E.J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 de.cient embryos. Dev Dyn 1997,208:349-362.
    [24] Zhang H, Bradley A. Mice decient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996,122:2977-2986.
    
    
    
    [25] Kim R.Y, Robertson E.J, Solloway M.J. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 2001, 235:449-466.
    
    [26] Schultheiss T.M, Burch J.B.E, and Lassar A.B, A role for bone morphogenetic proteins in the induction of cardiac myogenesis.Genes Dev 1997,11: 451-462.
    
    [27] Polekhina,G., House,C.M., Traficante,N., Mackay,J.P., Relaix,F.,Sassoon,D.A., Parker,M.W. and Bowtell,D.D. (2002) Siah ubiquity in ligase is structurally related to TRAF and modulates TNF-alpha signaling. Nature Struct. Biol., 9, 68-75.
    [28] Verhagen,A.M., Coulson,E.J. and Vaux,D.L. (2001) Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol., 2, 1-9.
    [29] Wu,G., Chai,J, Suber,T.L., Wu,J.W, Du,C, Wang,X. and Shi,Y. (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature, 408,1008-1012.
    [30] Liew,C.K., Kowalski,K., Fox,A.H., Newton,A., Sharpe,B.K., Crossley,M. and ackay,J.P. (2000) Solution structures of two CCHC zinc fingers from the FOG family protein U-shaped that mediate protein-protein interactions. Structure Fold. Des., 8, 1157-1166.
    [31] Laity,J.H., Lee,B.M. and Wright,P.E. (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol., 11, 39-46.
    [32]Guo,J., Wu,T., Anderson,J., Kane,B.F., Johnson,D.G., Gorelick,R.J., Henderson,L.E. and Levin,J.G. (2000) Zinc finger structures in the human immunode(?)ciency virus type 1 nucleocapsid protein facilitate efficient minus- and plus-strand transfer. J. Virol., 74, 8980±8988.
    [33] Klein,D.J., Johnson,P.E., Zollars,E.S., De Guzman,R.N. and Summers,M.F. (2000) The NMR structure of the nucleocapsid protein from the mouse mammary tumor virus reveals unusual folding of theC-terminal zinc knuckle. Biochemistry, 39,1604-1612.
    [34] Grishin,N.V. (2001) Treble clef finger-a functionally diverse zinc binding structural motif. Nucleic Acids Res., 29, 1703-1714.
    [35] Wang, B., Jones, D.N., Kaine, B.P. and Weiss, M.A. (1998) High resolution structure of an archaeal zinc ribbon defines a general architectural motif in eukaryotic RNA polymerases. Structure, 6, 555-569.
    [36] Shepard,D.A., Ehnstrom,J.G., Skinner,P.J. and Schiff,L.A. (1996) Mutations in the zinc-binding motif of the reovirus capsid protein delta 3 eliminate its ability to associate with capsid protein mu 1. J. Virol., 70, 2065±2068.
    [37] LoConte,L., Ailey,B., Hubbard,T.J., Brenner,S.E., Murzin,A.G. and Chothia,C. (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res., 28,257-259.
    [38] Grishin,N.V. (2001) Treble clef finger-a functionally diverse zinc binding structural motif. Nucleic Acids Res., 29,1703-1714.
    [39] Schwabe,J.W., Chapman,L., Finch,J.T. and Rhodes,D. (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA:how receptors discriminate between their response elements. Cell, 75,567-578.
    [40] LoConte,L., Ailey,B., Hubbard,T.J., Brenner,S.E., Murzin,A.G. and Chothia,C. (2000) SCOP: a structural classification of proteins database. Nucleic Acids Res., 28, 257-259.
    
    [41] Osipiuk,J., Gornicki,P., Maj,L., Dementieva,I., Laskowski,R. and Joachimiak,A. (2001) Streptococcus pneumonia YlxR at 1.35 AE shows a putative new fold. Acta Crystallogr. D Biol. Crystallogr., 57,1747-1751.
    
    [42]Yaremchuk,A., Cusack,S. and Tukalo,M. (2000) Crystal structure of a eukaryote/archaeon-like prolyl-tRNA synthetase and its complex with tRNAPro(CGG). EMBO J., 19,4745-4758.
    
    [43] Lee,J.Y., Chang,C, Song,H.K., Moon,J., Yang,J.K., Kim,H.K.,Kwon,S.T. and Suh,S.W. (2000) Crystal structure of NAD(+)-dependent DNA ligase: modular architecture and functional implications. EMBO J.,19,1119-1129.
    
    [44] Ramelot,T.A., Cort,J.R., Yee,A.A., Semesi,A., Edwards,A.M., Arrowsmith,C.H. and Kennedy,M.A. (2002) NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zinc finger family of proteins. Proteins, 49,289-293.
    
    [45] Grishin,N.V. (2001) Mh1 domain of Smad is a degraded homing endonuclease. J. Mol. Biol., 307, 31-37.
    
    
    [46] Zhu,W., Zeng,Q., Colangelo,C.M., Lewis,M., Summers,M.F. and Scott,R.A. (1996) The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nature Struct. Biol., 3,122-124.
    [47] Wu X, Golden K, Bodmer R. Heart development in Drosophila requires the segment polarity gene wingless. Developmental Biology 1995, 169:619-628.
    [48] Wu X,Park M, Gold K, et al. The wingless signaling pathway is directly involved in Drosophila development. Developmental Biology 1996, 177:104-116.
    [49] Park M, Yaich LE, Bodmer R. Mesodermal cell fate decisions in Drosophila are under the control of the lineage genes numb, Notch, and sanpodo. Mech Dev 1998, 75(1-2):117-26.
    [50] English J, Pearson G, et al. New Insights into the Control of MAP Kinase Pathways. Experimental Cell Research 1999, 253:255-270.
    
    [51] K. Y. Lee, J. H. Hyeok Yoon, M. Kim, S. Roh, Y. S. Lee, B. L. Seong, K. Kim. A dipalmitoyl peptide that binds SH3 domain, disturbs intracellular signal transduction, and inhibit trmor growth in vivo, Biochem Biophys Res Commun 2002, 296 434- 442.
    [52] Pombo C. M, Bonventre J.V, Avruch J, Woodgett J.R, Kyriakis J.M, Force T. The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J. Biol. Chem 1994, 269: 26546 -26551.
    [53] Hoeflich K.P, Woodgett J.R. Signal transduction and gene expression in the regulation of natural freezing survival. Cell and Molecular Responses to Stress 2001,2:75-193.
    [54] Irving E.A, Bamford M. Role of mitogenand stress-activated kinases in ischemic injury. J. Cereb. Blood Flow Metab 2002, 22: 631 -647.
    [55] Atfi A, Buisine M, Mazars A, Gespach C. Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J. Biol. Chem 1997,272: 24731 -24734.
    [56] Zhang Y, Zhou L, Miller CA. A splicing variant of a death domain protein that is regulated by a mitogen-activated kinase is a substrate for c-Jun N-terminal kinase in the human central nervous system. Proc. Natl. Acad. Sci. USA 1998, 95: 2586 -2591.
    
    
    [57] Moreno E, Basler K, Morata G Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 2002, 416: 755 -759.
    [58] New L and Han J. The p38 MAP kinase pathway and its biological function. Trends Cardiovasc 1998, 8:220-229.
    [59] Abe JI, Kushuhara M, Ulevitch RJ et al. Big mitogen-activated protein kinase I(BMK I) is a redox-sensitive kinase. J Biol Chen, 1996, 271(28):16586-16592.
    [60] 张文伶,金勇丰,朱成钢,张耀洲,JNK/MAPK途径调控机制研究进展,癌变·畸变·突变 2003,15:253-256
    [61] Catherine Dunna, Carolyn Wiltshirea, Ann MacLarena, et al. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor[J], Cellular Signalling 2002, 14:585-593.
    [62] Claire R, Roger J, The JNK signaling transduction pathway[J].Current Opinion in Genetics & Development 2002, 12:14-21.
    [63] Girardin SE, Yaniv M. A direct interaction between JNK1 and CrkⅡ is critical for Rac 1-induced JNK activation[J], EMBO J 2001, 20: 3437-3446.
    [64] Leonardi A, Ellinger-Ziegel bauer H, Frazoso G, et al. Physical and function interaction of filamin(actin-binding protein-280) and tu2 mor necrosis factor receptor-associated factor 2[J]. J Biol Chem 2000, 275: 271-278.
    [65] Me Donald PH, Chow CW, Miller WE, et al. Beta-arrestin 2: a receptor- regulated MAPK scaffold for the activation of JNK3[J]. J Biol Chem 2001, 276: 27770-27777.
    [66] Meyer D, Liu A, Margolis B. Interaction of c-Jun amino-terminal kinase interacting protein-1 with p190 rho GEF and its local2 ization in differentiated neurons[J]. J Biol Chem 1999, 274: 35113-35118.
    [67] Tanoue Takuji, Nishida, et al. Docking interactions in the mitogen- activated protein kinase cascades[J], Pharmacology and Therapeutics 2002, 93:193-202.
    [68] Shore P, Whitmarsh, A.J, Bhaskaran R, Davis R.J, Waltho J.P, Sharrocks A.D. Determinants of DNA-binding specificity of ETS-domain transcription factors. Mol. Cell. Biol, 1996, 16:3338-3349.
    [69] Sepulveda J.L, Belaguli N, Nigam V, Chen C, Nemer M, Schwartzl RJ. GATA-4 and Nkx-2.5 Coactivate Nkx-2 DNA Binding Targets: Role for Regulating Early Cardiac Gene Expression. Mol Cell Biol, 1998,18: 3405-3415.
    [70] Chen C.Y, Schwartz R.J. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol. Cell. Biol, 1996, 16:6372-6384.
    [71] Belaguli N.S, Sepulveda J.L, Nigam V, Charron F, Nemer M, Schwartz R.J. Cardiac Tissue Enriched Factors Serum Response Factor and GATA-4 Are Mutual Coregulators. Molecular and Cellular Biology 2000, 20:7550-7558.
    [72] Morin S, Paradis P, Aries A, Nemer M. Serum Response Factor-GATA Ternary Complex Required for Nuclear Signaling by a G-Protein-Coupled Receptor. Molecular and Cellular Biology, 2001, 21(4): 1036-1044.
    
    [73] Yang Boerm J.M, McCarthy M, Bucana C, Fidler I.J, Zhuang Y, Su B. Mekk3 is essential for early embryonic cardiovascular development. Nature Genet 2000, 4: 309-313.
    
    [74] Clerk A, Bogoyevitch M.A, Anderson M.B, Sugden P.H. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 1994, 269: 32848-32857.
    
    [75] Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee J.D, Kawakatsu H, Lawrence E.G, Hoit B.D, Berk B.C, Walsh R.A. Src and multiple map kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stretch. J Mol Cell Cardiol 2001, 33: 1637-1648.
    
    [76] Wang Y, Su B, Sah V.P, Heller Brown J, Han J, Chien K.R. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH -terminal kinase inventricular, a specific inhibitor of the activation of mitogen-activated protein muscle cells. J Biol Chem 1998,273:5423-5426.
    
    [77] Bogoyevitch M.A, Gillespie-Brown J, Ketterman A.J, et al, Stimula- tion of the stress-activated mitogen-activated protein kinase sub- families in perfused heart. p38/ERK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia /reperfusion. Circ Res 1996, 79:162-173.
    
    [78] Sheng Z, Knowlton K,Chen J, et al. Cardiotrophin l(CT-l) inhibition of cardia myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardia hypertrophy. J Biol Chem 1997, 272:5783-5791
    
    [79] Akira S, Nishio Y, Inoue M, et al , Molecular cloning of APRF,a novel IFN-stimulated gene factor 3 p91 -related transcription factor involved in the gp130-mediated signaling pathway. Cell 1994, 77:63-71
    
    [80] Nakajima T, Kinoshita S, Sasagawa T, et al. Phosphorylation at threonine-253 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL-6. Proc Natl Acad Sci USA 1993,90: 2207-2211
    
    [81] Kuwahara K, Saito Y, Kishimoto I, et al. Cardiotrophin-1 phosphorylates akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J Mol Cell Cardiol 2000, 32: 1385-1394.
    
    [82] Hunter J.J, Tanaka N, Rockman H.A, Ross J. J, Chien KR Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995, 270: 23173-23178.
    
    [83] Wang L, Gout I, Proud C.G, Cross-talk between the ERK and p70 S6 kinase (S6K) signaling pathways. MEK-dependent activation of S6K2 in cardiomyocytes, J Biol Chem 2001,276: 32670-32677.
    
    [84] Iijima Y, Laser M, Shiraishi H, Willey C. D, Sundaravadivel B, Xu L, McDermott PJ, Kuppuswamy D. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J Biol Chem 2002,277: 23065-23075.
    
    [85] Stefanovsky V.Y, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum L.I, Moss T, An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell 2001, 8: 1063-1073.
    
    [86] Babu GJ, Lalli M.J, Sussman M.A, Sadoshima J, Periasamy M. Phosphorylation of elk-1 by MEK/ERK pathway is necessary for c-fos gene activation during cardiac myocyte hypertrophy. J Mol Cell Cardiol 2000, (32): 1447-1457.
    
    [87] Liang Q, Wiese RJ, Bueno O.F, Dai Y.S, Markham B.E, Molkentin J.D. The transcription factor GATA4 is activated by extracellular signal-regulated kinase 1- and 2-mediated phosphorylation of serine 105 in cardiomyocytes. Mol Cell Biol 2001,21: 7460-7469.
    
    [88] Ying Ou , Shenqiu Wang , Zhenyu Cai, Xiushan Wu , Mingyao Liu, et al. ZNF328, a novel human zinc-finger protein, suppresses transcriptional activities of SRE and AP-1. Biochem Biophys Res Commun333 (2005) 1034-1044
    
    [89] Lei Cao , Zhi Wang , Chuanbing Zhu , Yulian Zhao, Xiushan Wu , Mingyao Liu,et al. ZNF383, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway. Biochem Biophys Res Commun 333 (2005) 1050-1059
    
    [90] Chunxia Huang, Yuequn Wang, Dali Li, Mingyao Liu, and Xiushan Wu, et al. Inhibition of transcriptional activities of AP-1 and c-Jun by a new zinc finger protein ZNF394.Biochem Biophys Res Commun 320 (2004) 1298-1305
    
    [91] Hui Liu, Chuanbing Zhu, Jian Luo, Yuequn Wang, Mingyao Liu, and Xiushan Wu, et al. ZNF411, a novel KRAB-containing zinc-finger protein, suppresses MAP kinase signaling pathway. Biochem Biophys Res Commun 320 (2004) 45-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700