AZ91D镁合金表面金属氧化物陶瓷涂层制备工艺及耐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为21世纪的绿色工程材料,不但具有良好的导电性、导热性、阻尼性、尺寸稳定性和电磁屏蔽性等性能,还具有很好的铸造和切削加工性能,因而在许多领域得到广泛的应用。但镁合金的化学稳定性差,在使用环境中容易发生氧化,特别是在酸性环境和含Cl~-,Br~-,SO_4~(2-)等离子的盐溶液中会发生严重的腐蚀,大大影响了其应用范围。因此对镁合金材料的表面防护技术研究具有十分重要的理论价值及实际意义。
     目前增强镁合金耐蚀性最有效、最简便的途径是对其进行表面涂层处理。涂层在基体和外界环境之间形成一个有效的屏障,以达到抑制和缓解镁合金材料腐蚀的目的。本文在综述了近年来压铸型镁合金材料腐蚀机理和防护处理研究的基础上,通过适当的前处理,再通过溶胶-凝胶法在镁合金表面制备耐蚀性良好的氧化物陶瓷涂层的方法对AZ91D镁合金进行表面防护研究。本论文的主要研究内容和结论如下:
     以醋酸锆为前驱物,无水乙醇为溶剂,添加适量的表面活性剂,采用溶胶-凝胶法在经锡酸盐转化前处理的AZ91D镁合金表面首次成功制备了ZrO_2陶瓷涂层。采用X射线衍射、扫描电镜表征了涂层的结构和形貌,通过动电位极化曲线测试和电化学阻抗测试探讨了ZrO_2陶瓷涂层的耐腐蚀性能。结果表明:(1)前驱物锆浓度为0.08mol·L~(-1),溶剂与表面活性剂的体积比为8:2,中速搅拌回流6小时,得到稳定透明的溶胶;(2)通过研究得到的最佳涂层制备工艺在AZ91D镁合金表面制备了耐蚀性能良好的ZrO_2陶瓷涂层。锡酸盐转化膜的成分主要是MgSnO_3·H_2O,呈现晶态结构特征。ZrO_2溶胶,经过400℃下2小时热处理后形成了ZrO_2陶瓷涂层,其主要呈四方型晶态结构且其平均晶粒尺寸为10 nm。
     研究在AZ91D镁合金表面形成无毒致密、无污染的CeO_2陶瓷涂层来解决AZ91D镁合金的腐蚀问题。讨论了转化液组成、稀土铈转化膜形貌等因素的影响,得到了稀土铈转化液的最佳配方。采用金相显微镜(OM)、SEM、XRD、动电位极化曲线测试和电化学阻抗测试表征了转化膜和涂层成膜性及耐蚀性能。结果表明:CeO_2陶瓷涂层可有效地对AZ91D镁合金进行腐蚀保护。
     为了提高AZ91D镁合金的耐蚀性能,在已有的研究基础上,结合植酸转化工艺和溶胶-凝胶工艺的优点,在镁合金材料表面制备出Al_2O_3耐蚀性陶瓷涂层。采用热分析、红外测试、扫描电镜测试、X射线衍射、X射线能谱、接触角测试、动电位极化曲线测试、电化学阻抗测试等手段表征膜层的结构及性能。结果表明:(1)植酸转化膜主要由C、O、Mg、Al、P几种元素组成,这几种元素在膜层表面不同位置的重量百分含量大体一致,植酸转化膜在镁合金表面均匀分布。这为后续形成均匀的Al_2O_3陶瓷涂层打下了良好的基础;(2)当涂层的热处理温度达到280℃时,Al_2O_3涂层开始由非晶态向晶态转变。与经过120℃和280℃处理的Al_2O_3涂层相比,经380℃下热处理形成的Al_2O_3陶瓷涂层具有最佳的耐蚀性能。
     为在AZ91D镁合金表面制备耐蚀性能优异的防护层,在AZ91D镁合金表面实施具有一定功能梯度的涂层。先应用植酸转化工艺在AZ91D镁合金表面制备植酸转化膜,将其作中间过渡层,再应用溶胶-凝胶法,在植酸转化膜表面制备CeO_2陶瓷涂层。采用扫描电镜测试、X射线衍射、X射线能谱、接触角测试、动电位极化曲线测试、电化学阻抗测试等手段表征膜层的性能。结果表明:(1)CeO_2陶瓷涂层的最佳制备工艺参数为:旋涂速度为1000 rpm时,涂敷两层0.5 M CeO_2溶胶的试样,在280℃下热处理制得的CeO_2陶瓷涂层对镁合金具有最好的防护效能;(2)在CeO_2陶瓷涂层表面有明显裂纹处还是不明显裂纹的位置,其Mg、O、Ce元素的重量百分含量基本是一致的,P和Al元素消失。表明镁合金表面已完全被CeO_2陶瓷涂层均匀覆盖。涂层表面裂纹都是浅表性的,没有到达到植酸转化膜;(3)该具有一定功能梯度的涂层能大幅提高AZ91D镁合金的耐蚀性能。
Magnesium alloys, as the 21st green engineering material, present a wide range of applications due not only to their better electrical conductivity, high thermal conductivity, high dimensional stability and good electromagnetic shielding characteristics, but also their good cast ability and good welding ability. Unfortunately, it is prone to oxidation in common environments, especially in the acidic environments and in salt-water conditions containing Cl~-, Br~-SO_4~(2-) and so on, which leads to a severe erosion. Poor corrosion resistance is the obstruction to broaden applications of magnesium alloys. So it is very important to study the surface anti-corrosion technology of magnesium alloys.
     At present, surface coating treatment on the magnesium alloys is one of the most effective and simple ways. The coating employed between the substrate and the environment could offer an effective barrier to improve its corrosion resistance. In this thesis, anti-corrosion technologies of magnesium alloys were investigated. Based on corrosion mechanism and anticorrosion treatment of magnesium alloys, through some appropriate pre-treatment, and then the oxide ceramic coatings were prepared on the AZ91D magnesium alloy surface through sol-gel method. The main contents and conclusions in this paper are as follows:
     The ZrO_2 ceramic coatings were first successfully prepared on the stannate-coated AZ91D magnesium alloy surface by sol-gel method taken zirconium acetate as precursor, anhydrous ethanol as solvent and proper surfactant. The morphology and structure of the coatings were investigated by SEM and XRD. The potentiodynamic polarization curves and EIS were employed to characterize the anti-corrosion properties of the coatings. The results indicated that: (1) Transparent steady sol was achieved by keeping the concentration of zirconium at a range of 0.08 mol/L~(-1) and the volume ratio of solvent and surfactant at 8:2; (2) Anti-corrosion ZrO_2 ceramic coatings were obtained on AZ91D magnesium alloy surface through the optimal technique parameters. The chemical conversion coating was mainly consisted of MgSnO_3·H_2O. The ZrO_2 sol sintered at 400℃for 2 h turned into nanocrystalline ZrO_2 ceramic coating. The ZrO_2 ceramic film was mainly composed of tetragonal phase ZrO_2 and the average grain size of crystalline ZrO_2 was 10 nm.
     The nonpoisonous, compact and friendly CeO_2 ceramic coatings had been successfully prepared on AZ91D magnesium alloy surface to improve its corrosion resistance. The effect factors on the preparation of cerium-based conversion coating such as the different composition of the reacted solution, surface morphology and so on were investigated. The optimal technique parameters of the reacted solution were filtrated. The preparation and anticorrosion properties of the conversion coatings and CeO_2 ceramic coatings on AZ91D magnesium alloy surface were analyzed by OM, SEM, XRD, EIS test and potentiodynamic polarisation curve test. The results showed that the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this novel environmental-functionally CeO_2 ceramic coatings.
     To improve the corrosion resistance of AZ91D magnesium alloy, on the basis of quondam experiments, we successfully combined the advantage of phytic-acid conversion coating and sol-gel technology, a novel anti-corrosion sol-gel based A1_2O_3 ceramic coating was developed on the AZ91D magnesium alloy. The performance of the coatings were investigated by TG-DTA, FT-IR, SEM, XRD, EDS, Contact angles test, EIS test and potentiodynamic polarisation curve test. The results indicated that: (1) The phytic-acid chemical conversion coating was mainly composed of C, O, Mg, Al and P. The weight percents of C, O, Mg, Al and P were roughly in line on different places of the coating, indicating that the phytic acid conversion coating could be homogeneously formed on the magnesium alloy. This provided good conditions for the preparation of the follow-up homogeneous Al_2O_3 ceramic coating. (2) The Al_2O_3 gel begun to transformate from amorphous to crystalline phase when the sintering temperatures was 280℃. The Al_2O_3 sol-gel coated specimen sintered at 380℃had the best corrosion resistance properties as compared to the specimens sintered at 120℃and 280℃.
     A functional gradient coating was prepared on the AZ91D magnesium alloy surface to improve corrosion resistance of AZ91D magnesium alloy. The phytic acid conversion coating was employed as chemical pre-treatment and a barrier to environment before applying the sol-gel-based CeO_2 ceramic coating. The performance of the coatings were investigated by SEM, XRD, EDS, Contact angles test, EIS test and potentiodynamic polarisation curve test. The results indicated that: (1) The optimal technique parameters of the functional gradient coating were 0.5 M CeO_2 sol, two layers obtained for sol-gel spin-coating process with the speed of 1000 rpm on phytic-acid chemical-pretreated specimens and the sintered temperature was 280℃. (2) The weight percents of C,O, Ce were nearly equivalent no matter where cracks were seriously or the coatingss were relatively compact, P and Al disappeared in the functional gradient coating, which indicated that the magnesium alloy substrates were fully and homogeneously covered by the functional gradient coating. The uniformly distributed micro-cracks in the CeO_2 ceramic coating were lobed, didn't reach the phytic acid conversion coating. (3) The anticorrosion properties of the AZ91D magnesium alloy were improved greatly by the functional gradient coating.
引文
[1] Hu M L, Ji Z S, Chen X Y, Zhang Z K. Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Materials Characterization, 2008, 59(4): 385-389.
    [2] Zhang S H, Zhang K, Xu Y C, Wang Z T, Xu Y, Wang Z G. Deep-drawing of sheets at warm temperatures. Materials Processing Technology, 2007, 185(1-3): 147-151.
    [3] Li J, Lin D L, Mao D L. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion. Materials Letters, 2005, 59: 2267-2270,
    [4] Shae K. Kim, Jin-Kyu Lee, et al. Development of AZ31 Mg alloy wrought process route without protective gas. Materials Processing Technology, 2007, 187-188:757-760.
    [5] 王祝堂.镁与汽车.轻合金加工技术.1994,22(6):2-9.
    [6] 吴振宁,李培杰,刘树勋,曾大本.镁合金腐蚀问题研究现状.铸造,2001,50(10):583-586.
    [7] Raymond F, Decker. The Renaissance in magnesium. Advanced materials, 1998, 154(3): 31-33.
    [8] Alex J Z, Duane E B. Anodized Coatings for Magnesium Alloys. Metal Finishing, 1994, 92(3): 39-44.
    [9] Makar G L, Kruger J. Corrosion of magnesium. International Materials Reviews, 1993, 38(3): 138-153.
    [10] 卡恩R.W,哈森P,克雷默E.J,丁道云等译.材料科学与技术丛书.北京:科学出版社.1999,101-182.
    [11] Enley E F. Principles of Magnesium Technology. Headington Hill Hall, Oxford: Pergamon Press Ltd. 1966, 125-147.
    [12] ASM. Metal Handbook 9th Edition Vol.5 Surface Cleaning. Finishing and Coationg. USA: ASM Internationa. 1982, 628-649.
    [13] 曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景.金属学报,2001,37(7):673-685.
    [14] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, TX: Pergament Press Ltd. 1974,42-76.
    [15] Perrault G G. The Potential pH Diagram of the Magnesium Water System. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 51:107-119.
    [16] Forats A, Terje Kr. A, Hawke D, et al. Metal Handbook 9th Edition (Vo112) Corrosion. USA: ASM International. 1987, 740-754.
    [17] Song G, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1999, 1(1): 11-33.
    [18] Tunold R, Holtan H, Berfe M B H, et al. The Corrosion of magnesium in aqueous solution containing chloride ions. Corrosion Science, 1977,17: 353-356.
    [19] Tawil D S. Corrosion and Surface Protection Developments Proceedings of Conference Magnesium Technology. London: Institute of Metals. 1987: 66-72.
    [20] Reidar T, Hans H, May-Britt. The corrosion of magnesium aqueous solution containing chloride ions. Corrosion Science, 1977, 17:353-365.
    [21] 朱日彰.金属腐蚀学(第1版).北京:冶金工业出版社.1989,22-32.
    [22] Lyon P, King J F, Fowler G A. Developments in magnesium based materials and process. Journal of Engineering for Gas Turbines and Power, 1993, 115(1): 193-199.
    [23] 美国金属学会.金属手册.北京:机械工业出版社.1994,47-76.
    [24] 朱祖芳.有色金属的耐蚀性及其应用.北京:化学工业出版社.1995,59-64.
    [25] Niu L Y, Jiang Z H, Li, G Y Gu C D, Lian J S. A study and application of zinc phosphate coating on AZ91D magnesium alloy. Surface and Coatings Technology, 2006, 200: 3021-3026.
    [26] 国家高技术新材料领域专家委员会.新材料研究发展预测及对策.材料导报,1999,13(1):1-5.
    [27] Li Y, Lin J, Loh F C, et al. Characterization of Corrosion Products Formed on a Rapidly Solidified Mg Based EA55RS Alloys. Journal of Materials Science, 1996, 31: 4017-4 023.
    [28] Makar G L, Kruger J, Sieradzki K. Repassivation of Rapidly Solidified Magnesium-Aluminum Alloys. Journal of the Electrochemical Society, 1992, 139 (1): 47-53.
    [29] Makar G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloy. Journal of the Electrochemical Society, 1990, 137(2): 414-421.
    [30] Cho S S, Chun B S, Won C W, et al. Structure and properties of rapidly solidified Mg-Al alloys. Journal of the Electrochemical Society, 1999, 34: 4311-4320.
    [31] Block W. 11th International Workshop on Rare-Earth Magnets and their Application. 1991, 108-112.
    [32] 谢发勤,关丽.NdFeB合金表面激光非晶化改性的技术方法.材料导报,2003,17(3):16-19.
    [33] 曾爱平,张承典,钱宇峰等.镁合金的化学表面处理.腐蚀与防护,2000,21(2):55-56.
    [34] Michel Aredsian, et al. ASM Specialty Handbook -Magnesium and Magnesium Alloy. ASM Press. 1999. 137-142.
    [35] 卢燕平.金属表面防蚀处理.北京:冶金工业出版社.1995,78-92.
    [36] 董首山.腐蚀科学与防护技术.1990,2(1):47-49,44.
    [37] Hawke D, Albright D L. A phosphate-permanganate conversion coating for magnesium. Metal Finishing, 1995, 93(10): 34-38.
    [38] 中国腐蚀与防护学会主编.化学转化膜.北京:化学工业出版社.1988,47-59.
    [39] 钱建刚,李荻,郭宝兰.镁合金的化学转化膜.材料保护,2002,35(3):5-6.
    [40] Gonzalez M A, Nunez-Lopez C A. A non-chrome conversion coating for magnesium alloys and magnesium based metal matrix composites. Corrosion Science, 1995, 37 (11):1736-1772.
    [41] Elsentriecy H H, Azumi K, Konno H. Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91D magnesium alloy. Surface and Coatings Technology, 2007,202:532-537.
    [42] Elsentriecy H H, Azumi K, Konno H. Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique. Electrochimica Acta, 2007, 53:1006-1012.
    [43] 张春红,刘建强,郑庆庆,汤金勇.镁锂合金表面锡酸盐转化膜研究.电镀与涂饰,2008,27(10):29-31.
    [44] 霍宏伟,李瑛,王福会.化学转化膜对沉积镍对镁合金耐腐蚀性能的影响.中国有色金属学报,2004,2:467-472.
    [45] Buchheit R G. Corrosion resistant chromate free talc coatings for aluminum. Corrosion, 1994, 50(3): 205-210.
    [46] Yu X W, Cao C N, Zhou D R, et al. Corrosion behavior of rare earth metal (REM) conversion coatings on aluminum alloy LY12. Materials Science & Engineering, 2000, 284: 56-60.
    [47] 纪红,许越,周德瑞,等.铈纳米膜对LY12铝合金表面耐蚀性能的影响.中国稀土学报,2003,21(3):303-308.
    [48] Rudd A L, Breslin C B, Mansfeld F. The Corrosion Protection Afforded by Rare Earth Conversion Coatings Applied to Magnesium. Corrosion Science, 2000, 42(2): 275-288.
    [49] Gray J E, Luan B. Protective Coatings on Magnesium and Its Alloys-a Critical Review. Journal of Alloys and Compounds, 2002, 336: 88-113.
    [50] Kakizaki, Masahiko. Process for surface treatment body made of metal and composition of matter. US Pat: 6136381. 1999-08-18.
    [51] Yashiro K, Moriyashio. Metal surface coating agent.US Pat: 4341558, 1992-07-27.
    [52] Cui X F, Li Q F, Li Y, Wang F H, Jin G, Ding M H. Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy. Applied Surface Science, 2008, 255: 2098-2103.
    [53] Tamar Y, Mandler D. Corrosion inhibition of magnesium by combined zirconia silica sol-gel films. Electrochimica Acta, 2008, 53: 5118-5127.
    [54] Phani R, Gammel F J, Hack T, Haefke H. Enhanced corrosion resistance by sol-gel based ZrO_2-CeO_2 coatings on magnesium alloys. Materials and Corrosion, 2005, 56: 77-82.
    [55] Zucchi F, Grassi V, Frignani A, Monticelli C, Trabanelli G. Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy Surface and Coatings Technology, 2006, 200: 4136-4143.
    [56] 郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术.轻合金加工技术,2003,8(31):35-41.
    [57] 李瑛,余刚,刘跃龙,叶立元,郭小华,等.镁合金的表面处理及其发展趋势.表面技术,2003,32(2):1-5.
    [58] Barton, Thomas Francis. Anodization of magnesium based alloys. US Pat: 5792335.1998.
    [59] Von Campe, Hilmar. Method and device for forming a layer by plasma-chemical process. US Pat: 4915978.1990.
    [60] 张永君,严川伟,王福会,楼翰一.镁及镁合金环保型阳极氧化电解液及其工艺.材料保护,2002,35(3):39-40.
    [61] 李冠群,吴国华,樊昱,丁文江.镁合金的腐蚀研究现状与防护途径.材料导报,2005,19(11):60-64.
    [62] 郭兴伍,丁文江.镁合金阳极氧化的研究与发展现状.材料保护,2002,35(2):1-3.
    [63] 胡文彬,向阳辉,刘新宽,等.镁合金化学镀镍预处理过程表面状况的研究.中国腐蚀与防护学报,2001,21(6):340-344.
    [64] [64] Sharma A K, Suresh M R, Bhojraj H, et al. Electroless nickle plating on magnesium alloy. Metal Finishing, 1998, 96(3): 10-18.
    [65] 周婉秋,单大勇,韩恩厚,等.镁合金无铬化学转化膜的耐蚀性研究.材料保护,2002,35(2):12-14.
    [66] Wu G S, Zeng X Q, Ding W B, Guo X W, Yao S S. Characterization of ceramic PVD thin films on AZ31 magnesium alloys. Applied Surface Science, 2006, 252: 7422-7429.
    [67] Lei M K, Li P, Yang H G, Zhu X M. Wear and corrosion resistance of Al ion implanted AZ31 magnesium alloy. Surface and Coatings Technology, 2007,201: 5182-5185.
    [68] 杨帮朝.电子元件与材料,1994,13:1-4.
    [69] Kirner U, Schierbaum K D, G6pel W, Leibold B, Nicoloso N, Weppner W, Fischer D, Chu W F. Low and high temperature T1O_2 oxygen sensors. Sensors and Actuators B, 1990, 1:103-107.
    [70] 李青,黄元龙.溶胶-凝胶法与金属表面改性.电镀与涂饰,1997,16(1):47-55.
    [71] Chandradass J, Balasubramanian M. Effect of magnesium oxide on sol-gel spun alumina and alumina-zirconia fibres. Journal of the European Ceramic Society, 2006, 26: 2611-2617.
    [72] A.L. Hench, J.K. West. The sol-gel Process Chemical Reviews, 1990, 90: 33-72.
    [73] 卢旭晨,李佑楚,韩铠,王风鸣.陶瓷薄膜的sol-gel法制备.中国陶瓷,1999,35(1):1-4.
    [74] Maggio R D, Fedrizzi L, Rossi S, Scardi P. Dry and wet corrosion behaviour of AISI 304 stainless steel coated by sol-gel ZrO_2-CeO_2 films. Thin Solid Films, 1996, 286: 127-135.
    [75] 李青.金属陶瓷涂层耐蚀性能及影响因素的研究.中国腐蚀与防护学报,2000,20(3):167-175.
    [76] Phani R, Gammel F J, Hack T, Haefke H. Enhanced corrosion resistance by sol-gel-based ZrO_2-CeO_2 coatings on magnesium alloys. Materials and Corrosion, 2005, 56(2): 77-82.
    [77] Phani A R, Gammel F J, Hack T. Structural, mechanical and corrosion resistance properties of Al_2O_3-CeO_2 nanocomposites in silica matrix on Mg alloys by a sol-gel dip coating technique. Surface and Coatings Technology, 2006,201: 3299-3306.
    [78] Supplit R, Koch T, Schubert U. Evaluation of the anti-corrosive effect of acid pickling and sol-gel coating on magnesium AZ31 alloy. Corrosion Science, 2007, 201: 798-807.
    [79] Tana A L K, Soutara A M, Annergrena I F, Liub Y N. Multilayer sol-gel coatings for corrosion protection of magnesium. Surface and Coatings Technology, 2005, 198: 478-482.
    [1] Huo H W, Li Y, Wang F H. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science, 2004, 46: 1467-1477.
    [2] 委福祥,曲彦平,苑玮琦.镀层腐蚀形貌图像颜色特征的提取与分析.仪器仪表学报,2003,24(4):477-478.
    [3] 无机化学教研室编.无机化学.第四版.北京:高等教育出版社.2003,1:743-744.
    [4] 刘粤慧,刘平安.X射线衍射分析原理与应用.北京:化学工业出版社.2003,10:211-212.
    [5] 刘粤慧,刘平安.X射线衍射分析原理与应用.北京:化学工业出版社,2003,10:39-42.
    [6] 胡林彦,张庆军,沈毅.X射线衍射分析的实验方法及其应用.河北理工学院学报,2004,26(3):83-86,93.
    [7] 王培铭,许乾慰编.材料研究方法.北京:科学出版社.2004,6:16-47.
    [8] 曹楚南,张鉴清编.电化学阻抗谱导论.北京:科学出版社.2002,2:20-24.
    [9] Meuleman W, Vandenkerckhove R. Temmerman E. Electrochemical investigation of automotive coating systems. Materials Science Forum, 1998, 289-292: 383-386.
    [1] 杨南如,余桂郁.溶胶.凝胶法的基本原理与过程.硅酸盐通报,1993,(2):56-63.
    [2] 张勤俭,张建华,李敏,张勤河,毕进子.溶胶.凝胶工艺制备ZrO_2涂层对工程陶瓷表面改性的研究.中国陶瓷,2002,38(1):30-32.
    [3] 李青.材料表面改性技术.功能材料,1997,28(1):99-103.
    [4] 李青,黄元龙.溶胶.凝胶法与金属表面改性.电镀与涂饰,1997,16(1):47-55.
    [5] Chandradass J, Balasubramanian M. Effect of magnesium oxide on sol-gel spun alumina and alumina-zirconia fibres. Journal of the European Ceramic Society, 2006, 26: 2611-2617.
    [6] Zhang J H, Zhou X L, Wang J A. Water promotion or inhibition effect on isopropanol decomposition catalyzed with a sol-gel MgO-Al_2O_3 catalyst. Journal of Molecular Catalysis A: Chemical, 2006, 247: 222-226.
    [7] Khobaib M, Reynolds L B, Donley MS.A comparative evaluation of corrosion protection of sol-gel based coatings systems. Surface and Coatings Technology, 2001, 140: 16-23.
    [8] Zhou F, Liang K M, Wang G L, Shao H, Hu A M. Crystallization behavior of Li~+-doped SiO_2-TiO_2 films prepared by sol-gel dip coating. Journal of Crystal Growth, 2004, 264:297-301.
    [9] Djaoued Y, Badilescu S, Ashrit P V. Low Temperature sol-gel Preparation of Nanocrystalline TiO_2 Thin Films. Journal of sol-gel Science and Technology, 2002, 24: 247-254.
    [10] 余桂郁,杨南如.溶胶-凝胶法工艺过程.硅酸盐通报,1993,6:60-66.
    [11] Gusmano G, Montesperelli G, Rapone M, Padeletti G, Cusma A, Kaciulis S, Mezzi A, Maggio R D. Zirconia primers for corrosion resistant coatings Surface and Coatings Technology, 2007, 201:5822-5828.
    [12] Andreatta F, Aldighieri P, Paussa L, Maggio R D, Rossi S, Fedrizzi L. Electrochemical behaviour of ZrO_2 sol-gel pre-treatments on AA6060 aluminium alloy. Electrochimica Acta, 2007, 52: 7545-7555.
    [13] Fedrizzi L, Rodriguez F J, Rossi S, Deflorian F, MaggioR D. The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films. Electrochimica Acta, 2001,46:3715-3724.
    [14] 董首山.腐蚀科学与防护技术,1989,1(2):39-42.
    [15] Michel Aredsian, et al. ASM Specialty Handbook -Magnesium and Magnesium Alloy. ASM Press. 1999, 137-142.
    [16] Umehara H, Takaya M. Chrome-free surface treatments for magnesium alloy. Surface and Coatings Technology, 2003, 169-170: 666-669.
    [17] Yu X W, Cao C N, Zhou D R, et al. Corrosion behavior of rare earth metal (REM) conversion coatings on aluminum alloy LY12. Materials Science & Engineering, 2000, A284: 56.
    [18] Yu S X, Chen L. Preparation Technology and Performaces of Zn-Cr coating on Sintered NdFeB Permanent Magnet. Journal of Rare Earths, 2006, 24(2): 223-226.
    [19] Yashiro K. Moriyashio. Metal surface coating agent.US Pat: 4341558. 1992-07-27.
    [20] 李冠群,吴国华,樊昱,丁文江.镁合金的腐蚀研究现状与防护途径.材料导报,2005,19(11):60-64.
    [21] Gonzalez M A, Nunez-Lopez C A. A non-chrome conversion coating for magnesium alloys and magnesium based metal matrix composites. Corrosion Science, 1995, 37(11): 1736-1772.
    [22] Elsentriecy H H, Azumi K, Konno Ft. Effect of surface pretreatment by acid pickling on the density of stannate conversion coatings formed on AZ91 D magnesium alloy. Surface and Coatings Technology, 2007,202: 532-537.
    [23] Elsentriecy H H, Azumi K, Konno H. Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique. Electrochimica Acta, 2007, 53: 1006-1012.
    [24] 张春红,刘建强,郑庆庆,汤金勇.镁锂合金表面锡酸盐转化膜研究.电镀与涂饰,2008,27(10):29-31.
    [25]Lamaka S V,Montemor M F,Galio A F,Zheludkevich M L,Trindade C,Dick L F,Ferreira M G S.Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy.Electrochimica Acta,2008,53:4773-4783.
    [1] 曾爱平,薛颖,钱宇峰,等.镁合金的化学表面处理.腐蚀与防护,2000,21(2):55-56.
    [2] Grayje L, et al. Protective coatings on magnesium and its alloys critical review. Journal of Alloys and Compounds, 2002, 336: 88-113.
    [3] 金华兰,韩丽华.镁及其合金表面化学改性技术.轻合金加工技术,2005,32(12):29-33.
    [4] Hinton B R W. Corrosion Prevention and Chromates, the End of an Era. Metal Finishing, 1991, 89(9): 55261-55263.
    [5] 霍宏伟,李瑛,王福会.化学转化膜上沉积镍对镁合金耐腐蚀性能的影响.中国有色金属学报,2004,2:467-272.
    [6] Elsentriecy H H, Azumi K, Konno H. Improvement in stannate chemical conversion coatings on AZ91 D magnesium alloy using the potentiostatic technique. Electrochimica Acta, 2007, 53: 1006-1012.
    [7] Kakizaki, Masahiko. Process for surface treatment body made of metal and composition of matter. US Pat: 6136381.1999-08-18.
    [8] Zucchi F, Grassi V, Frignani A, Monticelli C, Trabanelli G. Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy. Surface and Coatings Technology, 2006,200:4136-4143.
    [9] Hawke D, Albright D L. A phosphate-permanganate conversion coating for magnesium. Metal Finishing, 1995, 93(10): 34-38.
    [10] Amy L R, Carmel B B. The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science, 2000,42: 275-288.
    [11] 许越,陈湘,吕祖舜,等.AZ91镁合金表面稀土转化膜的制备及耐蚀性能研究.中国稀土学报,2005,23(1):40-43.
    [12] 张微,何莉萍,唐绍裘,魏坤,周武艺.耐磨陶瓷涂层的研究与发展.表面技术.2002,31(6):1-4.
    [13] 陈元春,艾兴,黄传真.溶胶-凝胶法陶瓷涂层的界面结合机制和性能.科学通报,2000,45(5):198-502.
    [14] Tanner P A, Law P T, Wong K L, Fu L S. Preformed sol-gel synthesis and characterization of YAlO_3. Journal of materials science, 2003, 38:4857-4861.
    [15] Tan A L K, Soutar A M, Annergren I F,. Liu Y N. Multilayer sol-gel coatings for corrosion protection of magnesium. Surface and Coatings Technology, 2005, 198: 478-482.
    [16] Phani R, Gammel F J, Hack T, Haefke H. Enhanced corrosion resistance by sol-gel based ZrO_2-CeO_2 coatings on magnesium alloys. Materials and Corrosion, 2005,56:77-82.
    [17] SupplitR, KochT, SchubertU. Evaluation of the anti-corrosive effect of acid pickling and sol-gel coating on magnesium AZ31 alloy. Corrosion Science, 2007, 49: 3015-3023.
    [18] Tamar Y, Mandler D. Corrosion inhibition of magnesium by combined zirconia silica sol-gel films. Electrochimica Acta, 2008, 53: 5118-5127.
    [19] Gusmano G, Montesperelli G, Rapone M, Padeletti G, Cusm(?) A, Kaciulis S, Mezzi A, MaggioR D. Zirconia primers for corrosion resistant coatings. Surface and Coatings Technology, 2007, 201: 5822-5828.
    [20] Andreatta F, Aldighieri P, Paussa L, Maggio R D, Rossi S, et al. Electrochemical behaviour of ZrO_2 sol-gel pre-treatments on AA6060 aluminium alloy. Electrochimica Acta, 2007, 52: 7545-7555.
    [21] Fedrizzi L, Rodriguez F J, Rossi S, Deflorian F, Maggio R D. The electrocatalytic properties of the oxides of noble metals in the electrooxidation of methanol and formic acid. Electrochimica Acta, 2001, 46: 3715-3724.
    [22]Zhong X K,Li Q,Hu J Y,Lu Y H,Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy.Corrosion Science,2008,50:2304-2309.
    [23]Wang D H,Gordon.P.Bierwagen.Sol-gel coatings on metals for corrosion protection.Progress in Organic Coatings,2009,64:327-338.
    [1] 张微,何莉萍,唐绍裘,魏坤,周武艺.耐磨陶瓷涂层的研究与发展.表面技术,2002,31(6):1-4.
    [2] 陈元春,艾兴,黄传真.溶胶-凝胶法陶瓷涂层的界面结合机制和性能.科学通报,2000,45(5):198-502.
    [3] Tanner P A, Law P T, Wong K L, Fu L S. Preformed sol-gel synthesis and characterization of YAlO_3. Journal of materials science, 2003, 38:4857-4861.
    [4] 张洪生.无毒植酸在金属防护中的应用.电镀与精饰,2000,22(1):1-4.
    [5] Luo Q L, Joseph D A. Phytic acid as an efficient low molecular mass displacer for anion exchange disp lacement chromatographyof proteins. Journal of Chromatography B, 2000, 741(1): 23-74.
    [6] Dorsch J A, Cook A, Young K A. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 2003, 62 (5): 691-706.
    [7] 李文戈.肌醇六磷酸酯的特性及其在金属防腐蚀中的应用.现代化工,2001,9(21):85-87.
    [8] 孙定光,胡佩.植酸生产工艺技术的改进.现代化工精细化工,1996,7(17):38-39.
    [9] 张洪生,杨晓蕾,陈熹.植酸在金属防护中的应用.腐蚀科学与防护技术,2002,4(14):242-243.
    [10] Ro J C, Chung I J. Structures and properties of silica gels prepared by the sol-gel method. Journal of Non-Crystalline Solids, 1991, 130: 8-17.
    [11] Meher T, Basu A K, Ghatak S. Physicochemical characteristics of alumina gel in hydroxyhydrogel and normal form. Ceramics International, 2005, 31: 831-838.
    [12] Gallardo J, Duran A, de Damborenea J J. Electrochemical and in vitro behaviour of sol-gel coated 316L stainless steel. Corrosion Science, 2004,46: 795-806.
    [13] Shi P, Ng W F, Wong M H, Cheng F T. Improvement of corrosion resistance of pure magnesium in Hanks' solution by microarc oxidation with sol-gel TiO_2 sealing. Journal of Alloys and Compounds, 2009, 469: 286-292.
    [1] 吕雪飞,李淑英.稀土对金属表面钝化作用研究进展.电镀与涂饰,2006,10:46-49.
    [2] 余刚,刘跃龙,李瑛,等.镁合金的腐蚀与防.中国有色金属学报,2002,12(6):1087-1098.
    [3] 蒲以明,张志强,杜荣.镁及镁合金表面处理初探.表面处理,2002,25(4):32-36.
    [4] 郭洪飞,安茂忠.镁及镁合金阳极氧化技术.轻合金加工技术,2003,31(12):1-6.
    [5] 韩夏云,郭忠诚.镁及镁合金表面镀锌工艺.材料保护,2002,35(11):31-33.
    [6] 戴长松,吴宜勇.镁及镁合金的化学镀镍.兵器材料科学与工程,1997,20(4):35-38.
    [7] 薛文斌,邓志成,来永春.ZM5镁合金微弧氧化氧化膜的生长规律.金属热处理学报,1998,19(3):42-45.
    [8] Liu S T, et al. Anodic film growth on an AZ91D Mg alloy. Corrosion Science, 2002, 44(5): 1133-1142.
    [9] Hmann D R, Teowee G, Boulton. The future of sol-gel science and technology. Journal of sol-gel Science and Technology, 1997, 8: 1083-1091.
    [10] lanye W, Wilkes G L. Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach. Chemistry of Materials, 1996, 8: 1667-1668.
    [11] Shi P, Ng W F, Wong M H, Cheng F T. Improvement of corrosion resistance of pure magnesium in Hanks' solution by microarc oxidation with sol-gel TiO_2 sealing. Journal of Alloys and Compounds, 2009, 469: 286-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700