镁合金表面耐蚀性溶胶—凝胶膜层的制备与修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有密度低,比强度、比弹性模量高,导热性能良好且易于回收等特点,还具有很好的铸造性能和切削加工性能,被誉为"21世纪绿色工程材料”。然而,镁合金的化学性质活泼,在使用环境中容易发生严重的腐蚀,大大限制了镁合金的实际应用。因此镁合金的表面防护技术研究具有十分重要的价值和意义。
     本文在综述了镁合金腐蚀机理和近年来国内外防腐研究进展的基础上,通过溶胶-凝胶技术在AZ91D镁合金表面制备了具有良好的耐蚀性能的氧化铈、氧化锆溶胶-凝胶膜层以及Si-Ce复合膜层。同时,针对溶胶-凝胶膜层在腐蚀环境中容易遭到破坏,而膜层本身缺乏自修复功能的缺点,本文初步研究了硝酸锌对Si溶胶-凝胶膜层在腐蚀介质中的修复作用及其修复机理。利用电化学阻抗谱(EIS)、动电位极化、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、能谱分析(EDS)、傅立叶红外(FT-IR)、紫外可见(UV-Visible)以及粘度测试等多种检测手段,对膜层的耐蚀性能、表面形貌和膜层的表面化学组成进行了测试和表征。
     因镁合金表面化学活性太高,pH较低的溶胶会对镁合金基体造成腐蚀,故该类溶胶不适宜直接涂覆在镁合金表面,本文在制备氧化铈膜层前对镁合金基体预先进行氟化处理。以六水合硝酸铈为前驱体,以火棉胶为粘度调节剂,在氟化的镁合金表面成功制备了氧化铈薄膜。电化学实验和表面分析测试结果表明:氧化铈膜层能明显提高镁合金在氯离子介质中的耐蚀性能,膜层的主要成分为:氧化铈,氟化镁,氧化镁。其中,氧化铈在膜层的耐蚀性能中起着关键作用。
     同时,本研究也在氟化的镁合金表面制备了氧化锆膜层。首次以五水合硝酸锆为前驱体,以乙酰丙酮为络合剂,在氟化的镁合金表面制备了一种新型、耐蚀性能良好的氧化锆膜层。采用此法制备的氧化锆膜层具有操作简便、成本低、环保等优点。膜层的表征结果表明:氧化锆膜层在3.5 wt.%的NaCl溶液中具有良好的耐蚀性能,硝酸锆和乙酰丙酮发生了络合反应,在溶胶结构中形成了具有双齿配体的络合物。
     本文还首次讨论了镁合金表面Si-Ce复合溶胶-凝胶膜层中Ce含量对膜层的微观结构、表面形貌和耐蚀性能的影响。利用溶胶-凝胶技术,以γ-缩水甘油醚基丙基三甲氧基硅烷(GPTMS)和乙烯基三乙氧基硅烷(VETO)为前驱体,以六水合硝酸铈作为添加剂,在AZ91D镁合金表面制备了Si-Ce复合溶胶-凝胶膜层。实验结果表明:硅溶胶中加入适量的硝酸铈,会使膜层中的凝胶块消失,有利于提高膜层的耐蚀性能,但加入过量的硝酸铈会破坏膜层表面的完整性,大大降低膜层的耐蚀能力。实验结表明:0.01 M的硝酸铈为制备复合溶的最佳浓度,此时膜层的耐蚀性能最优。
     由于溶胶-凝胶膜层在腐蚀介质中容易遭到破坏,而本身又缺乏自修复功能,严重限制了溶胶-凝胶技术在镁合金防护方面的应用,为促进溶胶-凝胶技术在镁合金防腐方向的实际应用,本文研究了硝酸锌在氯离子介质中对Si溶胶-凝胶膜层的修复行为。实验结果表明,一定浓度下的硝酸锌对镁合金表面的si溶胶-凝胶膜层具有明显的修复作用。其修复作用可归因于Zn2+体系中的OH形成了难溶的氧化物或氢氧化物,填补了膜层的缺陷,从而抑制了膜层的进一步腐蚀或溶解,同时,硝酸根在这个体系中也可能起到修复/缓蚀作用。
Magnesium alloys which are compared as the 21st Green Engineering Material possess a unique set of properties such as light weight, high strength-to-weight ratio, high thermal conductivity, dimensional stability and damping characteristics, good electromagnetic shielding and machinability as well as recyclability. However, magnesium alloys have a number of undesirable properties including high chemical reactivity and poor corrosion resistance that have hindered its widespread use in many applications. Therefore, it is of great significance to study the surface treatment technology of magnesium alloy.
     Based on the review of corrosion mechanism of magnesium alloys and the current study advancement in the whole world, ceria film, zirconia coating, silane organic coating and Si-Ce hybrid coating were directly or indirectly prepared on the magnesium alloy surface via sol-gel method. Meanwhile, the primary research of healing for Si sol-gel coating was also carried out due to the lack of self-healing functionality. Electrochemistry impedance spectroscopy (EIS), potentiodynamic polarization tests, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FT-IR) spectrum analysis, UV-Visible spectrum analysis and viscosity measurements were employed to character the properties of the prepared coatings including the corrosion resistance, surface morphology and composition.
     It is not possible to apply the coating directly on the magnesium alloy surface for some sol-gel coating because the high chemical activities may cause the poor adhesion and subsequent corrosion of substrate. Therefore, a fluoride coating as an interlayer has been used before preparing the ceria film on the magnesium alloy. The cerium film was prepared on the fluorinated magnesium alloy via sol-gel method employing cerium nitrate hexahydrate as the precursor and celloidin as the additive. The tests results showed that the main composition of the film was ceria, magnesium fluoride and magnesium oxide, especially, ceria played a key role in corrosion resistance. The results of electrochemical measurements in 3.5 wt% NaCl solution demonstrated that the corrosion resistance of AZ91D magnesium alloy was greatly improved by the ceria film.
     Meanwhile, a novel anti-corrosion zirconia coating was prepared via the sol-gel method for fluorinated AZ91D magnesium alloy using zirconium nitrate hydrate as a precursor modified with acetylacetone (AcAc). Zirconium nitrate reacted with AcAc forming a net structure in the coating. This coating possessed many excellent properties such as simple, inexpensive and environmental friendly. The electrochemical measurements results demonstrated that zinconia coating could obviously improve the corrosion resistance of magnesium alloy AZ91D.
     For the first time, this work investigated the effect of cerium concentration on microstructure, morphology and corrosion resistance of cerium-silica hybrid coatings on AZ91D magnesium alloy. The cerium-silica hybrid coatings were prepared via sol-gel method employing Vinyltriethoxysilane (VETO) and y-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, cerium nitrate hexahydrate as addititive. The results showed that small amount of cerium nitrate could accelerate the hydrolysis of the hybrid sol which was good to increase the corrosion resistance of the coating; however, a large amount of cerium nitrate could destroy the structure of the coating, leading to poor corrosion resistance of zirconia coating. The optimal concentration of cerium nitrate for increasing the corrosion resistance was 0.01 M.
     As soon as even small defects appear in the sol-gel coating system and the corrosive agents penetrate to the metal surface the coating system can not stop the corrosion process. The development of an environmental friendly approach which can stop the development of corrosion process and heal the corroded areas becomes an important issue for many industries where an adequate corrosion protection is needed. Present work demonstrated the possibility to use zinc nitrate as healing agent to repair the organic silane coatings in NaCl solution. The tests results demonstrated that introduction of zinc nitrate to the electrolyte could stop the development of corrosion process of the coating system and a remarkable recovery on corrosion resistance could be obtained. This effect may be attributed to the formation of zinc oxide/hydroxide on the defective areas, hindering the corrosion activities. At the same time, the nitrate ions might also play an important role in this healing process.
引文
[1]宋光铃,镁合金腐蚀与防护,化学工业出版社,2006.
    [2]张同俊,李星国,镁合金的应用和中国镁业,材料导报.2002,16(7):11-13.
    [3]姚素娟,张英,褚丙武,梁冬梅,镁及镁合金的应用与研究,2005,1:26-30.
    [4]张宇辉,高德民,华勤,翟启杰,铸造镁合金的应用与研究进展,铸造技术,2005,26(5):423-425.
    [5]J. E. Gray, B. Luan, Protective coatings on magnesium and its alloys — a critical review, Journal of Alloys and Compounds.2002,336:88-113.
    [6]谢丽英,汽车用稀土镁合金应用前景广阔,稀土信息,2008,9:20-22.
    [7]D. S. Mehta, S. H. Masood, W. Q. Song, Investigation of wear properties of magnesium and aluminum alloys for automotive applications, Journal of Materials Processing Technology. 2004,155-156:1526-1531.
    [8]B. T. Lin, C. C. Kuo, Application of an integrated RE/RP/CAD/CAE/CAM system for magnesium alloy shell of mobile phone, Journal of Materials Processing Technology.2009, 209:2818-2830.
    [9]H. Zhao, P. Bian, D. Ju, Electrochemical performance of magnesium alloy and its application on the sea water battery, Journal of Environmental Sciences Supplement.2009, S88-S91.
    [10]L. Yang, E. Zhang, Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application, Materials Science and Engineering C.2009,29:1691-1696.
    [11]R. C. Zeng, J. Zhang, W. J. Huang, W. Dietzel, K. U. Kainer, C. Blawert, W. Ke, Review of studies on corrosion of magnesium alloys, Trans. Nonferrous Met. SOC. China.2006,16: s763-s771.
    [12]A. M. Lafront, W. Zhang, S. Jin, R. Tremblay, D. Dube, E. Ghali, Pitting corrosion of AZ91D and AJ62x magnesium alloys in alkaline chloride medium using electrochemical techniques, Electrochimica Acta.2005,51 (3):489-501.
    [13]L. J. Yang, Y. H. Wei, L. F. Hou, D. Zhang, Corrosion behavior of die-cast AZ91D magnesium alloy in aqueous sulphate solutions, Corrosion Science.2010,52 (2):345-351.
    [14]X. Zhou, G. E. Thompson, G. M. Scamans, The influence of surface treatment on filiform corrosion resistance of painted aluminum alloy sheet, Corrosion Science.2003,45 (8): 1767-1777.
    [15]G. Svenningsen, M. H. Larsen, J. C. Walmsley, J. H. Nordlien, K. Nisancioglu, Effect of
    artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content, Corrosion Science.2006,48 (6):1528-1543.
    [16]G. Svenningsen, M. H. Larsen, J. C. Walmsley, J. H. Nordlien, K. Nisancioglu, Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi(Cu) model alloy, Corrosion Science.2006,48 (12):3969-3987.
    [17]G. Svenningsen, M. H. Larsen, J. C. Walmsley, J. H. Nordlien, K. Nisancioglu, Effect of high temperature heat treatment on intergranular corrosion of extruded AlMgSi(Cu) model alloy, Corrosion Science.2006,48 (1):258-272.
    [18]G. Svenningsen, M. H. Larsen, J. C. Walmsley, J. H. Nordlien, K. Nisancioglu, Effect of low copper content and heat treatment on intergranular corrosion of extruded AlMgSi alloy, Corrosion Science.2006,48 (1):226-242.
    [19]G. L. Maker, J. Kruger, Corrosion of magnesium, International Material Review,1993,38: 138-153.
    [20]G. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Advance Engineering Materials.1999,1:11-13.
    [21]E. Ghaili, W. Dietzel, K. U. Kniner, General and localized corrosion of magnesium alloys:a critical review, Journal of Materials Engineering and Performance,2004,13 (1):7-13.
    [22]C. Liu, D. L. Chen, S. Bhole, X. Cao, M. Jahazi. Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy, Materials Characterizaiton.2009,60 (5):370-376.
    [23]H. Hoche, C. Blawert, E. Broszeit, C. Berger, Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91, Surface and Coatings Technology.2005,193 (1-3):223-229.
    [24]G. Song, B. Johannesson, S. Hapugoda. D. S. John, Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc, Corrosion Science.2004,46 (4):955-977.
    [25]张勇,许越,镁合金应力腐蚀开裂敏感性影响因素及防护措施,哈尔滨工业大学学报,2009,41(6):87-89.
    [26]许越,李家学、李莎,镁合金应力腐蚀机理及其影响因素分析,材料科学与工艺,2008,16(3):314-318.
    [27]N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K. U. Kainer, N. Hort, C. Blawert, A critical review of the stress corrosion cracking (SCC) of magnesium of magnesium alloys, Advanced Engineering Materials,2005,7 (8):659-693.
    [28]刘贵立,稀上对镁合金应力腐蚀影响电子理论研究,物理学报,2006,55(12):6570-6573.
    [29]罗小萍,夏兰廷,藏东勉,合金元素对镁及镁合金腐蚀性能的影响,铸造设备研究,2007,(3):24-27.
    [30]李冠群,吴国华,樊昱,丁文江,主要合金元素对镁合金组织及耐蚀性能的影响,2006,27(1):79-83.
    [31]J. Chen, J. Wang, E. Han, J. Dong, W. Ke, AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution, Electrochimica Acta, 2007,52 (9):3299-3309.
    [32]X. M. Wang, X. Q. Zeng, G. S. Wu, S. S. Yao, Y. J. Lai, The effects of of cerium implantation on the oxidation of AZ91 magnesium alloys,2008,456 (1-2):384-389.
    [33]C. Li, Y. Liu, Q. Wang, L. Zhang, D. Zhang, Study on the corrosion residual strength of the 1.0 wt.% Ce modified AZ81 magnesium alloy, Materials Characterization,2010,61 (1):123-127.
    [34]X. Wang, X. Zeng, S. Yao, G Wu, Y. Lai, The corrosion behavior of Ce-implanted magnesium alloys, Materials Characterization,2008,50 (5):618-623.
    [35]N. T. Kirkland, J. Lespagnol, N. Birbilis, M. P. Staiger, A survey of bio-corrosion rates of magnesium alloys, Corrosion Science,2010,52 (2):287-291.
    [36]Z. Shi, G Song, A. Atrens, Influence of the β phase on the corrosion performance of anodized coatings on magnesium aluminium alloys, Corrosion Science,2005,47 (11):2760-2777.
    [37]T. Zhang, Y. Li, F. Wang, Roles of β phase in the corrosion process of AZ91D magnesium alloy, Corrosion Science,2006,48 (5):1249-1264.
    [38]R. Ambat, N. N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy,2000, Corrosion Science,42 (8):1433-1455.
    [39]M. Yamasaki, N. Hayashi, S. Lzumi, Y. Kawamura, Corrosion behavior of rapidly modied Mg-Zn-rare earth element alloys in NaCl solution, Corrosion Science,2007,49 (1):255-262.
    [40]T. S. Srivatsan, S. Vasudevan, M. Petrorali, An investigation of the quasi-static fracture behavior of a rapidly solidified magnesium alloy, Journal of Alloys and Compounds,460 (1-2): 386-391.
    [41]F. Sommer, F. Hehmann, H. Jones, The transformation behavior of the rapidly solidified solid solution of yttrium in magnesium, Journal of the Less Common Metals,1990,159 (1): 237-259.
    [42]C. A. Huang, T. H. Wang, T. Weirich, V. Heubert, A pretreatment with galvanostatic etching for copper electrodeposition on pure magnesim and magnesium alloys in an alkaline copper-sulfate bath, Elctrochimica Acta,2008,53 (24):7235-7241.
    [43]C. A. Huang, T. H. Wang, T. Weirich, V. Neubert, Electrodeposition of a protective copper/nickel deposit on the magnesium alloy (AZ31), Corrosion Science,2008,50 (5):
    1385-1390.
    [44]S. Pan, W. Tsai, J. Chang, I. Sun, Co-deposition of Al-Zn on AZ91D magnesium alloy in AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid, Electrochimica Acta,2010,55 (6): 2158-2162.
    [45]Z. Chen, M. Zhang, W. Han, X. Wang, D. Tang, Electrodeposition of Zr and electrochemical formation of Mg-Zr alloys from the eutectic LiCl-KCl, Journal of Alloys and Compounds, 2008,459 (1-2):209-214.
    [46]J. Zhang, C. Yan, F. Wang, Electrodeposition of Al-Mn alloy on AZ31B magnesium alloy in molten salts, Applied Surface Science,2009,255 (9):4926-4932.
    [47]J. Chang, S. Chen, W. Tsai, M. Deng, I. Sun, Electrodeposition of aluminum on magnesium alloy in aluminum chloride (AlCl3-1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and its corrosion behavior, Electrochemistry Communications,2007,9 (7):1602-1606.
    [48]S. Zhang, Q. Li, X. Yang, X. Zhong, Y. Dai, F. Luo, Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni-TiO2 composite coating, Materials Characterization,2010,61 (3):269-276.
    [49]L. Li, Y. Cheng, H. Wang, Z. Zhang, Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized films, Transactions of Nonferrous Metals Society of China,2008,18 (3):722-727.
    [50]X. Cuo, M. An, P. Yang, H. Li, C. Su, Effects of benzotriazole on anodized formed on AZ31B magnesium alloy in environmental-friendly electrolyte, Journal of Alloys and Compounds, 2009,482 (1-2):487-497.
    [51]C. Barchiche, E. Rocca, C. Juers, J. Hazan, J. Steinmetz, Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods, Electrochimica Acta, 2007,53 (2):417-425.
    [52]S. Sun, J. Liu, C. Yan, F. Wang, A novel process for elctroless nickel plating on anodized magnesium alloy, Applied Surface Science,2008,254 (16):5016-5022.
    [53]H. Hsiao, H. Tsung, W. Tsai, Anodization of AZ91D magnesium alloy in silicate-containing electrolytes. Surface and Coatings Technology,199 (2-3):127-134.
    [54]刘忠德,付华,孙茂坚,张中元,负向电压对镁合金微弧氧化膜层的影响,轻金属,2009,4:45-48.
    [55]杨巍,蒋百灵,鲜林云,溶质离子在镁合金魏弧氧化膜形成过程中的作用,材料热处理学报,2009,30(2):157-160.
    [56]X. Zhong, Q. Li, J. Hu, Y. Lu, Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy, Corrosion Science,2008,50 (8):2304-2309.
    [57]Q. Li, B. Chen, S. Xu, H. Gao, L. Zhang, C. Liu, Structural and electrochemical behavior of sol-gel ceramic film on chemically pre-treated AZ91D magnesium alloy, Journal of Alloys and Compounds,2009,478 (1-2):544-549.
    [58]Q. Li, X. Zhong, J. Hu, W. Kang, Preparation and corrosion resistance studies of zirconia coating on fluorinated AZ91D magnesium alloy, Progress in Organic Coatings,2008,63 (3): 222-227.
    [59]J. Hu, Q. Li, X. Zhong, W. Kang, Novel anti-corrosion silicon dioxide coating prepared by sol-gel method for AZ91D magnesium alloy, Progress in Organic Coatings,2008,63 (1): 13-17.
    [60]S. Yu, Q. Lu, J. Han, Z. Zhang, Q. Zhang, Preparation and performance of rare earths chemical conversion film on magnesium alloy, Journal of Rare Earths,2009,22 (1):65-70.
    [61]Y. F. Jiang, H. T. Zhou, S. M. Zeng, Microstrucrure and properties of oxalate conversion coating on AZ91D magnesium alloy, Transactions of Nonferrous Metals Society of China, 2009,19(6):1416-1422.
    [62]M. Dabala, K. Brunelli, E. Napolitani, M. Magrini, Cerium-based chemical conversion coating on AZ63 magnesium alloy, Surface and Coatings Technology,2003,172 (2-3):227-232.
    [63]H. Jin, X. Yang, M. Wang, Chemical conversion coating on AZ31B magnesium alloy and its corrosion tendency, Acta Maetallurgica Sinica,2009,22 (1):65-70.
    [64]K. H. Yang, M. D. GER, W. H. Hwu, Y. Sung, Y. C. Liu, Study of vanadium-based conversion coating on the corrosion resistance of magnesium alloy, Materials Chemistry and Physics, 2007,101 (2-3):480-485.
    [65]F. Pan, X. Yang, D. Zhang, Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy, Applied Surface Science,2009,255 (20):8363-8371.
    [66]K. Z. Chong, T. S. Shih, Coversion-coating treatment for magnesium alloys by a permanganate-phosphate solution, Materials Chemistry and physics,2003,80 (1):191-200.
    [67]H. H. Elsentriecy, K. Azumi, H. Konno, Improvement in stannate chemical conversion coatings on AZ91D magnesium alloy using the potentiostatic technique, Electrochimica Acta, 2007,53 (2):1006-1012.
    [68]Z. Yong, J. Zhu, C. Qiu, Y. Liu, Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection, Applied Surface Science,2008,255 (5): 1672-1680.
    [69]Q. Li, S. Xu, J. Hu, S. Zhang, X. Zhong, X. Yang, The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D, Electrochimica Acta,55 (3):887-894.
    [70]L. L. Hench, J. K. West, The sol-gel process, Chemistry Review,1990,90:33-72.
    [71]D. W. Schaefer, Polymers, fractals, and ceramic materials, Science,1989,24:1023-1027.
    [72]A. R. Phani, F. J. Gammel, T. Hack, H. Haefke, Enhanced corrosion resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloy, Materials and Corrosion,2005.56 (2): 77-82.
    [73]S. V. Lamaka, M. F. Montemor, A. F. Galio, M. L. Zheludkevich, C. Trindade, L. F. Dick, M.G.S. Ferreira, Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy, Eletrochimica Acta,2008,53 (14):4773-4783.
    [74]A. N. Khramov, V. N. Balbyshev, L. S. Kasten, R. A. Mantz, Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys, Thin Solid Films, 2006,514(1-2)174-181.
    [75]W. Shang, B. Chen, X. Shi, Y. Chen, X. Xiao, Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique, Journal of Alloys and Compounds,2009,477 (1-2):514-545.
    [76]J. Hu, Q. Li, X. Zhong, L. Zhang, B. Chen, Composite anticorrosion coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol-gel coatings, Progress in Organic Coatings,2009,66 (3):199-205.
    [77]S. Zhang, Q. Li, Bo Chen, X. Yang, Preparation and corrosion resistance studies of nanometric sol-gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy, Electrochimica Acta,2010,55 (70):277-284.
    [78]R. Supplit, T. Koch, U. Schubert, Evaluation of the anti-corrosion effect of acid pickling and sol-gel coating on magnesium AZ31 alloy, Corrosion Science,2007,49(1):3015-3023.
    [79]A. R. Phani, F. J. Gammel, T. Hack, Structural, mechanical and corrosion resistance properties Al2O3-CeO2 nanocomposites in silica matrix on Mg alloys by a sol-gel dip coating technique, Surface and Coatings Technology.2006,201 (6):3299-3306.
    [80]W. Li, L. Zhu, H. Liu, Preparation of hydrophobic anodic film on AZ91D magnesium alloy in silicate solution containing silica sol, Surface and Coatings Technology,2006,201 (6): 2573-2577.
    [81]A. L. Tan, A. M. Soutar, I. F. Annergren, Y. N. Liu, Multilayer sol-gel coatings for corrosion protection of magnesium, Surface and Coatings Technology,2005,198 (1-3):478-482.
    [1]A. R. Phani, F. J. Gammel, T. Hack, Structural, mechanical and corrosion resistance properties of Al2O3-CeO2 nanocomposites in silica matrix on Mg alloys by a sol-gel dip coating technique, Surface Coatting and Technology,2006,201 (6):3299-3306.
    [2]S. V. Lamaka, M. F. Montemor, A. F. Galio, M. L. Zheludkevich, C. Trindade, L. F. Dick, M. G. S. Ferreira, Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy, Electrochimica Acta,2008,53 (14):4773-4783.
    [3]A.N. Khramov, V.N. Balbyshev, L.S. Kasten, R.A. Mantz. Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys. Thin Solid Films.2006,514 (1-2):174-181.
    [4]J. Y. Hu, Q. Li, X. K. Zhong, W. Kang, Novel anti-corrosion silicon dioxide coating prepared by sol-gel method for AZ91D magnesium alloy, Progress Organic Coatings 2008,63 (1): 13-17.
    [5]A.L.K. Tan, A.M. Soutar, I.F. Annergren, Y.N. Liu, Multilayer sol-gel coatings for corrosion protection of magnesium, Surface Coatting and Technology,2005,198 (1-3):478-482.
    [6]X. K. Zhong, Q. Li, J. Y. Hu, Y. H. Lu. Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corrosion Science 2008,50 (8): 2304-2309.
    [7]Q. Li, X. K. Zhong, J. Y. Hu, Preparation and corrosion resistance studies of zirconia coating on fluorinated AZ91D magnesium alloy, Progress Organic Coatings 2008,63 (2):222-227.
    [8]W. P. Li, L. Q. Zhu, H. C. Liu, Effects of silicate concentration on anodic films formed on AZ91D magnesium alloy in solution containing silica sol, Surface Coatting and Technology, 2006,201 (6):2505-2511.
    [9]M. H. Wong, F. T. Cheng, H. C. Man, Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants, Surface Coatting and Technology,2007,202 (3):590-598.
    [10]S. H. Nie, S. M. Xiong, B. C. Liu. Effects of residual F content in a sealed melting furnace on experimental results of cover gas research for magnesium alloys, Materials Science Engneering A 2006,422 (1-2):346-351.
    [11]M. Zhao, S. S. Wu, P. An, J. R. Luo, Influence of surface pretreatment on the chromium-free conversion coating of magnesium alloy, Materials Chemistry Physics 2007,103:475-483.
    [12]K. G. Cowan, J. A. Harrison, The dissolution of magnesium in Cl- and F- containing aqueous solution, Electrochimica Acta,1979,24 (3):301-308.
    [13]S. Verdier, N. van der Laak, S. Delalande, J. Metson, F. Dalard. The surface reactivity of a magnesium-aluminum alloy in acidic fluoride solutions studied by electrochemical techniques and XPS, Applied Surface Science,2004,235 (4):513-524.
    [14]H.F. Guo, M.Z. An, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance, Applied Surface Science,2005,246(1-3):229-238.
    [15]Z. Cmjak Orel, B. Orel, Structural and electrochemical properties of CeO2 and mixed CeO2/SnO2 coatings, Energy Material Solid Cells,1996,40(3):205-219.
    [16]颜秀茹,宋宽秀,王建萍,胡留长,杨朝辉,CeO2-TiO2/SiO2的制备及除氟性能研究,中国稀土学报.1998,16(2):140-153.
    [17]董相廷,刘桂霞,孙晶,闫景辉,洪广言,CeO2纳米水溶胶的制备.稀有金赂材料与工程,2002,31(3):229-231.
    [18]纪红,许越,周德瑞,铈纳米膜对LY12铝合金表面耐蚀性能的影响,中国稀十学报.2003,21(3):303-306.
    [19]L. S. Kasten, J. T. Grant, An XPS study of cerium dopants in sol-gel coatings for aluminum 2024-T3, Surface Coating and Technology,2001,140 (1):11-15.
    [20]Joachim Wloka, Gotthold Burklin, Sannakaisa Virtanen, Influence of second phase particles on initial electrochemical properties of AA7010-T76, Electrochimica Acta,2007,53 (4): 2055-2059.
    [21]Tao Zhang, Ying Li, Fuhui Wang, Roles of βphase in the corrosion process of AZ91D magnesium alloy, Corrosion Science 2006,48 (5):1249-1264.
    [22]M. Skoda, M. Cabala, V. Chab, K. C. Prince, L. Sedlcack, T. Skala, F. Sutara, V. Matolin, Sn interaction with the CeO2(111) system:bimetallic bonding and ceria reduction, Applied Surface Science,2008,254 (14):4375-4379.
    [23]S. V. Lamaka M. F. Montemor, M. G. S. Ferreira, Electrochemical study of modified bis-[triethoxysilylpropyl] terasulfide silane films applied on the AZ31 Mg alloy, Electrochimica Acta,2007,52 (27):7486-7495.
    [24]Heming Wang, Robert Akid, A room temperature cured sol-gel anticorrosion pre-treatment for Al 2024-T3 alloys, Corrosion Science,2007,49 (12):4491-4503.
    [1]C. G Aneziris, E. M. Pfaff, H.R. Maier, Corrosion mechanisms of low porosity ZrO2 based materials during near net shape steel casting, J. Europ Ceramic Society,2000,20 (2): 159-168.
    [2]R. Lopez-Ibanez, F.Martin, R. Ramos-Barrado, D. Leinen, Large area zirconia coatings on galvanized steel sheet, Surface Coating and Technology,2008,202 (11):2408-2412.
    [3]W. Liu, Y. Chen, C. Ye, P. Zhang, Preparation and characterization of doped sol-gel zirconia films, Ceramic Interface,2002,28 (4):349-354.
    [4]Y. S. Baron, A. Ruiz, G. Navas, High temperature oxidation resistance of 1.25cr-0.5mo wt.% steels by zirconia coating, Surface Coating and Technology,2008,202 (12):2616-2622.
    [5]G. Gusmano, G. Montesperelli, M. Rapone, G. Padeletti, A. Cusma, S. Kaciulis, A. Mezzi, R. D. Maggio, Zirconia primers for corrosion resistant coatings, Surface Coating Technology 2007, 201 (12):5822-5828.
    [6]汗永清,常启兵,周健儿,胡学兵,可控溶胶-凝胶法制备纳米ZrO2,人工晶体学报,2009,38(4):1012-1017.
    [7]Fedrizzi L, Rodriguez F J, Rossi S, Deflorian F, MaggioR D. The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films. Electrochimica Acta,2001,46 (24-25):3715-3724.
    [8]P. Peshev, I. Stambolova, S. Vassilev, P. Stefanov, V. Blaskov, K. Starbova, N. Starbov, Spray pyrolysis deposition of nanostructured zirconia thin films, Material Science Engneering B 2003, 97(1):106-110.
    [9]F. Andreatta, P. Aldighieri, L. Paussa, R. Di Maggio, S. Rossi, L. Fedrizzi, Electrochemical behaviour of ZrO2 sol-gel pre-treatments on AA6060 aluminium alloy, Electrochimica Acta 2007,52(27):7545-7555.
    [10]A.R. Phani, F.J. Gammel, T. Hack, H. Haefke, Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys, Materials Corrosion 2005,56 (2):77-82.
    [11]P. Benard, D. Louer, The layer structure of Zr(OH)3NO3 determined ab initio using conventional monochromatic X-Ray powder diffraction, Jounal Physics. Chemistry Solids 1995, 56(10):1345-1352.
    [12]M. Tahmasebpour, A. A. Babaluo, M. K. Razavi Aghjeh, Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method, Journal of Europe Ceramic Society,2008,28 (4):773-778.
    [13]P. Benard-Rocherulle, J. Rius, D. Louer, Structural Analysis of Zirconium Hydroxide Nitrate Monohydrates by X-Ray Powder Diffraction, Journal of Solid State Chemistry,1997,128(2): 295-304.
    [14]N. Tohge, K. Shinmou. T. Minami, Preparation of new photosensitive ZrO2 gel films using hydroxyl-substituted aromatic ketones as chemical modification reagents and their patterning, Journal of Sol-Gel Science and Technology,2004,31 (1-3):253-256.
    [15]R. Brenier, A. Gagnaire, Densification and aging of ZrO2 films prepared by sol-gel, Thin Solid Films 2001,392(1):142-148.
    [16]L. F. Cueto, E. Sanchez, L. M. Torres-Martinez, G. A. Hirata, On the optical, structural, and morphological properties of ZrO2 and TiO2 dip-coated thin films supported on glass substrates, Material Characteration,2005,55 (4-5) 263-271.
    [1]S. V. Lamaka, M. F. Montemor, A. F. Galio, M. L. Zheludkevich, C. Trindade, L. F. Dick, M. G. S. Ferreira, Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy, Electrochimica Acta,2008,53(14):4773-4783.
    [2]X. Zhong, Q. Li, J. Hu, Y. Lu, Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy, Corrosion Science,2008,50(8):2304-2309.
    [3]J. Amri, E. Gulbrandsen, R. P. Nogueira, The effect of acetic acid on the pit propagation in CO2 corrosion of carbon steel, Electrochemistry Communications,2008,10 (2):200-203.
    [4]K. A. Yasakau, M.L. Zheludkevich, S. V. Lamaka, G. S. J. Ferreira, Mechanism of corrosion inhibition of AA2024 by rare-earth compounds, Joural of Physics Chemistry B,2006,110(11): 5515-5528.
    [5]S. Y. Sayed, M. S. El-Deab, B. E. El-Anadouli, B. G. Ateya, Synergistic effects of benzotriazole and copper ions on the electrochemical impedance spectroscopy and corrosion behavior of iron in sulfuric acid, Joural of Physics Chemistry B,2003,107 (23):5575-5585.
    [6]纪红,许越,周德瑞,LY12铝合金表面铈纳米膜的制备及显微组织结构,航空材料学报,2003,23(1):21-23.
    [7]L. S. Kasten, J. T. Grant, An XPS study of cerium dopants in sol-gel coatings for aluminum 2024-T3, Surface Coatings Technology,2001,140 (1):11-15.
    [8]W. Trabelsia, E. Triki, The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates, Surface Coatings and Technology,2006, 200 (14-15):4240-4250.
    [9]A. Pepe, M. Aparicio, Preparation and characterization of cerium doped silica sol-gel coatings on glass and aluminum substrates, Journal of Non-Crystist Solids,2004,348:162-171.
    [10]颜秀茹,宋宽秀,干建萍,胡留长,杨朝辉,CeO2-TiO2/SiO2的制备及除氟性能研究,中国稀土学报.1998,16(2):149-153.
    [11]Z. Cmjak Orel, B. Orel, Structural and electrochemical properties of CeO2 and mixed CeO2/SnO2 coatings, Solar Energy Materials Solid Cells,1996,40 (3):205-219.
    [12]N. N. Voevodinb, N. T. Grebaschc, Potentiodynamic evaluation of sol-gel coatings with inorganic inhibitors, Surface Coating and Technology,2001,140 (1):24-28.
    [13]A. Nazeri, P. P. T. Paulette, D. Bauerj, Synthesis and Properties of Cerium and Titanium Oxide Thin Coatings for Corrosion Protection of 304 Stainless Steel, Journal of Sol-Gel Science and Technology,1997,10 (3):317-331.
    [14]M. L. Zheludkevich, D. G Shchukin, K. A. Yasakau, M. G S. Ferreira, Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with Corrosion inhibitor, Chemistry of Materials,2007,19(3):402-411.
    [15]X. H. Wang, Y. Guo, G. Z. Lu, Y. Hu, L. Z. Jiang, An excellent support of Pd catalyst for methane combustion:Thermal-stable Si-doped alumina, Catalist Today,2007,126 (3-4): 369-374.
    [16]J. M. Hu, L. Liu, J. Q. Zhang, C. N. Cao, Electrodeposition of silane films on aluminum alloys for corrosion protection, Progress Organic Coatings,2007,58 (4):265-271.
    [17]C. M. Bertelsen, F. J. Boerio, Linking mechanical properties of silanes to their chemical structure:an analytical study of y-GPS solutions and films, Progress Organic Coatings,2001, 41 (4):239-245.
    [18]B. Japelj, B. Orel, Preparation of a TiMEMO nanocomposite by the sol-gel method and its application in coloured thickness insensitive spectrally selective (TISS) coatings, Energy Material Solar Cells,2008.92 (9):1149-1161.
    [1]J. Masalski, J. Gluszek, J. Zabrzeski, K. Nitsch, P. Gluszek, Improvement in corrosion resistance of the 3161 stainless steel by means of Al2O3 coatings deposited by the sol-gel method, Thin Solid Films,1999,349(1-2):186-190.
    [2]H. Wang, R. Akid, Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol-gel coatings on mild steel, Corrosion Science,2008,50 (4):1142-1148.
    [3]G. Ruhi, O. P. Modi, A.S.K. Sinha, I. B. Singh, Effect of sintering temperatures on corrosion and wear properties of sol-gel alumina coatings on surface pre-treated mild steel, Corrosion Science,2008,50 (3):639-649.
    [4]L. Fedrizzi, F. J. Rodriguez, S. Rossi, F. Deflorian, R. Maggio, The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol-gel zirconia films, Electrochimica Acta,2001, (46):24-25.
    [5]M. Schem, T. Schmidt, J. Gerwann, M. Wittmar, M. Veith, G. E. Thompson, I. S. Molchan, T. Hashimoto, P. Skeldon, A. R. Phani, S. Santucci, M. L. Zheludkevich, CeO2-filled sol-gel coatings for corrosion protection of AA2024-T3 aluminium alloy,2009,51 (10):2304-2315.
    [6]A. S. Hamdy, Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys, Materials Letters,2006,60 (21-22):2633-2637.
    [7]A. S. Hamdy, D. P. Butt, Novel anti-corrosion nano-sized vanadia-based thin films prepared by sol-gel method for aluminum alloys, Journal of Materials Processing Technology,2007, 181 (1-3):76-80.
    [8]S. V. Lamaka, M. F. Montemor, A. F. Galio, M. L. Zheludkevich, C. Trindade, L. F. Dick, M. G. S. Ferreira, Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy, Electrochimica Acta,2008,53 (14):4773-4783.
    [9]A. F. Galio, S. V. Lamaka, M. L. Zheludkevich, L. F. P. Dick, I. L. Muller, M. G S. Ferreira, Inhibitor-doped sol-gel coatings for corrosion protection of magnesium alloy AZ31, Surface and Coatings Technology,204 (9-10):1479-1486.
    [10]H. Shi, F. Liu, E. Han, Corrosion protection of AZ91D magnesium alloy with sol-gel coating containing 2-methyl piperidine, Progress in Organic Coatings,2009,66 (3):183-191.
    [11]M. Quinet, B. Neveu, V. Moutarlier, P. Audebert, L. Ricq, Corrosion protection of sol-gel coatings doped with an organic corrosion inhibitor:Chloranil, Progress in Organic Coatings, 2007,58(1):46-53.
    [12]V. Moutarlier, B. Neveu, M. P. Gigandet, Evolution of corrosion protection for sol-gel coatings doped with inorganic inhibitors, Surface and Coatings Technology,2008,202 (10): 2052-2058.
    [13]A. F. Galio, S. V. Lamaka, M. L. Zheludkevich, L. F. P. Dick, I. L. Muller, M. G. S. Ferreira, Inhibitor-doped sol-gel coatings for corrosion protection of magnesium alloy AZ31, Surface and Coatings Technology,2010,204 (9-10):1479-1486.
    [14]K. A. Yasakau, M. L. Zheludkevich, O.V. Karavai, M. G. S. Ferreira, Influence of inhibitor addition on the corrosion protection performance of sol-gel coatings on AA2024, Progress in Organic Coatings,2008,63 (3):352-361.
    [15]M. L. Zheludkevich, R. Serra, M. F. Montemor, K. A. Yasakau, I. M. Miranda Salvado. M. G. S. Ferreira, Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3:Corrosion protection performance, Electrochimica Acta,2005,51 (2):208-217.
    [16]A. N. Khramov, N. N. Voevodin, V. N. Balbyshev, R. A. Mantz, Sol-gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors, Thin Solid Films,2005,483 (1-2):191-196.
    [17]M. L. Zheludkevich, R. Serra, M. F. Montemor, M. G. S. Ferreira, Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors, Electrochemistry Communications,2005,7(8):836-840.
    [18]S. M. A. Hosseini, A. H. Jafari, E. Jamalizadeh, Self-healing corrosion protection by nanostructure sol-gel impregnated with propargyl alcohol, Electrochimica Acta,2009,54(28): 7207-7213.
    [19]S. V. Lamaka, M. L. Zheludkevich, K. A. Yasakau, R. Serra, S. K. Poznyak, M. G. S. Ferreira, Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability,2007,58 (2-3):127-135.
    [20]M. L. Zheludkevich, D. G. Shchukin, K. A. Yasakau, H. Mhwald, M. G. S. Ferreira, Anticorrosion coatings with self-Healing effect based on nanocontainers impregnated with corrosion inhibitor, Chemistry of Materials,2007,19 (3):402-412.
    [21]M. L. Zheludkevich, I. Miranda Salvadob, M. G. S. Ferreira, Sol-gel coatings for corrosion protection of metals, Journal of Material Chemistry,2005,15:5099-5111.
    [22]G. Bierwagen, R. Brown, D. Battocchi, S. Hayes, Active metal-based corrosion protective coating systems for aircraft requiring no-chromate pretreatment, Progress in Organic Coatings, 2010,67(2):195-208.
    [23]R. Mafi, S. M. Mirabedini, R. Naderi, M. M. Attar, Effect of curing characterization on the corrosion performance of polyester and polyester/epoxy powder coatings, Corrosion Science, 2008,50 (12):3280-3286.
    [24]R. C. Patil, S.Radhakrishnan, Conducting polymer based hybrid nano-composites for enhanced corrosion protective coatings, Progress in Organic Coatings,2006,57(4):332-336.
    [25]M. Koike, Z. Cai, H. Fujii, M. Brezner, T. Okabe, Corrosion behavior of cast titanium with reduced surface reaction layer made by a face-coating method, Biomaterials,25(24):332-336.
    [26]K. A. Yasakau, M. L. Zheludkevich, S. V. Lamaka, M. G. S. Ferreira, Mechanism of corrosion inhibition of AA2024 by rare-earth compounds, Journal of Physical Chemistry B,2006,110 (10):5515-5528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700