新型复合载体的制备及其固定化微生物处理高浓度苯酚废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文详细评述了固定化微生物技术和两相分配生物反应器技术处理高浓度苯酚废水的研究进展,并对目前研究现状与存在的问题进行了评述,提出了本学位论文的选题指导思想。
     设计制备了聚氨酯/有机蒙脱土复合泡沫载体(PUF/OMMT),通过向聚氨酯泡沫载体中添加有机蒙脱土(OMMT),提高了聚氨酯泡沫载体的化学和生物稳定性能,相应延长了聚氨酯泡沫的使用寿命。通过复合聚氨酯泡沫载体的SEM观察以及其化学、生物稳定性分析,当有机蒙脱土的添加量在1%时可获得最佳效果。
     以PUF/OMMT为载体固定化高效微生物B350,详细研究了用其处理苯酚废水时,苯酚起始浓度、pH值、温度等参数对苯酚降解效率的影响,通过与游离微生物的比较,提高了对苯酚的耐受性、降解速率以及扩大了降解条件范围,显示出固定化微生物技术处理污水时具有耐冲击的显著特点。建立了固定化微生物降解苯酚的数学模型,然后对其参数通过非线性拟合进行了求解,最后验证了所建立的数学模型,结果表明与实测数据基本吻合。数学模型的建立为实际应用提供了理论依据。
     采用相转化法制备了聚砜/壬醇胶囊和聚砜/有机蒙脱土小球两种萃取剂,并对其吸附苯酚的性能进行了测试,结果表明两种萃取剂都有较快的吸附速率:聚砜/壬醇胶囊一小时可达到吸附平衡,聚砜/有机蒙脱土小球则需要2小时:并且都有较大的吸附量:对于起始浓度为1906mg/L的苯酚废水,聚砜/壬醇胶囊对其的吸附量为16.3mg/g,对于起始浓度为2030mg/L的苯酚废水,聚砜/有机蒙脱土小球对其的吸附量为30.2mg/g。聚砜/有机蒙脱土小球对苯酚的吸附动力学符合Lagergren准二级吸附模型,其对苯酚的等温吸附更符合Freundlich吸附模型。
     以聚砜/有机蒙脱土小球为萃取剂,将固定化微生物技术引入TPPB系统对高浓度苯酚降解时,其对苯酚的降解速率可达到342.4 mg/L*h,而TPPB系统中生物相为游离微生物时,对苯酚的降解速率为208.4 mg/L*h。由此说明,TPPB系统由于固定化微生物技术的引入不仅提高了苯酚的降解速率,而且大大提高了苯酚的起始浓度。
     由以PUF/OMMT为载体固定化微生物作为生物相,以聚砜/有机蒙脱土小球为萃取剂作为固态萃取相,构成用于高浓度苯酚废水处理的新型两相分配生物反应器,是本学位论文的创新点。
This dissertation reviews microorganism immobilization and two-phase partitioning bioreactor was used to degrade high concentrations of phenol. Based on the current situation and existing problems, the detailed research progress is presented.
     Foam carrier based on composite of polyurethane/montmorillonite (PU/OMMT) was designed and prepared successfully, By addition of organic modified montmorillonite (OMMT) to polyurethane (PU) foam, the chemical stability and bio-stability of PU have been improved. Accordingly, the addition of organic modified montmorillonite has increased the lifetime of PU. The composite PU was analyzed by SEM and its chemical and biological stability was examined. It was found that the organic modified montmorillonite could get perfect performance when the concentration of organic modified montmorillonite is 1%.
     The high efficiency microbes B350 were immobilized on the PUF/OMMT. The effects of initial phenol concentration, pH and temperature on the removal of phenol were investigated. Comparing with free microbes, we found that phenol-stability and degradative efficiency of immobilized microorganism had been improved, which indicate that immobilized microorganism has the obvious character that is not affected by environmental factor easily. The dynamical mode which the immobilized microorganism degrades phenol was built, and then, the kinetic parameters were determined by non-linear curve fit, at last, the dynamical mode was check by experimental data, the result showed that the dynamical mode was accorded with the experimental data. The dynamical mode provided theory for the application which the immobilized microorganism degrades phenol.
     The polymers of polysulfone/nonanol and polysulfone/OMMT were prepared using the phase inversion method, the capability of two polymers were tested individually, the results show that two polymers all have fast sorption velocity: polysulfone/nonanol capsule can reach sorption balance within one hour, and polysulfone/OMMT bead used two hours; Two polymers also have high sorption capacity: the sorption capacity of polysulfone/nonanol capsule is 16.3mg/g, when the initial phenol concentration is 1906mg/L; the sorption capacity of polysulfone/OMMT bead is 30.2mg/g, when the initial phenol concentration is 2030mg/L. The adsorption dynamical mode of polysulfone/OMMT bead accords with Lagergren pseudo-second-order adsorption model. The adsorption to phenol also accords to Freundlich adsorption model.
     Two-phase partitioning bioreactor containing immobilized microorganism and PS/OMMT bead was used to degrade high concentrations of phenol, of which the degradation velocity is 342.4 mg/L*h, while, two-phase partitioning bioreactor containing free microorganism and PS/OMMT bead was used to degrade high concentrations of phenol, of which the degradation velocity is 208.4 mg/L*h. The degradation velocity of phenol and initial phenol concentration were improved, because TPPB contains immobilized microorganism.
     TPPB was made up of immobilized microorganism used as the phase of biology and PS/OMMT bead used as the phase of extraction, which was used to degrade high concentrations of phenol. That is the innovation of this thesis.
引文
[1]王春敏,李亚峰,陈健.含酚废水治理技术研究现状及其进展[J].辽宁化工,2004,5:276-279.
    [2]于萍,姚琳,罗运柏.高浓度含酚废水处理的新工艺[J].工业水处理,2002,9:5-8.
    [3]耿春香等.氧化法处理水中酚的研究方法综述[J].油气田环境保护,1997,7:51-53.
    [4]刘琼玉等.含酚废水的无害化处理技术进展[J].环境污染治理技术与设备,2002,3(2):62-66.
    [5]God jevargova T,Ivanova D,A lexieva Z,et al.Biodegradation of toxic organic components from industrial phenol production wastewater by free and immobilized Trichosporon cutaneum R57[J].Process Biochemistry,2003,38(6):915-920.
    [6]周定,侯文华.固定化微生物法处理含酚废水的研究[J].环境科学,1990,11(1):2-5.
    [7]朱柱等.固定化细胞技术处理含酚废水的研究[J].重庆环境科学,2000,22(6):64-67.
    [8]周定,王建龙等.固定化细胞在废水处理中的应用及前景[J]_环境科学,1993,14(5):51-59.
    [9]Pai S L,Hsu Y L,Chong N M,et al.Continuous degradation of phenol by rhodococcus sp.immobilized on granular activated carbon and in calcium alginate[J].Bioresource Technology,1995,51(1):37-42.
    [10]Cruickshank S M,Daugulis A J,Mclellan P J.Dynamic modeling and optimal fed-batch feeding strategies for a two-phase partitioning bioreactor[J].Biotechnol Bioeng,2000,67(2):224-233.
    [11]Collins L D,Daugulis A J.Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors[J].Biotechnol Bioeng,1997,55(1):155-162.
    [12]Daugulis A J.Two-phase partitioning bioreactors:a new technology platform for destroying xenobiotics[J].Trends in Biotechnol,2001,19(11):457-462.
    [13]King C J.Hand book of Separatin proeess Technology.First version.Newyork:John Wiley & Sons,1987,25-28.
    [14]戴酞元,张瑾.有机废水萃取处理技术[M].第一版.北京:化学工业出版社,2003,89-105.
    [15]Scott K,Adhamy A,McConvey I F.Liquid-Liquid Equilibria of Phenol,Acetic Acid,Oxalic Acid and Glyoxylic Acid between Water and 1-Decanol and Tridecanol[J].Chem.Eng.Data,1992,37:391-393.
    [16]林讫,秦炜,戴猷元.正辛醇萃取苯酚稀溶液的特性研究[J].环境化学,2003,22(1):48-52.
    [17]金喜理,张宝华等.液膜萃取技术及其应用研究进展[J].化学世界,2002,43(S1):185-186.
    [18]秦非等.液膜法处理苯酚废水的研究[J].环境化学,1997,16(3):247-25.
    [19]戚秀云,李霞.液膜法处理高浓度苯酚废水的模拟试验[J].黑龙江石油化工,1999,10(1):40-42.
    [20]张全兴,王勇,李秀娟,等.树脂吸附法处理硝基苯和氯苯生产废水的研究[J].化工环保,1997,17(6):323-326.
    [21]王勇,张全兴等.树脂吸附法处理2-萘酚工废水的研究[J].离子交换与吸附,1997,13(6):573-5.
    [22]Feng Wenguo,Zhang Quanxing,Chen Jinlong,et al.Treat of wastewater from production process of 2,3- acid[J].Chinese Journal of Reactive Polymers,1999,8(1-2):68-72.
    [23]寇晓康,王槐三,黄文强.树脂吸附法处理萘普生和二氯苯生产废水的研究[J].四川大学学报(工程科学版),2000,4(4):58-61.
    [24]刘玉鑫,王槐三.LBS生产中含硝基物废水的树脂吸附机理研究[J].离子交换与吸附,1996,12(6):526-529.
    [25]王海荣,刘秉涛等.吸附法处理含酚模拟废水的实验研究[J].河南化工,2005,22(7):17-19.
    [26]杨明平,付勇坚等.改性粉煤灰吸附处理焦化厂含酚废水的研究[J].煤化工.2005,2:49-52.
    [27]马艳然,韩玲芹,王雪涛.酚醛缩聚及吸附中和法处理苯酚废水的研究[J].工业用水与废水,2003,34(2):38-39.
    [28]张海涛,黄霞琼.近期苯酚废水处理研究动态[J].上海化工,2001,14:4-6.
    [29]吴玲,夏中明.臭氧氧化法处理焦化废水的研究[J].氮肥设计,1995,33(5):45-47.
    [30]唐朝春,杨卫权,等.氯氧化处理含酚废水试验[J].中国给水排水,2002,18(8):42-43.
    [31]冯玉杰,李晓岩.电化学技术在环境工程中的应用[M].北京:化学工业出版社.2002.
    [32]A M Polcaro,S Palmas,FRenoldl.The performance of Ti/PbO_2 anode in the oxidation of 2-chlorophenols.Applied Electrochemistry,1999,29:147-151.
    [33]刘月丽,葛红花.电化学氧化法去除苯酚研究[J].2003,9(4):457-463.
    [34]佟莉萍,唐霞,朱宝花,等.含酚废水处理方法的选择[J].工业水处理分析,1998,2:9-12.
    [35]Kenichi okamoto,Yasunori Yamamoto.Heterogeneous Photo catalytic decomposition of Phenol over TiO_2 Powder[J].Bull Chen Soc Jpn,1985,58:2015-2022.
    [36]孙惠明,刘辉,张文晋.光催化氧化法对苯酚废水处理的初探[J].山西化工,2001,21(2):50-51.
    [37]翁酥颖,环境微生物学[M].北京:科学出版社.1985.
    [38]魏铁良,朱艳清等.活性污泥法处理工业废水经验谈[J].黑龙江环境通报,1998,22(2):46-47.
    [39]朱永光等,活性污泥系统处理苯酚废水的生物强化效果[J].应用与环境生物学报,2006,12(4):559-561
    [40]钟华文,李晓明等.曝气生物滤池处理炼油生产废水[J].工业用水与废水,2003,34(5):4.
    [41]强志民等.厌氧—好氧反应系统处理含酚废水的研究[J].环境污染与防治,1997,19(2):14.
    [42]王洪祚,刘世勇.酶和细胞的固定化.化学通报,1997,(2):22-27.
    [43]陈铭,周晓云.固定化细胞技术在有机废水中的应用与前景.水处理技术,1997,23(2):98-100.
    [44]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社.2002.10-11.
    [45]王琳,罗启芳.硅藻土吸附固定化微生物对邻苯二甲酸二丁酯的降解特性研究[J].卫生研究,2006,35(1):23-25.
    [46]Yang T P,Badawi M A.Enzymes activities in manured soils[J].Biological Wastes,1988,23:1.
    [47]刘钧,周力.固定化微生物技术在废水处理中的应用分析.净水技术,1998,63(1):35-39.
    [48]朱柱,李和平,郑泽根等.固定化细胞技术中的载体材料及其在环境治理中的应用.重庆建筑大学学报,2000,22(5):95-100.
    [49]Joshi N T,D Souza S F.J Environ Sci Health,1999,A34(8):1691.
    [50]Scannell A G M,Hill C,Ross R P,et al.J of Appl Microbiol,2000,89:574.
    [51]Gardon H,Pauss A.Appl Microbiol Biotech,2001,56:517-523.
    [52]蒋宇红,黄霞,俞馨.几种固定化细胞载体的比较[J].环境科学,1993,14(2):11-15.
    [53]方冶华,黄勇,姜德成,等.应用与环境生物学报,1996,2(2):147-151.
    [54]闵航,郑耀通,钱泽澎等.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件.环境科学,1994,15(5):10-12.
    [55]Lin J R.Use of co-immobilized biological system to degrade toxic organic compounds.Biotechnol Bioeng,1991,38:273-279.
    [56]Anselmo A M,NovaisJ M.Degradation of phenol by immobilized mycelium of Fusarium flocciferum in continuous culture.Wat.Sci.Tech.,1992,25(1):161-168.
    [57]孙艳,李京,谭立扬.一种耐酚菌种及其固定化细胞降解含酚废水性能的比较研究.环境科学研究,1999,12(1):1-4.
    [58]王新,李培军,巩宗强等.固定化细胞技术的研究与进展.农业环境保护,2001,20(2):120-122.
    [59]调定,侯文华.固定化微生物法处理含酚废水的研究.环境科学,1990,11(1):2-5.
    [60]Pai S L,Hsu Y L,et al.Continuous degradation of phenol by rhodococcus sp.immobilized on granular activated carbon and in calcium alginate.Bioresource Technol.,1995,51(1):37-42.
    [61]桥本.下水道協會誌.1985,22(253):42.
    [62]Yang P Y,Wat.Ser.Tech.,1990,22(3/4):343.
    [63]黄武华.环境科学学报,1982,2(4):293.
    [64]蒋宇红,黄霞.几种固定化细胞载体的比较.环境科学,1992,14(2):11-16.
    [65]黄霞,刘建广等.固定化细胞处理难降解有机废水.城市环境与城市生态,1993,6(3):1-5.
    [66]黄霞,王蕾.固定化细胞技术在废水处理中的应用,1992,14(1):41-49.
    [67]赵月龙,祁佩时等.高浓度难降解有机废水处理技术综述[J].四川环境,2006,25(4):98-103.
    [68]Fewson,C.A.Biodegradation of xenobiotic and other persistent compound:the causes of recalcitrance [J].Trends Biotech.,1998,6,148-153.
    [69]Daugulis A J.Two-phase partitioning bioreactors:a new technology platform for destroying xenobiotics[J].Trends in Biotechnol.,2001,19(11):457- 462.
    [70]Stark D,Stockar U V.In situ product removal(ISPR)in whole cell biotechnology during the last twenty years[J].Advances Biochemical Engineering Biotechnology,2003,80:149-175.
    [71]Malinowski J J.Two-phase partitioning bioreactors in fermentation technology[J].Biotechnol Adv,2001,19:525-538.
    [72]Halling P J.Thermodynamic predictions for biocatalysis in nonconventional media:theory,tests and recommendations for experimental design and analysis[J].Enzyme Microb Technol,1994,16:178- 206.
    [73]Kaul R, Mattiasson B. Extractive bioconversion in aqueous two-phase system [ J ]. Appl Microb Biotechnol, 1986,24: 259-265.
    [74]Berberich J A. Whole cell biocatalysis in presence of supsercritical and compressed solvents [D]. University of Kentucky, Lexington, USA, 2001.
    [75]Stark D, Stockar U V. In situ product removal (ISPR) in whole cell biotechnology during the last Twenty years [J]. Advances Biochemical Engineering/Biotechnology, 2003, 80:149-175.
    [76]Malinowski J J. Two-phase partitioning bioreactors in fermentation technology [J]. Biotechnol Advance, 2001, 19:525-538.
    [77]Deziel E, Comeau, Villemur R. Two-liquid phase bioreactors for enhanced degradation of hydrophobic/toxic compounds [J]. Biodegradation, 1999, 10(3): 219- 233.
    [78]Sikkerna J, de Bont J A M, RDolman B. Interaction of cyclic hydrocarbons with biological membrunes. J. Biol. Chem., 1994, 269: 8022- 8028.
    [79]Sikkema J, de Bont J A M, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev, 1995, 59:201-222.
    [80]Salter G J, Kell D B. Solvent selection for whole cell biotransformation in organic media [J]. Critic Rev Biotechnol, 1995,15 (2): 139-177.
    [81]Deziel E, Comeau Y, Villemur R. Two-liquid-phase bioreactor for enhanced degradation of hydrophobic/toxic compounds. Biodegradation, 1999, 10: 219- 233.
    [82]Laane C, Boeren S, Vos K, et al. Rules for optimization of biocatalysis in organic solvents [J]. Biotechnol Bioeng, 1985, 30: 81-8.
    [83]Kanaly R A, Bartha R, Watanabe K, et al. Enhanced mineralization of benzo [a]pyrene in the presence of nonaqueous phase liquids. Environ Toxicol Chem, 2001, 20: 498- 501.
    [84]Deziel E, Comeau Y, Villemur R. Two-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds [J]. Biodegradation, 1999,10: 219- 233.
    [85]Malinowski J J. Two-phase partitioning bioreactors in fermentation technology [J]. Biotechnol. Adv., 2001, 19:525-538.
    [86]Collins L D, Daugulis A J. Benzene /toluene/p-xylene degradation, part I : solvent selection and toluene degradation in a two-phase partitioning bioreactor [J]. Appl. Microbiol. Biotechnol. 1999, 52: 354-359.
    [87]Collins L D, Daugulis A J. Benzene /toluene/p-xylene degradation, part II: effect of substrate interactions and feeding strategies in toluene/benzene and toluene /p-xylene fermentations in a partitioning bioreactor [J]. Appl Microbiol Biotechnol, 1999, 52: 360- 365.
    [88]Cruickshank SM, DaugulisAJ, Mclellan P J. Modeling of a continuous two-phase partitioning bioreactor for the degradation of xenobiotics [J]. Proc Biochem, 2000, 35: 1027-1035.
    [89]Collins L D, Daugulis A J. Characterization and optimization of a two-phase partitioning bioreactor for the biodegradation of phenol [J]. Appl. Microbiol. Biotechnol., 1997, 48: 18- 22.
    [90]Collins L D, Daugulis A J. Simultaneous biodegradation of benzene, toluene and p-xylene in a two-phase partitioning bioreactor: concept demonstration and practical application [J]. Biotechnol., Prog, 1999, 15:74-80.
    [91]Yeom S H, Daugulis A J. Development of a novel bioreactor system for the treatment of gaseous benzene [J]. Bitechnol Bioeng, 2001, 72: 156-165.
    [92] Yeom S H, Daugulis A J. Benzene. Degradation in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans Y234[J]. Proc. Biochem., 2001, 36: 765- 772.
    [93]Villemur R, Deziel E, Benachenhou A, et al. Two-liquid phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil [J]. Biotechnol. Prog., 2000, 16:966-972.
    [94]Hodge DS, Devinny J S. Modeling removal of air contaminants by biofiltration [J]. Environ. Eng., 1995, 121:21-32.
    [95]Amsden B G, Bochanysz J, Daugulis A J. Degradation of xenobiotics in a partitioning bioreactor in which the partitioning phase is a polymer [J]. Biotechnol. Bioeng., 2003, 84: 399- 405.
    [96]Crank J, Park GS. Diffusion in polymers [M]. New York: Academic Press, 1968.
    [97]Baker R. Controlled release of biologically active agents [M]. New York: John Wiley & Sons, 1987.
    [98]Andrew J. Daugulis, Brian G. Amsden, Justina Bochanysz, Ahmed Kayssi. Delivery of benzene to Alcaligenes xylosoxidans by solid polymers in a two-phase partitioning bioreactor [J]. Biotechnology Letters, 2003, 25: 1203-1207.
    [99] George P. Prpich, Andrew J. Daugulis. Polymer Development for Enhanced Delivery of Phenol in a Solid-Liquid Two-Phase Partitioning Bioreactor [J]. Biotechnol. Prog., 2004,20: 1725- 1732.
    [100]George P. Prpich, Andrew J. Daugulis. Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor [J]. Biodegradation, 2005, 16: 329- 339.
    [101]George P. Prpich, Andrew J. Daugulis. Biodegradation of a phenolic mixture in a solid-liquid two-phase partitioning bioreactor [J]. Appl. Microbiol. Biotechnol., 2006, 72(3): 607- 615.
    [102]Boudreau N G, Daugulis A J. Transient Performance Of Two-Phase Partitioning Bioreactors Treating A Toluene Contaminated Gas Stream [J], Biotechnol. Bioeng., 2006, 94(3): 448- 457.
    [103]Prpich G P, Adams R L, Daugulis A J. Ex situ bioremediation of phenol contaminated soil using polymer beads [J]. Biotechnology Letters, 2006, 28(24), 2027- 2031.
    [1]朱吕民,刘益军.聚氨酯泡沫塑料[M].化学工业出版社,2005.
    [2]马鹏程.硕士论文:聚氨酯/纳米氧化硅复合泡沫体及其固定化微生物处理废水.兰州大学,2004.
    [3]方秀华.聚氨酯泡沫发展情况[J].聚氨酯工业,2000(4):6-10.
    [4]邬润德,童筱莉,万里强.蒙脱土插层对聚氨酯复合材料的结构和性能影响[J].特种橡胶制品.2004,25(3):1-4.
    [5]李同年,周持兴.聚酰胺/粘土纳米复合材料[J].功能高分子学报.2003,13:112-118.
    [6]张向萍,张兴华.蒙脱土的有机化及其应用[J].广东工业大学学报,2003,20(3):58-63.
    [7]GB 10802-89.
    [8]朱吕民.聚氨酯合成材料.江苏科学技术出版社,2002.
    [9]zhang Hong wen,Wang Bing Li,Hong tu,et al.Synthesis and characterization of nanocomposites of silicon dioxide and polyurethane and epoxy resin interpenetrating network[J].Polymer International,2003(52):1493-1497.
    [10]Lupton F S,Zupancic Denise M.Removal of phenols from waste water by a fixed bed reactor.US 4983299.1991
    [11]Karel S F,Libicki S B,et al.Immobilization of whole cells:Engineering principles[J].Chem Engin Sci,1985,40(8):1321-1354.
    [12]Tsekova K,Llieva S,Copper removal from aqueous solution using Aspergillus niger mycelia in free and polyurethane-bound form[J].Appl.Microbiol.biotechnol.,2000,55(5):636-637
    [13]Gardin H,Lebeault J M,Pauss A.Degradation of 2,4,6-trichlorophenol(2,4,6-TCP)by co-immobilization of anerobic and aerobic microbial communities in an upflow reactor under air-limited conditions[J].Appl.Microbiol.biotechnol.,2001,56(3):524-530.
    [14]Manohar S,Kim C K,Karegoudar T B.Enhanced degradation of naphthalene by immobilization of Pseudomonas sp.strain NGK1 in polyurethane form[J].Appl.Microbiol.Biotech.,2001,55(3):311-316.
    [15]Oh Y S,Maeng J,Kim S J.Use of microorganism-immobilization polyurethane foams to adsorb and decade oil on water surface[J].Appl.Microbiol.Biotech.,2000,54:418-423.
    [16]曹亚莉,田沈,赵军.固定化微生物细胞技术在废水处理中的应用[J].微生物学通报.2003,30(3):77-81.
    [17]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].中国建筑工业出版社.2003.
    [18]宋晓艳,张玉清等.聚氨酯弹性体/蒙脱土纳米复合材料的合成与性能[J].高分子学报.2004,5: 640-644.
    [19]Nakajima-Kambe T,Shigeno-Akutsu Y,et al.Microbial degradation of polyurethane,poluester polyurethanes and polyether polyurethanes[J].Appl.Microbiol.Biotechnol.,1999,51:134-140.
    [1]吕玉光,石春卉等.工业含酚废水的水质分析[J].黑龙江医药科学,2001,24(2):104-106.
    [2]江月玲.水体酚类化合物污染对水稻幼苗生长的影响[J].植物学通报,1997,14(20):41-44.
    [3]沈慧芳.间甲酚臭氧化反应动力学研究[J].化学工业与工程,2004,21(3):157-160.
    [4]孙艳,李京,谭立扬.一种耐酚菌种及其固定化细胞降解含酚废水性能的比较研究[J].环境科学研究,1999,12(1):1-4.
    [5]Wu K A,Wisecarver K D.Cell immobilization using PVA crosslinked with boric acid[J].Biotechnol Bioeng,1992(39):447-449.
    [6]Semple K,Cain R B.Biodegradation of phenol by the alga Och romonas danicca[J].Appl Environ Microbiol,1996,162(4):1265-1273.
    [7]Achim L,Georg F.Carboxylation of phenylphosphate by phenol carboxylase,an enzyme system of anerobic phenol metabolism[J].J Bacteriol,1992,174(11):3629-3636.
    [8]Kazuya W,Sanae H.Identification of a functionally important population inphenol-digesting activate sludge with antisera raised against isolated bacterial strains[J].Appl environ microbiol.1996,62(10):3901-3904.
    [9]Kalin M,Neujahr H Y,Weissmahr R N,et al.Phenol hydroxylase from trichosporon cutaneum:gene cloning,sequence analysis,and functional expression in es-cherichia coli[J].J Bacteriol,1992,174(22):7112-7120.
    [10]Arail,Ohishi H T,Chang M Y,etal.Microbiology[M].2000.
    [11]Kada I Y.Surface modification of polymers for medical application[J].Biomaterials,1994,15:725-736.
    [12]Anselme K.Osteoblast adhesion on biomaterials[J].Biomaterials,2000,21:667-681.
    [13]Hyes R O.Integrins verastility modulation and signaling in cell adhesion[J].Cell,1992,69:11-25.
    [14]周群英,高延耀.环境工程微生物学[M].北京:高等教育出版社,2002.
    [15]杨柳燕.有机蒙脱土和微生物联合处理有机污染物的机理与应用.北京:中国科学出版社,2005.
    [1]Cruickshank S M,Daugulis A J,Mclellan P J.Dynamic modeling and optimal fed-batch feeding strategies for a two-phase partitioning bioreactor[J].Biotechnol.Bioeng.,2000,67(2):224-233.
    [2]Collins L D,Daugulis A J.Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors[J].Biotechnol.Bioeng.,1997,55(1):155-162.
    [3]Daugulis A J.Two-phase partitioning bioreactors:a new technology platform for destroying xenobiotics[J].Trends in Biotechnol.,2001,19(11):457-462.
    [4]George P.Prpich,Andrew J.Daugulis.Polymer Development for Enhanced Delivery of Phenol in a Solid-Liquid Two-Phase Partitioning Bioreactor[J].Biotechnol.Prog.,2004,20:1725-1732.
    [5]Collins L D,Daugulis A J.Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors[J].Biotechnol.Bioeng.,1997,55(1):155-162.
    [6]Shrimali M,Singh K.P.New methods of nitrate removal from waterlEnvironmental Pollution,2001,112:351-359.
    [7]Ali R.Dincer,Fikret kargr.Kinetics of sequential nitrification and denitrification process.Enzyme and Microbial Technology,2000,27:34-42.
    [8]Gupta S.K.,Sharma R.Biological oxidation of high strength nitrogenous wastewater.Water Research,1996,30:593-600.
    [9]Mobarry B.K.,WagnerM.,Urbain V.,et al.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying acteria.Applied and Environmental Microbiology,1996,62:2156- 2162.
    [10]Weber.W.J.,Morris.J.C.Kinetics of adsorption on carbon from solution[J].Journal Sanitory Engineering Divison.American Society of Chemical Engineering,1963,89:31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700