多菌种共固定化酿造苹果醋
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上苹果生产大国,每年有大量的残次落果。充分利用这些残次落果是进一步提高苹果价值的有效途径之一。苹果醋是近年来苹果综合利用开发的新产品,它既具有普通食醋防病健身之功效,又具营养价值高、醋香浓郁、果香扑鼻等诸多特色,除用做调味品之外,还可用做饮料、保健品、美容护肤品等。所以,苹果醋的开发是解决残次落果的可行途径之一。苹果醋的酿造方法有多种,固态发酵法产品品质好,但发酵速度慢;液态发酵法发酵速度快,但产品品质不佳;固定化微生物发酵产品品质一般也较差,但它易于实现连续生产,且不同批次间的产品质量稳定。本文旨在结合上述三种发酵技术各自的特点,提出采用多菌种共固定技术酿造苹果醋,从而解决产品品质与发酵速度之间的矛盾。主要研究结果如下:
     (1)以海藻酸钠作为载体对微生物进行固定的最适固定化条件为:氯化钙浓度0.05 mol/L,海藻酸钠浓度6%,并添加少量浓度6%明胶(6%海藻酸钠:6%明胶=9.0:1.0)。
     (2)用海藻酸钠制备的微生物固定化颗粒具有较好的稳定性,固定化酿酒酵母1450连续使用17次(17天),固定化醋酸菌AS1.41连续使用4次(28天)发酵性能均无显著下降;固定化酿酒酵母1450低温(4℃)贮存6周,发酵性能无显著下降,固定化醋酸菌AS1.41在低温(4℃)贮存一个月后,仍保持一定强度的发酵性能。
     (3)当采用菌种比例为酿酒酵母1450,60%,产酯酵母AS2.300,30%,乳酸菌,10%的多菌种共固定化颗粒进行酒精发酵时,最终可获得品质较优的苹果醋。而采用酵母菌和醋酸菌的共固定化颗粒进行苹果醋酿造时,发酵性能不能长时间稳定。
     (4)采用250mL三角瓶作为发酵容器,多菌种共固定化技术酿造苹果醋的最适工艺条件为:酒精发酵阶段:接种量15%,发酵温度30℃,初始pH4.0;醋酸发酵阶段:接种量10%,底物浓度5.0%vol,发酵温度32℃,摇床转速180~200 r/min,装液量80mL。
     (5)多菌种共固定化酿造苹果醋除了可以提高酿造速度外,还能够避免液态发酵和固定化技术所酿苹果醋在品质上的不足,其不挥发性酸、氨基态氮的含量较液态发酵、固定化发酵所得苹果醋有较大的提高,其风味成分组成与固态发酵所得苹果醋相似。所建立的多菌种共固定酿造苹果醋的技术在放大试验中,完成酒精发酵只需要24 h,醋酸发酵只需要7天时间,发酵速率比文献报道的速度有一定提高。
     (6)秦冠和富士等品种较适宜于酿造苹果醋。
China is a main country in the world for apple producing. A large number of fallen and substandard fruits need to be treated every year. Apple vinegar is a new type of product developed form apple utilization. It not only has the preventive and hygienical effectiveness of ordinary vinegar, but also has high nutritional value, and rich of vinegar and fruit fragrance, besides as condiment, it can also use for beverage, health goods, and cosmetic and skin care products production. Therefore, apple vinegar production will be a viable means for fallen and substandard fruits utilization. There are many methods for apple vinegar brewing, The speed of solid-state fermentation is slow, but can get a good quality vinegar; liquid fermentation is faster, but the quality of its products is generally poor; vinegar brewed by immobilized cell fermentation is also generally poor, but the prominent features of this brewing method is easy to realize continuous processing, and the quality of products from different batch is homogeneous. The aim of this work was to combine the characteristics of the aforesaid three vinegar brewing methods, and develop a new type of apple vinegar brewing method to solve the contradiction between the quality of product and the speed of fermentation. The main research conclusions in this study showed as follow:
     (1) The optimum conditions for microorganism immobilization while sodium alginate as a carrier was keep the concentration of calcium chloride at 0.05 mol / L, concentration of sodium alginate at 6%, and add a small amount of 6% gelatin in sodium alginate (6% alginate sodium:6% gelatin = 9.0:1.0).
     (2) The stability of microorganism immobilized particles made by sodium alginate was fine. Fermentation performance of immobilized Saccharomyces cerevisiae 1450 was not significant decline for use of 17 times (17days) or store under low temperature (4℃) for six weeks. And fermentation performance of immobilized acetic acid bacteria AS1.41 was not significant decline for continuous use four times (28 days), and still maintain a certain intensity for store under low temperature (4℃) for a month.
     (3) Apple vinegar with good quality can obtain at the end, when multi-microorganisms co-immobilized particles with a ratio of strains of Saccharomyces cerevisiae 1450, 60%, aroma-improving yeast AS2.300, 30%,and lactic acid bacteria, 10 % was used for alcohol fermentation,. But, when multi-microorganisms co-immobilized particles of Saccharomyces cerevisiae 1450 and acetic acid bacteria AS1.41 was used for apple vinegar brewing, the fermentation performance can not be keep for a long time.
     (4) The optimal process conditions for apple vinegar brewing by co-immobilized technology while 250 mL flask as fermentation vessels was keep inoculate amount at 15%, fermentation temperature at 30℃and initial pH at 4.0 in alcoholic fermentation stages; and keep inoculate amount at 10%, alcohol concentration at 5.0%, fermentation temperature at 32℃, shaker speed betwwen 180 to 200 r/min and loaded liquid volume at 80 mL in acetic acid fermentation stages.
     (5) In addition to improving the velocity of fermentation, the multi-microorganisms co-immobilization technology developed in this study also can improving the quality of apple vinegar. The amount of unvolatile acids and amino-state N in apple vinegar produced by this type of technology was more than apple vinegar produced by liquid fermentation technology and immobilization technology and the composition of flavor components was similar to apple vinegar produce by solid-state fermentation technology. Only 24 hours was needed for alcoholic fermentation, and seven days for acetic acid fermentation in amplification test, the fermentation rate was greater than reported in the literature.
     (6) Qin-guan and Fuji were suitable for apple vinegar brewing.
引文
[1] 陈义伦. 优质苹果醋酿造技术及主要风味物质研究[D]. 山东泰安: 山东农业大学, 2002.
    [2] 王艳明. 中国苹果汁贸易研究[D]. 北京: 中国农业大学, 2007.
    [3] G. Hughes. Great used of vinegar. 2005. http://www.vinegarbook.net.
    [4] P.C. Bragg, P. Bragg. Apple Cider Vinegar: Miracle Health System[M]. 54th Edition. Publisher: Bragg Live Foods. 1999.
    [5] 尹晚雁. 苹果醋饮料的保健作用[J]. 农产品加工, 2006, (3): 20.
    [6] Rizaev.J.O, Yusupalikhodjaeva. S. K. Use of apple vinegar as an antiseptics for treatment of the oral cavity in rapidly progressing chronic generalized periodontitis[J]. Uzbekiston Tibbiet Zhurnali, 2005, (10): 52~54.
    [7] Alberto Dávalos, Begoňa Bartolomé, Carmen Gómez-Cordovés. Antioxidant properties of commercial grape juices and vinegars[J]. Food Chemistry, 2005, (93): 325~330.
    [8] Eskander.E.F., Abdel-Alim, Mahasen A. et.al. Biomedical and hormonal aspects of apple vinegar[J]. Egyptian Journal of Pharmaceutical Sciences, 2001, (4): 153~166.
    [9] Popov. D., Stankov. M., Petrov. D., Radosavljevic. M. Prevention of diarrhoea in piglets by administering apple vinegar in drinking water[J]. Veterinarski Glasnik, 1994, (48): 11~12.
    [10] Abe. K., Arai. R., Kushibiki.T. et.al. Antitumor-active, neutral, medium-sized glycan from apple vinegar[J]. Food Science & Biotechnology, 2001, 10(5): 534~538.
    [11] 刘爱香, 陈雪峰. 固态法生产苹果醋新工艺的初步研究[J]. 陕西科技大学学报(自然科学版), 2003, (1): 47~50.
    [12] 李红光. 苹果醋固态法发酵技术[J]. 中国酿造, 2000, (6): 25.
    [13] 于修烛, 杜双奎. 液态法苹果醋生产动态分析[J]. 中国酿造, 2002, (3): 33~34.
    [14] 李书国, 陈 辉. 液体深层发酵法制备灵芝苹果保健醋的工艺研究[J]. 中国调味品, 2003, (4): 12~16.
    [15] 黄亚东, 董明盛. 液态深层发酵苹果醋的研制试验[J]. 中国酿造, 2004, (9): 33~35.
    [16] Panasyuk.A.L., Nagaichuk.V. V., Slavskaya.S.L. Immobilized yeasts and quality of apple vinegar[J]. Food Science and Technology Abstracts Pishchevaya Promyshlennost, USSR, 1990, (2): 66~68.
    [17] 吴 定, 温吉华, 程绪铎, 等. 固定化酵母菌和醋酸杆菌发酵食醋工艺研究[J]. 中国酿造, 2005, (1): 20~22.
    [18] 翟玮玮, 顾立众. 苹果醋叠式动态表面发酵技术研究[J]. 食品科技, 2004, (7): 67~69.
    [19] 杜双奎, 于修烛. 表面发酵法酿制苹果醋及其醋酸饮料的研制[J]. 中国酿造, 2003, (5): 17~19.
    [20] 郭 勇. 酶工程[M] 北京: 中国轻工业出版社, 1994: 170.
    [21] Ilkka Virk?jarvi, Matti Linko. Immobilizationg: A Revolution in Traditional Brewing[J]. Naturwissenschaften, 1999, (86): 112~122.
    [22] Y. Kourkoutas, A. Bekatorou, I.M. banat, et.al. Immobilization technologies and support materials suitable in alcohol beverages production: a review[J]. Food Microbioloyg, 2004, (21): 377~397.
    [23] 赵谋明. 调味品(当代食品生产技术丛书)[M]. 北京: 化学工业出版社, 2001: 151~152.
    [24] 陈 军. 共固定化乳酸菌、根霉和酵母的协同发酵性能研究[D]. 上海: 上海师范大学, 2001.
    [25] 闰跃文, 侯红萍. 共固定化技术的发展现状[J]. 食品科学, 2006, 03: 90~91.
    [26] I.Garbayo, C.Vilchez. Influence of immobilization parameters on growth and lactic acid production by Streptococcus thermophilus and Lactobacillus bulgaricus co-immobilized in calcium alginate gel beads[J]. Biotechnology Letters, 2004, (26): 1825~1827.
    [27] V.A.Nedovic, A.Durieux. Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells[J]. Enzyme and Microbial Technology, 2000, (26): 834~839.
    [28] J.A.Scott, A.M.O’Reilly. Co-Immobilization of Selected Yeast and Bacteria for Controlled Flavor Development in an Alcoholic Cider Beverage[J]. Process Biochemistry, 1996, 31 (2): 111~117.
    [29] 陈佩华, 蒋承浚. 共固定化酵母和黑曲霉的淀粉酒精发酵[J]. 工业微生物, 1990, 20(6): 8~13.
    [30] 姚汝华, 林炜铁. 共固定根霉和酵母混合发酵生产米酒的研究[J]. 华南理工大学学报: 自然科学版, 1993, (11): 1~6.
    [31] 王克明, 王雪筠. 共固定化根霉和酵母混合发酵葛根保健酒[J]. 中国酿造, 1995, (6): 8~9
    [32] 王克明, 庄树宏. 共固定化多菌种混合发酵生产稠酒的研究[J]. 烟台大学学报(自然科学与工程版) 2000, 13(2): 130~134
    [33] 吴晟旻, 范伟平. 白腐菌和红平红球菌共固定化处理增塑剂废水[J]. 化工环保, 2005, (6): 431~435.
    [34] 潘 辉, 熊振湖, 孙 炜. 共固定化菌藻对市政污水中氮磷去除的研究[J]. 环境科学与技术, 2006, 29(1): 14~15.
    [35] H.Gardin, J.M.Lebeault, A.Pauss. Degradation of 2,4,6-trichlorophenol (2,4,6-TCP) by co-immobilization of anaerobic and aerobic microbial communities in an upflow reactor under air-limited conditions[J]. Appl Microbiol Biotechnol, 2001, (56): 524~530.
    [36] H.Gardin, A.Pauss. k-carrageenan/gelatin gel beads for the co-immobilization of aerobic and anaerobic microbial communities degrading 2,4,6-trichlorophenol under air-limited conditions[J]. Appl Microbiol Biotechnol, 2001, (56): 517~523.
    [37] 王克明. 共固定多菌种葡萄糖母液生产食醋的研究[J]. 中国调味品, 1998, (10): 11~14.
    [38] 王克明. 多菌种共固定化发酵保健红醋的研究[J]. 中国酿造, 2004, (2): 17~19.
    [39] 王克明. 共固定化多元混菌发酵功能稻米保健醋饮料的研究[J]. 中国调味品, 2005, (8): 23~27.
    [40] 陈义伦, 裘立群, 陈 伟, 等. 原汁苹果醋中的有机酸[J]. 食品与发酵工业, 2004, 30(8): 92~95.
    [41] 周建科, 李路华, 岳 强, 等. 离子排斥色谱法测定苹果醋中的有机酸[J]. 中国酿造, 2005, (12): 53~55.
    [42] M. Lourdes Morales, A. Gustavo Gonzalez, Ana M. Troncoso. Ion-exclusion chromatographic determination of organic acids in vinegars[J]. Journal of Chromatography A, 1998, (822): 45~51.
    [43] Maria Plessi, Davide Bertelli, Francesca Miglietta. Extraction and identification by GC-MS of phenolic acids in traditional balsamic vinegar from Modena[J]. Journal of Food Composition and Analysis, 2006, 19(1): 49~54.
    [44] Antonella Del signore. Chemometric analysis and volatile compounds of traditional balsamic vinegars from Modena[J]. Journal of Food Engineering, 2001, 50(2): 77~90.
    [45] 懂玉新, 张法琴. 论液态发酵醋的风味改进及开发[J]. 中国调味品, 1999, (7): 5~8.
    [46] 王立江, 王丽梅. 液态发酵醋质量提高的几点措施[J]. 中国调味品, 2006, (7): 38~39.
    [47] 程丽娟, 薛泉宏. 微生物学实验技术[M]. 西安: 世界图书出版公司, 2000: 298~299.
    [48] 诸葛健. 现代发酵微生物实验技术[M]. 北京: 化学工业出版社, 2005: 227.
    [49] 白雪莲. 苹果酒酵母固定化技术[D]. 陕西杨凌: 西北农林科技大学, 2006.
    [50] 樊明涛. 食品分析与检验[M]. 西安: 世界图书出版公司, 1998.
    [51] 天津轻工业学院等编著. 工业发酵分析[M]. 北京: 中国轻工业出版社, 2005: 36.
    [52] 毛淑杰, 马志静, 李先端, 等. 气相色谱-质谱联用法分析食醋中挥发性香气成分[J]. 时珍国医医药, 2007, 18(2): 267~269.
    [53] 刘树文, 李 华. 改善固定化微生物细胞粒子机械强度的研究[J]. 微生物学杂志, 2005, 25(7): 32~34.
    [54] Yong-Jin, Jeong Ji-Hyung, Seo Gee-Dong, et.al. The quality comparison of apple vinegar by two stages fermentation with commercial apple vinegar[J]. Food Science and Technology Abstracts Journal of the Korean Society of Food Science & Nutrition, 1999, 28(2): 353~358.
    [55] Giuseppe Fregapane, Hipólitio Rubio-Fernández Maria Desamparados Salvador. Influence of fermentation temperature on semi-continuous acetification for wine vinegar production[J]. Eur Food Res Technol, 2001, (213): 62~66.
    [56] Hipólito Rubio-Fernández María Desamparados Salvador et.al. Influence of fermentation oxygen partial pressure on semicontinuous acetification for wine vinegar production[J]. European Food Research and Technology, 2004, (29)6: 123~128.
    [57] Y. Kourkoutas, M. Kanellaki, A.A. Koutinas, et.al. Effect of fermentation conditions and immobilization supports on the wine making [J]. Journal of Food Engineering, 2005, (69): 115~123.
    [58] Giuseppe Fregapane, Hipólito Rubio-Fernández, María et.al. Influence of fermentation temperature on semi-continuous acetification for wine vinegar production[J]. Eur Food Res Technol, 2001, (213): 62~66.
    [59] J. E. Haag, A. Vande Wouwer, M. Remy. A general model of reaction kinetics in biological systems Bioprocess[J]. Biosyst Eng, 2005, (27): 303~309.
    [60] J.M. Gomez, D. Cantero. Kinetics of substrate consumption and product formation in closed acetic fermentation systems[J]. Bioprocess Engineering, 1998, (18): 439~444.
    [61] Romero, L. E., Go?mez, J. M., Caro, I.et.al.. A kinetic model for growth of Acetobacter aceti in submerged culture[J]. Chem. Eng, 1994, (54): 15~24.
    [62] 刘 茵, 孙玉梅, 曹 方, 等. 固定化细胞生产西瓜醋的研究[J]. 大连轻工业学院学报, 1996, 15 (3): 69~72.
    [63] 黄 诚, 尹 红, 周金森. 食醋中总酸\总酯含量的连续测定[J]. 食品与发酵工业, 2001, 27(12): 41~43
    [64] W. Tesfaye, M.L. Morales, M.C. Garcia-Parrilla, et.al. Wine vinegar: technology, authenticity and quality evaluation[J]. Trends in Food Science & Technology, 2002, (13): 12~21.
    [65] Francisco Lópea, Francisco Medina, Marin Prodanov, et.al. Oxidation of activated carbon: application to vinegar decolorization[J]. Journal of Colloid and Interface Science, 2003, (257): 173~178.
    [66] 孟祥敏, 刘乐全, 徐怀德, 等. 不同木瓜果实香气成分的 GC-MS 分析[J]. 西北农林科技大学学报(自然科学版), 2007, 35(8): 125~130.
    [67] 于 静, 李景明, 吴继红, 等. 顶空固相微萃取法(SPME)在红葡萄酒香气成分测定中的应用研究[J]. 中外葡萄与葡萄酒, 2006, (3): 4~9.
    [68] 李树红, 胡耀辉, 王立梅, 等. 丁香山葡萄果醋的研制[J]. 吉林农业大学学报, 2004, 26(5): 577~581.
    [69] 杨红亚, 吴少华, 王兴红, 等. 气质联用分析青梅发酵酒和浸泡酒的香气成分[J]. 酿酒科技, 2005, (9): 80~83.
    [70] 张 晓, 张振文. 两种溶剂萃取黑比诺葡萄酒香气成分的比较[J]. 酿酒科技, 2007, (5): 95~98.
    [71] 张峻松, 张文叶, 谭宏祥, 等. 大枣香醋中香味成分的 GC-MS 分析[J]. 中国酿造, 2007, (2): 61~63.
    [72] 王克明. 多元混菌固定化发酵海藻保健酒的研究[J]. 酿酒科技, 2005, (10): 75~78.
    [73] Jun-ichi Horiuchi, Kiyoshi Tada, Masayoshi Kobayashi, et.al. Biological approach for effective utilization of worthless onions—vinegar production and composting[J]. Resources, Conservation and Recycling, 2004, (40): 97~109.
    [74] Jun-ichi Horiuchi, Kiyoshi Tada, Masayoshi Kobayashi. New Vinegar Production from Onions[J]. Journal of Bioscience and Bioengineering, 1999, 88(1): 107~109.
    [75] Jun-ichi Horiuchi, Kiyoshi Tada, Masayoshi Kobayashi. Effective Onion Vinegar Production by a Two-Step Fermentation System[J]. Journal of Bioscience and Bioengineering, 2000, 90(3): 289~293.
    [76] Claude Berraud. Production of highly concentrated vinegar in fed-batch culture[J]. Biotechnology Letters, 2000, (22): 451~454.
    [77] I. Achaerandio, C. Güell, F. López. New approach to continuous vinegar decolourisation with exchange resins[J]. Journal of Food Engineering, 2007, (78): 991~994.
    [78] I. Achaerandio, C. Güell, F. López. Continuous vinegar decolorization with exchange resins[J]. Journal of Food Engineering 2002(51):311~317.
    [79] 陈 伟, 陈义伦, 马 明, 等. 选育优质醋酸菌酿造苹果醋[J]. 中国调味品, 2003, (3): 13~16.
    [80] 王秋菊, 许 丽, 潘 军, 等. 酵母菌生长曲线的测定及不同生长时间麦芽汁糖度的变化[J]. 兽药与饲料添加剂, 2006, 11(1): 8~9.
    [81] 彭帮柱, 岳田利, 袁亚宏. 酵母菌 PA4 酿造苹果酒发酵条件的优化[J]. 农业工程学报, 2006, 22(11): 261~263.
    [82] 中国质谱学会有机专业委员会. 香料质谱图集[M]. 北京: 科学出版社, 1992.
    [83] Nam Sun Wang. Experiment No.11 CELL IMMOBILIZATION WITH CALCIUM ALGINATE. 2007.1.25 http://www.eng.umd.edu/~nsw/ench485/lab11.htm.
    [84] S. V. Ramakrishna and R. S. Prakasham. Microbial fermentations with immobilized cells. 2007.1.3 http://www.ias.ac.in/currsci/jul10/articles17.htm.
    [85] Francesca Masino, Fabio Chinnici, Gian Carlo Franchini, et.al. A study of the relationships among acidity, sugar and furanic compound concentrations in set of casks for Aceto Balsamico Tradizionale of Reggio Emilia by multivariate techniques[J]. Food Chemistry, 2005, (92): 673~679.
    [86] Hyun Joon Kong, Molly K. Smith, David J. Mooney. Designing alginate hydrogel to maintain viability of immobilized cells[J]. Biomaterials, 2003, (24): 4023~4029.
    [87] M. M. Mesa, M. Macias, D. Cantero, et.al. Use of the Direct Epifluorescent Filter Technique for the Enumeration of Viable and Total Acetic Acid Bacteria from Vinegar Fermentation[J]. Journal of Fluorescence, 2003, 13(3): 261~265.
    [88] Monica Casale, Maria-José Sáiz Abajo, José-Maria González Sáiz, et.al. Study of the aging and oxidation process of vinegar samples from different origins during storage by near-infrared spectroscopy[J]. Analytica Chimica Acta, 2006, (557): 360~366.
    [89] Sanaa H. Omar. Oxygen diffusion through gels employed for immobilization[J]. Appl MicrobiolBiotechnol, 1993, (40): 173~181.
    [90] LIAO Zhao-hui, ZHU Bi-feng, XUE Xi-wen. Study on Fermentation Kinetics of Yeast Cells Immobilized of Chinese Ceramics[J]. Journal of Shaoguan University (Natural Science), 2001, 22(9): 131~138.
    [91] M. D. Fumi, A. Silva, G. Battistotti, et.al. Living Immobilized Acetobacter in Ca-Alginate in Vinegar Production: Preliminary Study on Optimun Conditions for Immobilization[J]. Biotechnology Letters, 1992, 14(7): 605~608.
    [92] Johanna Msnsfeld, Michael F?rster, Torsten Hoffmann, et.al. Coimmobilization of Yarrrowia lipolytica cells and invertase in ployelectrolyte complex microcapsules[J] Enzyme and Microbial Technology, 1995, (17): 11~17.
    [93] T. Ohta, J. C. Ogbonna, H. Tanaka, M. Yajima. Development of a fermentation method using immobilized cells under unsterile conditions. 2. Ethanol and L-lactic acid production without heat and filter sterilization[J]. Appl Microbiol Biotechnol, 1994, (42): 246~250.
    [94] Laura L, Logan H, Jerald C, et.al. Esophageal Injury by Apple Cider Vinegar Tablets and Subsequent Evaluation of Products[J]. Journal of the AMERICAN DIETERIC ASSOCIATION, 2005, 7: 1141~1144.
    [95] Rafael A. Peinado, Juan J. Moreno, Jose M. Villalba, et.al. Yeast biocapsules: A new immobilization method and their applications[J]. Enzyme and Microbial Technology, 2006, (40): 79~84.
    [96] Ignacio de Ory, Luis E. Romero, Domingo Cantero. Optimun starting-up protocol of a pilot plant scale acetifier for vinegar production[J]. Journal of Food Engineering, 2002, (52): 31~37.
    [97] Ignacio de Ory, Luis E. Romero, Domingo Cantero. Operation in semi-continuous with a closed pilot plant scale acetifier for vinegar production[J]. Journal of Food Engineering, 2004, (63): 39~45.
    [98] Ignacio de Ory, Luis E. Romero, Domingo Cantero. Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti[J]. Process Biochemistry, 2004, 39(5): 547~555.
    [99] Judit Krisch, Béla Szaájni. Ethanol and acetic acid tolerance in free and immobilized cells of Saccharomyces cerevisiae and Acetobacter aceti[J] Biotechnology Letters, 1997, 19(6): 525~528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700