掺聚丙烯纤维的水泥混凝土路面薄层快速修补材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国水泥混凝土路面破损日益严重,导致路面的修补工作量剧增,其抗冲击能力弱、耐磨性和承载能力差是破损的重要因素。鉴于此,本文通过掺聚丙烯纤维配制水泥混凝土路面薄层快速修补材料,来提高修补混凝土的使用性能,主要研究内容与结论如下:
     1、对薄层快速修补胶凝材料的配伍进行了深入研究,研究结果表明:当普通硅酸盐水泥与SAC、UFA以合适比例复配,胶砂比为1:1时,砂浆凝结时间、工作性能均能较好地满足现场施工要求。其2h抗折、抗压强度分别达到了4.1MPa、16.9MPa,能够满足2h开放交通的要求(抗折强度3.15MPa,抗压强度12.0MPa),1d抗折强度为7.4MPa,完全达到设计强度(4.5MPa)的要求,且后期强度稳步增加,28d抗折、抗压强度达到了16.2MPa、64.7MPa。掺入3%SF时,其28d抗压强度达到75.4MPa。
     2、在优化胶凝材料配伍的基础上,系统研究了砂率、复合胶凝材料配伍、聚丙烯纤维掺量等因素对薄层快速修补混凝土力学性能的影响,并优选出适宜的混凝土配比。试验结果表明:选用配伍合理的胶凝材料和适宜的水胶比、砂率、聚丙烯纤维掺量配制的薄层快速修补混凝土4h抗折、抗压强度达到了4.7MPa、18.4MPa,满足4h开放交通的要求,1d抗折强度达到设计强度的。后期强度稳步增加,90d抗折、抗压强度达到了16.4 MPa、85.0MPa。掺加5%SF时,其90d抗压强度达到85.8MPa。
     3、新老混凝土的粘结强度随着龄期的增加而增长。双掺聚丙烯纤维(0.9kg/m~3)和硅灰(5%),界面的粘结强度最大,28d粘结强度达到了4.0MPa,比未掺试件强度增长了25%。
     4、开展了掺聚丙烯纤维配制的薄层快速修补混凝土耐磨性能研究,探讨了砂率、复合胶凝材料配伍、聚丙烯纤维掺量等因素对薄层快速修补混凝土耐磨性能的影响。当选用配伍合理的胶凝材料和适宜的砂率、聚丙烯纤维掺量时,配制的薄层快速修补混凝土具有较好的早期耐磨性能。1d磨损量最小仅为3.224 kg/m~2,小于行业标准《水泥胶砂耐磨性试验方法》(JC/T421-2004)规定的最大磨损率3.600kg/m~2。
     5、通过掺入适量的聚丙烯纤维可以大幅度提高混凝土的抗冲击性能。当聚丙烯纤维掺量为0.9kg/m~3,混凝土抗冲击性能最好。4h、1d混凝土的破坏冲击韧性较未掺纤维的试件分别提高了1.6倍、1.7倍,初裂到破坏阶段所吸收的能量较未掺纤维试件分别提高了83%、100%。
     6、利用多元回归分析,对薄层快速修补混凝土的耐磨性能进行预测,除个别实测磨损量与模拟磨损量的相对误差较大外,其它的相对误差均较小,表明该模型预测精度良好,可用于薄层快速修补混凝土耐磨性能的预测。
In recent years, the breakage of our country concrete road is increasingly serious, leading to sharp grow in concrete pavement repairing. An important factor were the poor abrasion resistance and weak impact resistance. In view of this, this paper taking the polypropylene fiber to prepare the thin rapid repairing material of Cement concrete pavement to improve the performance of repairing concrete. The main contents and conclusions of the study are as follows:
     1.Studies the compatibility of gelatinization materialof thin rapid repair material in depth. The results indicates: the time of setting and workability can satisfy construction require of job location, the flexural strength and the compression strength were 4.1MPa,16.9MPa respectively, can satisfy with the requirement of opening to traffic at 2 hours, flexural strength of 1d was 7.4MPa, have completely reached the designing strength, when P.O, SAC and UFA go together with suitable comparison and cement-sand ratio is 1 '. 1. And later period strength will increase steadily, flexural strength and the compression strength of 28 day ages were 16.2 MPa、64.7MPa respectively. The incorporation of 3% SF, the compression strength of 28 day ages was 75.4MPa.
     2. Based on the optimized mixture proportion, this paper systematically studies the factors affecting the mechanical properties of rate of sand, different gelatinization compatibility, and the amount of polypropylene fiber. The results indicates: after casting, the flexural strength and the compression strength of 4 houe ages were 4.7MPa、18.4MPa respectively of the thin rapid repairing Concrete of Cement Concrete Pavement, when with due W/B, rate of sand, gelatinization compatibility and the amount of polypropylene fiber, which satisfied the requirement of opening to traffic at 4hours. Flexural strength of 1day ages reached 100% of designing strength. Later period strength increased steadily, flexural strength and the compression strength of 28 day ages were 16.4 MPa, 85.0MPa respectively. The incorporation of 5% SF, the compression strength of 90 day ages was 85.8 MPa.
     3. The bond strength of new-old concrete enhances with the increasing of age. The incorporation both of polypropylene fiber(0.9kg/m~3) and SF(5%), the bond strength of new-old concrete of 28 day ages was the biggest, reached 4.0MPa, which increased 25% than the undoped.
     4. This paper studed on the abrasion resistance of the thin rapid repairing Concrete prepared by polypropylene fiber, mainly discussed the factors affecting the abrasion resistance of fast hardness and high early strength Concrete of Cement Concrete Pavemen of rate of sand, different gelatinization compatibility, and the amount of polypropylene fiber. The results indicates: after casting, with the appropriate mix proportion, the thin rapid repairing concrete can improve the abrasion resistance of the concrete at early stage, reduce the wear rate of unit surface area. 1 day ages of wear rate was only 3.224kg/m~2 , less than professional standard (JC/T421-2004) required 3.600kg/m~2.
     5. Polypropylene fiber can enhance impact resistance of Concrete greatly. The most suitable amout of polypropylene fiber is 0.9kg/m~3, impact toughness of 4 hour ages and 1day ages incressed by 1.6time, 1.7time than the undoped respectively, so as absorbing energy when cracking, incressed by 83%, 100%, than the undoped respectively.
     6. Establishing mathematical model for the thin rapid repairing Concrete to predict the abrasion resistance of concrete, except individual measurement of wear rate has big relative error to predictive value, the other relative errors were small, so the prediction modelof the abrasion resistance of Concrete has the good prediction accuracy, can be able be used for research on Predictionof the abrasion resistance of the thin rapid repairing Concrete.
引文
[1]张松洪.高性能快速修补混凝土的应用研究[J].公路与汽运,2003,96(3):33-35
    [2]孙伟,严捍东,罗欣等.高性能钢纤维增强水泥基复合材料性能及抗侵彻与爆破能力[C].见:吴中伟院士从事科教工作60周年学术讨论会论文集.北京:中国建材工业出版社,1999:24-27.
    [3]Hannant D.J,陆建业.纤维水泥与纤维混凝土[M].北京:中国建筑工业出版社,1986:15-20
    [4]黄土元,蒋家奋,杨南如,周兆桐等.近代混凝土技术[M].西安:陕西科学技术出版社,1998:33-35
    [5]Goldfein S.Fibrous reinforcement for Portland Cement[J].Modern Plastics,1965,42(8):156-160
    [6]沈荣熹.纤维混凝土[M].见:龚洛书主编:混凝土实用手册,第二版.北京:中国建筑工业出版社,1995:881-927.
    [7]Zonsveld JJ.The marriage of plastics and concrete[J].Plastica,1970,(23):474-484.
    [8]盛黎明,邓运清.混凝土聚丙烯纤维的发展与应用[J].铁道标准设计,2002,(6):24-25
    [9]陈枫.聚丙烯纤维在增强混凝土材料中的应用[J].现代塑料加工应用,2002,14(2):58-60.
    [10]美国希尔兄弟化学工业公司.杜拉纤维产品技术资料,1998,(5):10
    [11]马华堂.纤维混凝土的力学性能及其在路面工程中的应用[D].大连:大连理工大学,2002:20
    [12]Chen L,Mindess S,Morgan D R,et al.Comparative toughness testing of fiber reinforced concrete[A].Stevens D J,etal.Testing of Fiber Reinforced Concrete[C].ACI,1995,(8):41-75.
    [13]Rongxi Shen,M L Hill,Yongxing Tian.Crack-Arresting Effect of Polypropylene Monofilament Fibre at Small Dosage in Concrete.Proceedings of the International Conference on Fibre Reinforced Concrete[C].Guangzhou China:Guangdong Science and Technology Press,1997,(7):31
    [14]Fairweather,A.D..'The use of polypropylene film fibre to increase impact resistance of concrete,'Prospects for Fibre-reinforced Build-ing Materials.Building Research Establishment,1972,(2):41-44
    [15]方冬林,罗晓真,张明勇.采用改性聚丙烯纤维提高混凝土抗裂性的研究[J].纤维水泥制品行业论文选集,1993,(5):45
    [16]F·Puertas etc.Mechanical and durable behavior of alkaline cement mortars reinforced with polypropylene fibres[J].Cementand Concrete Research,2003,(33):2031-2036.
    [17]龚益,沈荣熹,李清海.杜拉纤维在土建工程中的应用[D].北京:机械工业出版社,2002:29-35
    [18]汪洋,杨鼎宜,周明耀.聚丙烯纤维混凝土的研究现状与趋势[J].混凝土2004,171,(1):24-31.
    [19]戴建国,宋玉普,赵国藩.低弹性模量纤维混凝土剩余弯曲强度的力学意义[J].混凝土与水泥制品,1999,(1):35-38
    [20]苏健波,李士恩.杜拉纤维增强混凝土的力学性能研究[J].广东土木与建筑,2000,(1):40-46.
    [21]姚武,马一平等.聚丙烯纤维水泥基复合材料物理力学性能研究(Ⅱ)——力学性能[J].建筑材料学报,2000,3(3):235-239.
    [22]付华.三峡加纤维抗冲耐磨混凝土研究[J].中国三峡建筑,2001,(3):20-22
    [23]孙家瑛,陈建祥,吴初航,陆星.硅灰对水泥基PP纤维复合材料路用性能的影响[J].建筑材料学报,2000,(3):80-83
    [24]曹诚,刘家彬.聚丙烯纤维对混凝土动力学特性的影响研究[J].混凝土,2000,(5):43-45
    [25]卢安琪,李克壳,祝烨然等.聚丙烯纤维混凝土抗冲耐磨试验研究[J].水利水电技术,2002,33(4):37-39
    [26]孙家瑛,魏涛,王学文.聚丙烯纤维对混凝上路用性能的影响[J].混凝土,2001,(6):43-45
    [27]刘卫东,王依民等.聚丙烯纤维混凝土的耐磨损及抗冲击性能研究[J].混凝土,2005,183(1):43-45
    [28]李光伟,杨元慧.聚丙烯纤维混凝土性能的试验研究[J].水利水电科技进展,2001,21(5):14-16
    [29]谢祥明,余青山,胡磊.聚丙烯纤维改善混凝土抗冲磨性能的试验研究[J].重庆建筑大学学报,2008,30(3):134-142
    [30]马一平,朱蓓蓓,谈慕华.纤维参数对水泥砂浆塑性收缩开裂性能的影响[J].建筑材料学报,2002,5(3):220-224
    [31]马一平,谈慕华.聚丙烯纤维水泥基复合材料物理力学性能的研究[J].建筑材料学报,2000,3(1):48-52
    [32]华渊,刘荣华,曾艺.纤维增韧性能混凝土的试验研究[J].混凝土与水泥制品,1998,(3):40-43
    [33]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997:180-181
    [34]钟世云,袁华.聚合物在混凝土中的应用[M].北京:化学工业出版社,2003:90-92
    [35]葛其荣,郑子祥.宁波白溪水库二期面板聚丙烯纤维混凝土试验研究[J].建筑结构,2001,31(9):63-66.
    [36]曹诚,刘兰强.关于聚丙烯纤维对混凝土性能影响的几点认识[J].混凝土,2000,(9):49-51
    [37]杨继强.聚丙烯纤维对砂浆早期干缩性能影响的试验研究[J].天津城市建设学院学报,2004,10(2):125-128
    [38]冷发光,韩跃伟.克裂速纤维增强混凝土耐久性实验研究[J].云南水力发电,2001,17(3):42-47
    [39]曹芳,马保国,李友国等.混凝土的渗透性能及测试方法的对比分析[J].混凝土,2002,(10):15-17
    [40]李光伟.聚丙烯纤维对混凝土抗裂性能的影响[J].水电站设计,2002,18(2):98-101
    [41]孙家瑛.聚丙烯纤维对高性能混凝土抗折强度、抗冲击性能影响研究[J].混凝土,1999,(6):19-21
    [42]Strand D,MacDonald,C.N.,Ramakrishnan,V.,Rajpathak,V.N.Construction applications of polyolefin fiber reinforced concrete[C].Proceedings of the Materials Engineering Conference,1996,(1):103-112
    [43]Fowler DW.Polymers in concrete:A vision for the 21st century[J].Cement&Concrete Composites,1999,21(5):449-452
    [44]Banthia Nernkumar,Dubeau Sylvie.Carbon and Steel MicrofiberReinforced Cem-ent-Based Composites for Thin Repairs[J].Journal of Materials in Civil Engineering,1994,6(1):88-99.
    [45]Nemkumar Banthia著,许贤敏译,龚丹丹校.混合钢纤维增强混凝土修补薄的覆面层[J].建材发展导向,2003,(1):39-41.
    [46]朱虹译.网状聚丙烯纤维补强混凝土薄层罩面[J],日刊,下水道协会志,2000,(12):16-17.
    [47]Bissonnette Benoit,Pigeon Michel.Tensile creep at early ages of ordinary silica fume and fiber reinforced concretes[J].Cement and Concrete Research,1996,25(5):1075-1085
    [48]Li Shou,LiYonggi,Way George,Noureldin Samy.Mechanistic-empirical characterization of bonding between wtra-thin white-topping and asphalt pavement[J].Testing and Evaluation,2005,33(4):274-281
    [49]Kucharska L,Brandt A.M.Pitch-based carbon fibre reinforced cement composites.A review[J].Archives of Civil Engineering,1997,43(2):165-187
    [50]Bonaldo E,Barros J.A.O,Lourenco,P.B.Bond characterization between concrete substrate and repairing SFRC using pull-off testing[J].International Journal of Adhesion and Adhesives,2005,25(6):463-474
    [51]Reis,J.M.L.Fracture energy of polymer concrete reinforced with short carbon and glass fibers[J].Materials Science Forum,2004,(455-456):10-13
    [52]张云歧.丙乳砂浆再潘家口水库溢流面修补中的应用[J].水利水运科学研究,1998,(9):79-85.
    [53]包银鸿,黄巧星.水下快速固化的PBM混凝土及其应用[J].中国建筑防水,1998,(5):12-14
    [54]张继红.水泥混凝土路面薄型修补的新探索[J].市政技术,1999,(98):24-25
    [55]刘彼得.SBR-BH树脂砂浆在水泥混凝土路面超薄层快速修补技术中的应用[J].市政技术,1999,(4):17-18
    [56]张玉轻,唐质勇,甘宝珠.水泥混凝土路面破损薄层快修补技术[J].市政工程,2006,(5):11-21
    [57]张铭光.桥涵铺装层水泥混凝土的薄层修补[J].公路,2004,(1):79-82
    [58]杨学忠,单俊鸿,周明凯.MG聚合物改型水泥砂浆与混凝土的性能及其再路面修补忠的应用[J].国外建材科技,2004,25(2):22-24
    [59]朱炳喜.高性能修补砂浆的研制与应用[J].新型建筑材料,2004,(4):13-15
    [60]谢勇成.水泥混凝土路面超薄层快速修补技术[J].公路,2000,(7):62-65
    [61]王文栋.薄层混凝土路面[J].东北公路,1998,21(1):23-24
    [62]陆宗罄,杨宗敏,赵建河.大黑汀水库大坝溢流修补设计和施工[J].水利水电工程设计,2003,22(3):37-39
    [63]A M Neville著.混凝土的性能[M].北京:中国建筑工业出版社,1998:216-218
    [64]何晓达.低掺量钢纤维/聚丙烯纤维高性能混凝土试验研究[D].大连:大连理工大学,2002:39-40
    [65]Pierre-Claude Aitcin,Carmel Jolicoeur,and IamesG.MacGregor.Superplasticize -rs:How They Work and Why They Occasionally Don,t.Concrete international,1994,(50:45-52
    [66]文华元.温度对低碱度硫铝酸盐水泥性能的影响.水泥技术,2001,(1):57
    [67]程红强,雷运华.新老混凝土粘结抗折强度试验分析[J].黑龙江水利科技,2003,(2):33-34
    [68]管大庆,陈章洪,石韫珠等.界面处理对新老混凝土粘结性能的影响[J].混凝土,1994,(1):16-22
    [69]孙伟,高建明.路用钢纤维混凝土疲劳特性的研究[J].东南大学学报,1989,17(3):80-88
    [70]沈荣熹,崔琪,李清海著.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004:180-181
    [71]Neville A M.Properties of concrete[M].London:Longman Sci&Tech,1991,(3):34-37
    [72]邓学钧,黄晓明.路面设计原理与方法.北京:人民交通出版社,2001:88
    [73]混凝土薄层罩面施工法.日刊,高速道路与机动车,2003,(2):12-14
    [74]马骉,胡长顺.超薄水泥混凝土路面结构设计方法,2004,24(7):1-4
    [75]冯乃谦.实用混凝土大全北京[M].北京:科学出版社,2001:200
    [76]吴历斌,孙振平等.砂率对高性能混凝土的影响研究[J].建筑技术,2002,33(1):21-23.
    [77]惠光炎,王秀军.硅粉混凝土及其应用[M].北京:中国铁道出版社,1995:120
    [78]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社,2004:100-102
    [79]丁琳.硅粉混凝土配合比优化的研究[D].哈尔滨:东北林业大学,2007:33
    [80]张丽璞.混凝土路面快速修补材料的主要性能[J].中外公路,2003,23(4):108-109
    [81]LJ Lavrega.Several Aspects Concerning Modification of cement compositions by Polymer agents[C].9thinternation congress on the chemistry of cement[A].America:New Delhi,1992,(12):517-524
    [82]尹健.高性能快速修补混凝土的研究与应用[D].长沙:中南大学,2003:50
    [83]Kuroda M,Watanabe T,Terashi N.Increase of Bond Strengthen at Interfacial Transition Zone by the Use of Fly Ash[J].Cement and Concrete Research,2000,30(2):253-258
    [84]Corst N J S,Clark L A.Effects of Thaumasite on Bond Strengthen of Reinforcement in Concrete[J].Cement and Concrete Research,2003,25(8): 1089-1094.
    [85]彭小芹,刘艳萌,林力勋.界面剂对界面劈拉强度的影响[J].沈阳建筑大学学报,2006,22(4):596-599
    [86]秦中强.新旧混凝土界面结合状态研究[D].武汉:武汉理工大学,2006:43-44
    [87]赵国藩,彭少民,黄承透.钢纤维混凝上结构[M].北京:中国建筑工业出版社,1999:131-132
    [88]R.O.Lane,J.E.Bachstorm.Some properties of Concrete and Concrete[R].Making Materials,ASTM,1978,(15):68
    [89]Evans A.G.Fracture in Ceramic Materials,USA:Noyes Publications,1984,(13):403
    [90]Jin Z Z,Bao Y W.,Materials Sci.and Tech.,1994,10(1):54
    [91]ACI Committee 544.ACI 544.2R-89.Measurement of properties of fiber reinforced concrete.ACI Manual of Concrete Practice[S].American Concrete Institute,1996,(8):32
    [92]李建辉.粗合成纤维混凝土力学特性及其细观增强机理[D].北京:北京工业大学,2006:31-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700