利用片麻岩制备高等级路面材料的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水造成的损害是我国高速公路沥青混凝土路面最严重的早期破坏原因之一。在诸多可控因素中,集料的岩石性质对沥青混合料的水稳定性能影响显著。片麻岩、花岗岩和砂岩等酸性集料由于与沥青较差的粘附性而使其在公路建设中得不到广泛应用。因此,研究酸性集料沥青混合料的水损害机理、优化设计并制备酸性集料沥青混合料,对于酸性集料在沥青混凝土中的应用具有重要的意义。
     本文依托湖北省交通厅科技攻关项目-“武英高速公路高耐久多功能沥青面层系统优化设计及其工程应用”,结合工程实例,以片麻岩为酸性集料的代表,基于化学反应理论、表面能理论和表面构造理论分析了片麻岩沥青混合料水损害的内在因素,并基于路面结构行为理论,分析了片麻岩沥青混合料水损害的外在因素,探讨了片麻岩沥青混凝土的水损害机理。在此基础上,提出了片麻岩沥青混合料的优化设计方案:通过掺加自主研发的界面增粘剂、水泥及对矿料级配进行优化设计;制备出了水稳定性能与高温性能优良的片麻岩沥青混合料,浸水残留稳定度与1次冻融劈裂强度比分别达到92.8%、93.9%,4次冻融劈裂强度比超过80.4%,水稳定性能超过石灰岩普通沥青混合料;动稳定度超过5000次/mm,满足高等级路面使用要求。
     根据化学分析和岩相分析的测试结果,基于表面能理论的分析,采用SBS、促进剂、稳定剂等开发的界面增粘剂,改善基质沥青与片麻岩集料的粘附性能,粘附等级达到5,同时在重交沥青中掺加6%的增粘剂后,沥青的软化点达到93℃,60℃粘度高达45000Pa·s,有利于提高混合料的高温性能;根据化学反应理论,添加2%的水泥抗剥落剂;根据路面结构行为理论,通过控制细集料用量、关键筛孔(0.075mm)和沥青油膜厚度对片麻岩沥青混合料的级配进行优化设计,提出片麻岩沥青混合料优化设计控制的关键点:AC-13关键筛孔2.36mm通过率:43%-49%;AC-20关键筛孔4.75mm通过率:46%-52%;AC-25关键筛孔4.75mm通过率:46%-52%。
     采用本文的优化方案即通过掺加界面增粘剂、水泥和矿料级配优化,有效地解决了片麻岩沥青混合料水稳定性能不足、耐久性差的难题,并成功应用于武英高速公路。
Water damage is one of the most serious reasons of the early damage of the expressway asphalt mixture pavement in our Country. Among the reasons which can be controlled, the nature of the rock in the aggregate is the greatest impact on the water stability. Acidic aggregate such as gneiss, granite and gritstone can not be wildly used in road construction because of the poor adhesion to asphalt. Concerning the vast land and the great variety of geological structures in China, if some regions which are rich in acidic stone still keep pursuing the use of alkali, neutral stone, the project cost will be increased and the period of construction will be extended. Therefore, there is great significance in the study of water damage mechanism of acidic aggregate asphalt concrete and in the study of optimizing the design and preparation of acidic aggregate mixture.
     This thesis is based on the item "The optimization design and engineering application of the durable and multi-function asphalt pavement system on Wuying Expressway". The thesis is combined with the project, setting gneiss as a sample of acidic aggregate. Based on chemical reaction theory, surface energy theory and the theory of surface structure analysis, the author analyzed the internal factors of water damage. Based on the pavement structure behavior theory, the author analyzed the external factors of water damage and discussed the mechanism of water damage in gneiss asphalt concrete. On this basis, a optimize project of gneiss asphalt mixture has been proposed. By adding interface tackifier and cement and optimizing the design of the grading, a kind of gneiss asphalt mixture with good water stability and high temperature performance has been produced. Soaking residual stability is 92.8%,1 time freeze-thaw splitting intensity ratio is 93.9%,4 times freeze-thaw splitting intensity ratio is over 80.4%. The water stability is better than ordinary limestone asphalt mixture and dynamic stability is more than 5000times/mm. All the performances have met the requirements of high-grade rode use.
     According to the test results of chemical analysis and petrographic analysis and based on the analysis of surface energy theory, a kind of self-developed interface tackifier was added to improve the adhesion property between asphalt and aggregate whose adhesion rating became grade 5. After adding 6% of the tackifier into the asphalt, the softening point of the asphalt is 93℃, the viscosity of bitumen is as high as 85000Pa-s, so it can increase high temperature performance of mixture. According to theory of chemical reaction,2% of the cement anti-stripping agent was added. According to behavioral theory of pavement structure, by controlling the amount of fine aggregate, key sieve(0.075mm) and the asphalt film thickness, the key points of controlling the optimized design of gneiss asphalt mixture are proposed in order to optimize the grading design of gneiss asphalt mixture. The pass rate of the key sieve 2.36mm of AC-13:43%-49%, the pass rate of the key sieve 4.75 of AC-20: 46%-52%, the pass rate of the key sieve 4.75 of AC-25:46%-52%.
     The optimize project proposed in this thesis include adding interface tackifier and cement and optimizing the grading design, through which the problems that gneiss asphalt mixture shortage of water stability and durability have been effectively solved, and the project was successfully applied to Wuying expressway, which has great value of the economic promotion.
引文
[1]王华.沥青混合料的水稳定性能研究[D].陕西:长安大学道路与铁道工程专业,2004.
    [2]张红峰.集料与沥青粘附性机理[J].现代公路,2009,11:130-131.
    [3]方杨.高抗车辙沥青路面材料开发及应用[D].武汉:武汉理工大学材料科学与工程学院,2008.
    [4]孟庆余,黄大喜,朱祖煌等.改善安山岩沥青混合料压实和水稳定性能研究[J].建材世界,2009,30(3):5-7.
    [5]余晓奎.高速公路路面透水病害的防治措施探讨[J].百科论坛:371.
    [6]罗英.影响高速公路沥青路面水损坏的路面结构因素分析[J].中国高新技术企业,2009,18:186-188.
    [7]周卫峰,张秀丽,原健安等.影响粘附性的集料性质分析[J].石油沥青,2003,17(4):19-24.
    [8]孙长英.沥青与矿料的热动力分析[J].中国公路学报,20055,18(4):16-20.
    [9]Martin McCann, Evaluation of the Strippir g Potential of Hot Mix AsphaltUsing Ultrasonic Energy, Proceeding of The Moisture Damage Symposia, July2002.
    [10]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2005:224-229.
    [11]西安公路交通大学.沥青混合料水稳定性技术指标的研究.“八五”国家科技攻关,1995.
    [12]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2000:432-451.
    [13]蔡云梅,张广泰.沥青路面水损害分析及防治措施[J].交通科技与经济,2009,5:81-84.
    [14]张雷.沥青组分对沥青与集料粘附性影响的研究[J].北方交通,2009,01:44-46.
    [15]刘晓丹,黄桂起.提高路面耐久性及常见病害分析[J].内蒙古公路与运输,2002,5:37-38.
    [16]赵晖.浅议沥青与集料的粘附性[J].北方交通,2008,11:24-26.
    [17]黄利宏,方刚,沈恒.细集料对沥青混合料水稳定性影响分析[J].山西建筑,2007,33(4):191-192.
    [18]刘祖愉,秦建忠,阎儒峰.沥青抗剥落剂的研究进展[J].现代化工,1997,8:18-21.
    [19]彭振兴,杨志,高和生.胺类与非胺类沥青抗剥落剂性能的评价[J].交通科技,2005,6:94-96.
    [20]贾渝,张全庚.沥青路面结构层厚度与沥青混合料类型选择[J].公路,2000(3):15-19.
    [21]赵永飞.路用抗剥落剂性能浅析[J].沥青技术,2006,4:66-67.
    [22]Robert M. Koerner and Bao-Lin, Prefabricated Highway Edge Drains.Transportation Research Record 1329,14-20.
    [23]陈繁华,张登峰,刘刚等.提高沥青混合料水稳定性能的试验研究[J].武汉理工大学学报,2007,29(9):9-11.
    [24]潘宝峰,邵龙潭,王哲人.沥青路面水损害研究新方法[J].武汉理工大学学报(交通科学与工程版),2009,33(2):250-252.
    [25]李剑.高速公路沥青路面早期水损害防治措施研究[D].陕西:道路与铁道工程系,2003.
    [26]王抒音,周纯秀.提高沥青-酸性集料抗水损害的试验研究[J].中国公路学报,2003,16(1):6-9.
    [27]李先炜.岩块力学性质[M].北京:煤炭工业出版社,1983,126-127.
    [28]林振华,石义学,王炜.改善片麻岩沥青混合料水稳定性能的试验研究[J].建材世界,2009,30(2):152-154.
    [29]李智,张肖宁,王绍怀.不同石料SMA沥青混合料水稳定性能研究[J].中南公路工程,2006,31(6):29-33.
    [30]孙长新.采用浸水车辙试验评价沥青混合料水稳定性能[J].广东公路交通,2005,3:6-9.
    [31]汪继平,丁立.沥青路面的水损害试验模拟环境设计及试验验证[J].中南公路工程,2006,31(6):37-41.
    [32]李士永.酸性集料在沥青混凝土路面修筑中的应用[J].山西建筑,2005,31(15):138-140.
    [33]姚利杰,赵新坡,李宁利.沥青与集料的粘附机理评述[J].山西建筑,2007,33(23):147-148.
    [34]邓敏,甘林坤.沥青与集料粘附性评价方法对比[J].公路交通技术,2008,01:45-47.
    [35]姚李阳,张振华.沥青混凝土路面水损害机理及其防治措施[J].平顶山工学院学报,2008,17(2):73-74.
    [36]吴海波.高等级路面水损害机理分析与防治[J].沥青技术,2008,9:150-151.
    [37]王明存,王献庄.消石灰提高集料与沥青粘附的机理分析[J].山西科技,2008,4:145-146.
    [38]郑晓光,王粲,杨群.运用表面自由能理论分析沥青混合料水稳定性[J].中外公路,2004,24(5):88-90.
    [39]高晓刚,孙阅兵,陈秀英.沥青路面水损害作用机理及防治对策[J].北方交通,2008,6:38-40.
    [40]基于沥青与集料界面粘附性的抗剥落剂的开发[J].长安大学学报(自然科学版),2005,25(2):16-20.
    [41]彭莹.沥青与集料界面相互作用的研究[J].公路交通技术(应用技术版),2009,02:12-15.
    [42]天津大学物理化学教研室.物理化学[M].北京:高等教育出版社,2001:186.
    [43]邹桂莲,虞将苗,徐伟.界面改性剂对沥青混合料路用性能的影响与机理分析[J].公路交通科技,2008,25(9):57-60.
    [44]李少波,张宏超,孙立军.动水压力的形成与模拟测量[J].同济大学学报(自然科学版),
    2007,35(7):915-918.
    [45]解建光,钱春香,肖庆一.SBS改性沥青混合料水稳定性能的试验分析[J].公路,2004,2:126-128.
    [46]李双瑞,林青,董声雄.SBS改性沥青机理研究进展[J].高分子通报,2008,5:14-16.
    [47]黄卫东,孙立军.中国建筑防水,2003,4:9-11.
    [48]李水平,范维玉.SBS改性沥青微观形态结构及性能的研究[J].石油与天然气化工,147-149.
    [49]王宇,何琴玲,林中祥.增黏树脂差异性对热熔压敏胶外观及性能的影响[J].化学与黏合,2009,31(2):10-12.
    [50]敖灶鑫.钢渣石墨导电混凝土的性能研究[D].武汉:武汉理工大学材料科学与工程学院,2009.
    [51]陈繁华,张登峰,刘刚等.提高沥青混合料水稳定性能的试验研究[J].武汉理工大学学报,2007,29(9):9-11.
    [52]何健,张登良.沥青与集料粘附性指标研究[J].西安公路交通大学学报,1996,16(3):8-11.
    [53]Long D.C.and J.S.Baldwin.Snow and Ice Removal from Pavement Using Stored Earth Energy-Federal Highway Administration,july 1975,FHWA-RD-75-111
    [54]Wu Shaopeng, Mo Liantong, Shui Zhonghe. Improvement of Electrical Properties of Asphalt Mixtures.Master's Thesis.Michigan Technological University.2000
    [55]沈刚,董发勤.复相导电混凝土的研究[J].混凝土与水泥制品。2003(6):38-40
    [56]K.P.Sau,D.Khastgir,T.K.Chaki.Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites.Die Angewandte Makromolekulare Chemie 1998(258);11-17.
    [57]中华人民共和国交通部.JTG F40-2004,公路沥青路面施工技术规范.北京:人民交通出版社,2004.
    [58]中华人民共和国交通部.JTJ 032-94,公路沥青路面施工技术规范北京:人民交通出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700