乳化(泡沫)沥青冷再生混合料技术性能深入研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国20世纪80年代修建的沥青路面已陆续进入大中修阶段,随之会产生大量废旧沥青混合料。沥青路面冷再生技术可将旧沥青路面材料重复利用,提高资源利用率,保护生态环境,符合国家发展循环经济和实现可持续发展的战略方针。因此,对沥青路面冷再生技术进行研究具有重要的现实意义。
     目前我国对于冷再生混合料的研究主要集中在原材料、混合料配合比设计及常规强度等方面,而对于其耐久性能、抗剪特性和动态模量方面的研究较少。因此,本文通过大量室内试验,针对乳化沥青再生混合料的永久变形特性、疲劳性能、抗剪特性及动态模量展开深入研究,并与泡沫沥青再生混合料进行对比,从而促进该技术在我国的应用。
     永久变形特性是乳化沥青再生结构层的重要性能之一。本文采用动态压缩蠕变试验分析了不同材料组成对乳化沥青再生混合料永久变形特性的影响,结果表明:一定程度增大水泥用量以及减少乳化沥青用量,可提高乳化沥青再生混合料的抗变形能力;泡沫沥青再生混合料的抗永久变形性能优于乳化沥青再生混合料。
     抗疲劳性能是乳化沥青再生混合料铺筑路面基层或下面层时必须优化设计的关键性能。本文采用间接拉伸劈裂疲劳试验分析了不同材料组成对乳化沥青再生混合料疲劳性能的影响,分析表明:在小掺量条件下水泥增多有助于提高乳化沥青再生混合料的抗疲劳性能;最佳乳化沥青用量下再生混合料具有良好的抗疲劳性能以及强度与变形能力;泡沫沥青再生混合料的应力敏感性要大于乳化沥青再生混合料;乳化沥青再生混合料的抗疲劳性能介于半刚性基层材料与热拌沥青混合料之间。
     本文采用贯入剪切试验研究不同材料组成对乳化沥青及泡沫沥青再生混合料25℃和60℃抗剪特性影响,结果表明:随着水泥掺量的增大,乳化沥青及泡沫沥青再生混合料的各抗剪指标均显著增大;随着乳化沥青或泡沫沥青用量的增大,再生混合料的最大剪应力和内摩阻角均减小,粘聚力先增大后减小;泡沫沥青再生混合料的最大剪应力大于乳化沥青再生混合料;采用汉堡车辙试验对不同沥青特性冷再生混合料的高温抗剪性能及水稳定性进行研究,结果表明冷再生混合料高温与水稳定性组合的综合排序为:壳牌SBS改性乳化沥青>泡沫沥青>壳牌普通乳化沥青>国产Y乳化沥青。
     对再生混合料的动态模量进行研究可为将来的冷再生结构层设计及混合料性能评价提供依据。本文采用动态三轴试验对乳化沥青及泡沫沥青冷再生混合料在不同材料组成、不同温度及不同围压下的三轴动态模量进行研究,结果表明再生混合料的动态模量均随着围压、水泥用量的增大、乳化(泡沫)沥青用量的减小、温度的降低而增大。
The asphalt pavement constructed in the 1980s in our country early is entering into rehabilitation period, which produces a large amount of reclaimed asphalt mixture.The technology of asphalt pavement rehabilitation, which can reuse the old asphalt mixture, raise resource utilization ratio and protect ecological environment, accords with the strategic policy of developing recycle economy and realizing sustainable development in our country. So the study of the cold recycling technology has important practical significance.
     The study of cold recycling mixture mainly focuses on the material mixture design and conventional strength currently . However, studies about the permanent deformation performance,the resistance to shear performance and dynamic modulus about cold recycling asphalt mixture have a little at present. Through a lot of laboratory experiments, the paper aims to systematically study permanent deformation performance, fatigue performance, resistance to shear performance and dynamic modulus of the cold asphalt recycling mixture with emulsified,and also compared with foamed asphalt mixture.
     The permanent deformation of emulsified asphalt recycled pavements is very important for pavement structure. The paper adopted the dynamic compression creep test to analyze the effect of mix composition on permanent deformation . It was found that increasing a amount of cement or decreasing emulsified asphalt content at a certain degree, it can improve the deformation resistance of the cold recycling mixture with emulsified asphalt. Foamed asphalt recycled mixture has superior deformation resistance over emulsified asphalt recycled mixture.
     Fatigue resistance is a paramount performance needed to be optimized for cold recycling mixture with emulsified asphalt, which are used for base or subbase layers in pavements. This paper adopts the indirect tensile fatigue test to study of the influence of different material compositions on fatigue properties of emulsified asphalt recycled mixes. The results showed that with increasy of cement at a small amount, the improvement of fatigue resistance for emulsified asphalt recycled mixtures. The recycled asphalt mixes at optimum emulsified asphalt content have relatively good fatigue resistance, strength and flexibility. The stress sensitivity of foamed asphalt recycled mixture is higher than the emulsified asphalt recycled mixture. Fatigue resistance of emulsified asphalt recycled mixes is between semi-rigid material and HMA.
     The paper uses the penetration shear test to study of the influence of different material compositions on shear resistance performance of emulsified asphalt and foamed asphalt recycled mixes at the temperature of 25℃and 60℃. It was indicated that increase of cement is beneficial to the increase of shear index for emulsified asphalt and foamed asphalt recycled mixes. With the increasing of emulsified asphalt and foamed asphalt content,the maximum shear stress and internal friction angle are decreased, but the cohesion is increased at first then decreased. The maximum shear stress of foamed asphalt recycled mixes is larger than emulsified asphalt recycled mixes.The Hamburg rutting test is used to analysis water stability of cold recycled mix with different asphalt properties. The water stability of asphalt mixture is ranked as follows:shell SBS modified emulsified asphalt>foamed asphalt> shell general emulsified asphalt> domestic emulsified asphalt Y.
     The study on dynamic modulus of cold recycling mixture can provide the basis for cold recycling layer design and mixture performance evaluation. The paper uses dynamic triaxial tests to study the dynamic modulus of different material compositions,temperature and confining pressure of emulsified asphalt and foamed asphalt recycled mixes.The results shows that the dynamic modulus increases with the increase of confining pressure, cement amount and the decrease of emulsified (foamed)asphalt amount and temperature.
引文
[1]Asphalt Recycling and Reclaiming Association. Basic Asphalt Recycling Manual[M], 2004.
    [2]徐金枝.泡沫沥青及泡沫沥青冷再生混合料技术性能研究.长安大学博士论文[D].2007,6.
    [3]Csanyi L.H. Foamed Asphalt in Bituminous Paving Mixes. Highway Research Board Bulletin Volume 10 No.160, Pp 108-122,1956.
    [4]Lee D.Y. Treating Marginal Aggregates and Soils with Foamed Asphalt. Association of Asphalt Paving Technologists Volume 50, Pp211-250,1981.
    [5]George Vorobieff, Nigel Preston. Bitumen Stabilisation-An Australian Perspective. NZIHT Stabilisation of Road Pavements Seminar, Auckland, NZ, June 2004.
    [6]Bissada, A.F. Structural Response of Foamed-Asphalt-Sand Mixtures in Hot Environments. In:Asphalt Materials and Mixtures. Washington, DC:Transportation Research Board, 115, pp 134-149,1987.
    [7]Little D.N.,Button J.W. and Epps J.A. Structural Properties of Laboratory Mixtures Containing Foamed Asphalt and Marginal Aggregates. Transportation Research Recod 911. Pp104-113,1983.
    [8]Lee, H. and Kim Y. Validation of the Mix Design Process for Cold In-Place Rehabilitation Using Foamed Asphalt. Iowa Department of Transportation, Iowa Highway Research Board, Final Report TR-474,2007.
    [9]He Gui-Ping. Study the Use of Reclaimed Asphalt Pavement(RAP) with Foamed Bitumen in Hong Kong. PHD Dissertation, April 2006.
    [10]美国沥青路面再生指南[Z].北京:人民交通出版社,2006.
    [11]李艳春,陈朝霞,阎峰等.旧路面材料的冷再生利用及力学性能分析.公路交通科技,2001,18(5):15-16
    [12]杨宇亮,孙立军,毛如麟等.回收旧沥青混合料冷拌再生技术的研究.公路交通科技,2002,19(6):38-40
    [13]曹翠星,何桂平,孙成仁.泡沫沥青冷再生技术.公路,2003,(11):99-102
    [14]王丽,魏连雨,刘奎颖.冷再生沥青混合料力学性能试验研究.河北工业大学学报, 2003,32(3):98-102
    [15]李强,马松林,王鹏飞.沥青路面冷再生混合料疲劳性能.交通运输工程学报,2004,4(1): 7-10
    [16]王海燕,杜二鹏,刘真岩.沥青混凝土路面现场冷再生设计方法的探讨.公路,2004,(6):29-33
    [17]谭忆秋,董泽蛟,曹丽萍等.应用Superpave体积设计法设计冷再生沥青混合料.公路交通科技,2005,22(3):31-34
    [18]佘兆宇,戴震.乳化沥青冷再生拌和楼的研制与工程应用[J].现代交通技术,2006,(04)
    [19]拾方治,李秀君,孙大权,吕伟民.冷再生沥青混合料设计方法概述.公路,2004,(11):102-107
    [20]拾方治,吕伟民,孙大权.沥青路面再生技术简介.石油沥青,2004,18(5):56-59
    [21]拾方治,赫振华,吕伟民等.泡沫沥青混合料设计方法的试验研究.公路交通科技,2004,21(10):1-4
    [22]李秀君,拾方治,董兆辉.泡沫沥青就地冷再生混合料设计方法与工程应用.公路,2005,(2):150-155
    [23]吕伟民,拾方治.泡沫沥青冷再生技术的研究与应用.筑路机械与施工机械化.2005,(3): 1-3
    [24]权登州.乳化沥青冷再生混合料技术性能研究.长安大学硕士论文[D].2009
    [25]中华人民共和国交通运输部JTG F41-2008公路沥青路面再生技术规范[S].北京:人民交通出版社.2008.
    [26]An Overview of Recycling and Reclamation Methods for Asphalt Pavement Rehabilitation. [Z] Asphalt Recycling and Reclaiming Association, Annapolis, MD, 1992.
    [27]Edward J. Kearney. P.E., John E. Huffman, P.E. The Full Depth Reclamation Process. [Z] Prepared for Presentation at the 78 the Annual Meeting of the Transportation Research Board January 10-14, Washington, DC,1999.
    [28]J.S Lai. "Evaluation of Rutting Characteristics of Asphalt Mixes Using Loaded Wheel Tester." Georgia Department of Transportation Project No.8609, December 1986. 2002.
    [29]C.R. Williams and B.D. Prowell. Comparison of Laboratory Wheel-Tracking Test Results to WesTrack Performance. Transportation Research Record No.1681, Transportation Research Board. National Research Council,1999.
    [30]Prithvi S. Kankhal and L.Allen Cooley, Jr. Evaluation of Permanent Deformation of Asphallt Mixtures Using Loaded Wheel Tester. NCAT Report No.2002.
    [31]U.S. Department of Transportation, Federal Highway Administration, Hamburg Wheel Tracking Device, FHWA, Turner-Fairbank Highway Research Center, TFHRC Publication, 2002.
    [32]Texas Department of Transportation, Pavement Construction Specifications, Draft 10/03/03,2003.
    [33]Cooley L. A., Kandhal S. P., Fee F. and Epps A., Loaded Wheel Testers in the United States:State of the Practice, National Center for Asphalt Technology, NCAT Report 2000-4, Transportation Research E-Circular No. E-C016, Auburn, Alabama,2000.
    [34]Van de Loo, P. J.. Creep testing, a simple tool to judge asphalt mix stability. Proceedings, The Association of Asphalt Paving Technologists, Vol.43,253-284,1974.
    [35]Barksdale, R. D. and J. H. Miller II. Development of equipment and techniques for evaluating fatigue and rutting characteristics of asphalt concrete mixes. School of Civil Engineering, Georgia Institute of Technology, SCEGIT-77-149,1977.
    [36]Monismith, C. L. and A. A. Tayebali. Permanent deformation (rutting) considerations in asphalt concrete pavement sections. Proceedings, The Association of Asphalt Paving Technologists, Williamsburg, VA, Vol.57,414-463,1988.
    [37]National Cooperative Highway Research Program, "Refining the Calibration and Validation of Hot Mix Asphalt Performance Models:An Experimental Plan and Data base", Research Results Digest, Number 284,2003.
    [38]Schmidt, R. J.. A practical Method for Measuring the Rsilient Modulus of Asphalt Treated Mixes. Highway Research Record 400, Highway Research Board,22-32,1972.
    [39]Khosla, N. P. and M. S. Omer. Characterization of asphaltic mixtures for prediction of pavement performance. Transportation Research Record 1034, Transportation Research Board,47-55,1985.
    [40]"Fatigue Response of Asphalt-Aggregate Mixes, SHRP-A-404", Institute of Transportation Studies, University of California, Berkeley, California,1994.6
    [41]许志鸿,李淑明,高英,丰晓.沥青混合料疲劳性能研究.交通运输工程学报,1(1):20-24,2001.
    [42]交通部公路科学研究所.“八五”国家科技攻关项目:高等级公路半刚性基层沥青路面材料参数的研究(课题分报告),1995.
    [43]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2005
    [44]林绣贤.关于沥青混凝土路面设计中的抗剪指标的建议[J].公路,2004
    [45]邵显智.沥青混合料抗剪性能影响因素及剪切疲劳试验研究[D].上海:同济大学博士学位论文,2004
    [46]刘伯莹,王林,马士杰,等.沥青路面设计指标和参数的验证研究[R].北京:中交公路规划设计研究院,2007.
    [47]王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数,人民交通出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700