NeuroD1/BETA2、PAX4和KCNQ1基因多态性与2型糖尿病易感性的关系及其对瑞格列奈疗效的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遗传药理学(pharmacogenetics)是研究人体遗传变异引起的药物代谢酶、药物转运体和药物作用靶点功能异常,导致药物代谢和效应个体差异的一门科学。遗传药理学从基因角度来解释药物治疗效应个体差异和不良反应的根本机制,运用分子生物学的最新技术和方法来研究药物的作用,把从分子水平的学科到临床水平的学科,包括药理学、生理学、遗传学、基因组学、临床医学、流行病学、统计学、生物信息学、生物计算机学等多学科联合到一起来阐明药物的作用和作用机理。药物反应个体差异是临床药物治疗中常见的普遍现象。引起药物反应个体差异的原因很多,有性别、年龄、体重、伴随的疾病等,遗传因素是十分重要的一个因素。遗传药理学研究发现,药物代谢酶、受体和转运体活性的改变是导致临床上药物治疗中出现药物反应个体差异常见原因,药物代谢酶、受体和转运体基因的遗传多态性是药物作用个体差异的重要决定因素。
     2型糖尿病也称非胰岛素依赖型糖尿病,占糖尿病患者的90%左右,其发病率逐年增加。目前全球2型糖尿病人已超过1.7亿,世界卫生组织预计2025年将会突破3亿,而发病年龄呈现年轻化趋势。2型糖尿病的发病机制包括:遗传易感性,胰岛B细胞功能障碍以及胰岛素抵抗现象。其治疗的短期目标是控制血糖,长期目标是预防相关并发症的发生与发展。其基础治疗方案主要由运动和饮食构成,但是药物治疗和血糖监测往往也非常关键。瑞格列奈适用于2型糖尿病病人,具有起效快、作用时间短等特点。瑞格列奈作用的机理尚不完全清楚,可能与药物的受体、药物代谢酶、药物转运体及糖尿病相关基因的多态性对药物作用的影响有关。神经分化因子1(neurogenic differentiation1, NeuroD1),又叫p细胞E盒反式激活因子2(β-cellE-box transactivator2),作为正向调控蛋白NeuroD1/BETA2对胰腺p细胞的分化及正常功能具有举足轻重的地位。早期发现NeuroD1/BETA2基因45位密码子发生突变,导致氨基酸Ala被Thr替代,该突变发生在211位核苷酸处(G>A),这一变异位于该基因的功能域,影响基因的转录活性和胰岛p细胞的分化和重建能力。对于该多态性与中国2型糖尿病的相关性不明。
     转录因子配对盒4(the paired box gene4, Pax4)主要功能为胰腺发育的转录抑制因子,在胰腺p细胞的分化和发育过程中发挥重要作用。PAX4基因敲除小鼠胰腺成熟的胰岛素分泌细胞和生长抑素分泌细胞完全缺失,而分泌胰高糖素的α细胞增生。PAX4(the paired box gene4)基因定位于人染色体7q32,包括9个外显子和8个内含子。日本人的研究结果提示R121W(Arg121Trp)与2型糖尿病相关,且对胰岛p细胞的功能有影响。另一报道显示,携带突变纯合子121W的2型糖尿病患者缺乏胰岛素分泌第一时相。该基因多态与中国2型糖尿病的相关性未见报道。
     全基因组关联分析研究(Genome-wide association studies, GWASs)和meta分析发现多个新的T2DM的易感位点,这些区域可能在胰岛素的分泌和胰腺B细胞功能中发挥重要作用。其中KQT亚科-钾离子电压门控通道1(potassium voltage-gated channel, KQT-like subfamily, member1, KCNQ1)基因在多个人群的研究均发现,rs2237892和rs2237895多态与2型糖尿病相关性强。KvLQT1蛋白属于电压门控钾通道蛋白家族,KCNQ1基因广泛表达于心脏、胰腺、前列腺、肾脏、小肠和外周血白细胞中。该基因突变可能损伤胰岛p细胞的功能,从而影响胰腺分泌。
     瑞格列奈是一种胰岛素促分泌剂,又名“膳食葡萄糖调节剂”,被临床广泛的用于治疗经饮食控制、控制体重及锻炼后仍不能有效控制血糖高水平的2型糖尿病患者。瑞格列奈与磺酰脲类受体结合,关闭胰腺β细胞上ATP敏感性钾通道,开放钙通道,钙内流增加,促进胰岛素的分泌。瑞格列奈改善早相胰岛素分泌,起效快,作用时间短,主要用于控制餐后高血糖水平。临床观察发现瑞格列奈出现显著的个体疗效差异,常导致药物疗效不佳或失效,其具体机制不明。
     本实验旨在研究中国汉族人群NeuroD1/BETA2基因Ala45Thr、 PAX4基因R121W和KCNQ1基因rs2237892和rs2237895多态性的中国人群等位基因、基因型频率分布特征及其与代谢相关指标的关系,了解该基因多态性与2型糖尿病的易感相关性及对瑞格列奈疗效的影响。
     本课题的主要研究结果如下:
     NeuroD1/BETA2基因Ala45Thr位点与T2DM易感性显著相关,并且能影响瑞格列奈治疗T2DM的疗效。
     PAX4基因R121W位点可能不是T2DM的独立危险因子,但是能影响瑞格列奈的疗效。
     KCNQ1基因rs2237892位点、rs2237895位点与T2DM相关,且均对瑞格列奈的疗效有影响。
     1. NeuroD1/BETA2基因Ala45Thr位点与2型糖尿病易感性显著相关,带突变基因型的个体更易患2型糖尿病。
     2. NeuroD1/BETA2基因Ala45Thr位点野生基因型A/A组的FINS水平和PINS水平显著高于突变基因型(A/T+T/T)组。
     3.经瑞格列奈治疗后每天3mg口服8周治疗后,携带NeuroD1/BETA2基因Ala45Thr位点A/A基因型的2型糖尿病患者FPG下降水平和PPG下降水平显著高于A/T+T/T基因型患者,NeuroD1/BETA2基因Ala45Thr位点影响瑞格列奈治疗2型糖尿病的疗效。
     4. PAX4基因R121W位点等位基因和基因型频率在2型糖尿病组和健康对照组间的分布无显著性差异。
     5. PAX4野生基因型R/R组的PINS水平显著高于突变基因型(R/W+W/W)组。PAX4基因R121W位点多态性与2型糖尿病患者的餐后胰岛素水平相关。
     6.经瑞格列奈治疗后每天3mg口服8周治疗后,携带PAX4基因R121W位点R/R基因型的2型糖尿病患者PPG下降水平显著高于R/W+W/W基因型患者。PAX4基因R121W位点多态性影响瑞格列奈的疗效。
     7.2型糖尿病组的KCNQ1基因rs2237892位点TT基因型频率和T等位基因频率显著低于健康对照组。2型糖尿病组的KCNQ1基因rs2237895位点C等位基因频率显著高于健康对照组。
     8. KCNQ1基因rs2237892位点CC, CT和TT基因型组的FINS. HOMA-IR值三组之间有显著差异,且表现为基因剂量效应。KCNQ1基因rs2237895位点AA,AC和CC基因型组的FPG. PPG和HOMA-IR值三组之间有显著差异,且表现为基因剂量效应。
     9. KCNQ1基因rs2237892位点不同基因型组患者经瑞格列奈治疗后的PPG值三组之间有显著性差异,对瑞格列奈的疗效有影响。KCNQ1基因rs2237895位点不同基因型组患者经瑞格列奈治疗后的FINS值三组之间有显著性差异,对瑞格列奈的疗效有影响。
     本课题为2型糖尿病的病因研究及合理用药的机理进行初步探索。为2型糖尿病临床早期预测、诊断和治疗提供新的契机,并为糖尿病的个体化药物治疗提供实验依据。
Pharmacogenetics refers to drug metabolism, effective group and individual difference abnormality which mainly caused by genetic variance and disfunction of drug-metabolizing enzyme, drug transport or target proteins. Pharmacogenetics aims to explain the basic mechanisms of drug therapeutic efficacy individual difference and adverse reaction from point of view of genetic polymorphisms. From molecular level to clinical level subjects, it combines pharmacology, physiology, hereditism, genomics, clinical medicine, epidemiology, statistics, bioinformatics and biocomputer to elucidate medicine functions and its mechanisms. Individual difference of drug reaction is a common phenomenon in clinical drug use. The reasons include gender, age, weight and accompanied diseases and so on, among them, genetic factors is very important. Pharmacogenetics studies indicate that activity change of drug-metabolizing enzymes, receptors and transporter is the major mechanism for individual differences in drug response, and inherited variation in activities of drug-metabolizing enzymes, receptors and transporter results in inter-individual differences in drug metabolism, disposition and efficacy.
     Type2diabetes mellitus (T2DM), also called noninsulin-dependent diabetes mellitus, is a complex metabolic disease. Type2diabetes mellitus accounts90%of all diabetes and rapidly increasing prevalence year by year. Now more than170million subjects worldwide are type2diabetes mellitus patients. The world healthy organization estimates that the number of type2diabetes mellitus patients will be more than3billions in2025and age of onset shows make more youthful tendency. The pathogenesy of type2diabetes includes hereditary susceptibility, fi-cell disfunction in pancreas islet and insulin resistance. NeuroD1 (neurogenic differentiation1), also called β-cell E-box transactivator2, it very important for pancreas β-cell differentiation and normal function as positive regulation protein. It has been reported that NeuroDl/BETA2gene had a polymorphism in211nucleotide position (G>A), which caused Ala substituted by Thr. This polymorphism locates in function domain and may influence the gene transcription activity and the differentiation and rebuild ability of pancreas B-cell. The association between NeuroD1/BETA2gene Ala45Thr and type2diabetes mellitus in Chinese is not clear until now.
     The paired box gene4plays very important role in pancreas B-cell differentiation and development which as a transcript inhibition factor. PAX4gene knock-out mouse showed insulin secretion cells and growth hormone release inhibiting hormone secretion cells absolutely absence in full-blown pancreas, but glicentin secreted a-cell were proliferation. PAX4gene located in chromatosome7q32combined9exons and8introns. It has been reported PAX4gene R121W polymorphism associated with type2diabetes in Japanese and effected on pancreas B-cell function. Another study results showed patients with mutate homozygote121W was short of the first phase of insulin secretion. We don't know the association of PAX4gene R121W polymorphism and Chinese type2diabetes mellitus.
     Genome-wide association studies (GWASs) and meta-analyses identified several new susceptibility gene polymorphisms of type2diabetes mellitus. These gene polymorphisms play important roles in insulin secretion and pancreas B-cell function. KCNQ1(potassium voltage-gated channel, KQT-like subfamily, member1) gene rs2237892and rs2237895polymorphisms associated with type2diabetes mellitus in several populations. It belongs to potassium voltage-gated channel family and expressing in heart, pancreatic gland, prostate, kidney, small intestine and peripheral blood leucocyte. The KCNQ1gene polymorphisms affect the function and insulin secretion of β-cell.
     Repaglinide is an insulin secretagogue agent, also called Dietary glucose regulator. It is widely used in type2diabetes patients who have higher blood glucose after alimentary control, body weight control and exercise. Repaglinide binds with sulfonylurea receptor, then blocks potassium voltage-gated channel and open calcium voltage-gated channel, causing increasing insulin secretion. Repaglinide is mainly used in control postprandial hyperglycemia and improve the first phase insulin secretion. Repaglinide therapeutic efficacy shows individual differences.
     This study investigated whether NeuroDl/BETA2gene Ala45Thr polymorphism, PAX4gene R121W polymorphism and KCNQ1gene rs2237892and rs2237895polymorphisms are associated with type2diabetes and repaglinide efficacy in Chinese T2DM patients.
     The present series of studies have found that:
     1. NeuroD1/BETA2gene Ala45Thr polymorphism was associated with the development of type2diabetes mellitus.
     2. Patients with mutated NeuroDl/BETA2gene Ala45Thr polymorphism showed higher FINS and PINS levels than that in A/T+T/T individuals.
     3. NeuroD1/BETA2gene Ala45Thr polymorphism affects repaglinide therapeutic efficacy. Patients with A/A genotypic NeuroDl/BETA2gene showed higher FPG DV and PPG DV values than that in A/T+T/T individuals.
     4. The genotypic and allelic frequencies of PAX4gene R121W polymorphism shows no differences between type2diabetes group and healthy controls.
     5. Patients with PAX4gene R/R polymorphism showed higher PINS levels than that in R/W+W/W individuals.
     6. PAX4gene R121W polymorphism affects repaglinide therapeutic efficacy. T2DM Patients with R/R genotypic PAX4gene showed higher PPG DV values than that in R/W+W/W individuals.
     7. KCNQ1gene rs2237892and rs2237895polymorphisms were associated with type2diabetes and showed gene dosage effect.
     8. KCNQ1gene rs2237892polymorphism was associated with the values of FINS and HOMA-IR and KCNQ1gene rs2237895polymorphism affected markedly the values of PPG and HOMA-IR in T2DM patients.
     9. KCNQ1gene rs2237892and rs2237895polymorphisms affected repaglinide therapeutic efficacy and showed gene dosage effect in T2DM patients.
     The present study has provided novels susceptibility gene locus for type2diabetes mellitus. We try to explain the possible mechanism of individual differences in repaglinide therapeutic efficacy.
引文
[1]中国糖尿病防治指南.2007
    [2]Wild S, Roglic G, Green A, et al. Global prevalence of diabetes:Estimates for the year 2000 and projections for 2030. Diabetes care 2004;27:1047-1053.
    [3]Jensen J, Pedersen EE, Galante P, et al. Control of endodermal endocrine development by hes-1. Nat Genet 2000;24:36-44.
    [4]Naya FJ, Huang HP, Qiu Y, et al. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in beta2/neurod-deficient mice. Genes Dev 1997;11:2323-2334.
    [5]Tamimi R, Steingrimsson E, Copeland NG, et al. The neurod gene maps to human chromosome 2q32 and mouse chromosome 2. Genomics 1996;34:418-421.
    [6]Owerbach D, Naya FJ, Tsai MJ, et al. Analysis of candidate genes for susceptibility to type i diabetes:A case-control and family-association study of genes on chromosome 2q31-35. Diabetes 1997;46:1069-1074.
    [7]Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry 1972;18:499-502.
    [8]Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 2003;1:E20.
    [9]Cauchi S, Meyre D, Dina C, et al. Transcription factor tcf712 genetic study in the french population:Expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes 2006;55:2903-2908.
    [10]Florez JC, Jablonski KA, Bayley N, et al. Tcf712 polymorphisms and progression to diabetes in the diabetes prevention program. N Engl J Med 2006;355:241-250.
    [11]Gloyn AL, Hashim Y, Ashcroft SJ, et al. Association studies of variants in promoter and coding regions of beta-cell atp-sensitive k-channel genes surl and kir6.2 with type 2 diabetes mellitus (ukpds 53). Diabet Med 2001;18:206-212.
    [12]Li L, Shi Y, Wang X, et al. Single nucleotide polymorphisms in k(atp) channels: Muscular impact on type 2 diabetes. Diabetes 2005;54:1592-1597.
    [13]Saxena R, Gianniny L, Burtt NP, et al. Common single nucleotide polymorphisms in tcf712 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006;55:2890-2895.
    [14]Zhang C, Qi L, Hunter DJ, et al. Variant of transcription factor 7-like 2 (tcf712) gene and the risk of type 2 diabetes in large cohorts of u.S. Women and men. Diabetes 2006;55:2645-2648.
    [15]Lee JE. Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 1997;7:13-20.
    [16]Madsen OD, Jensen J, Petersen HV, et al. Transcription factors contributing to the pancreatic beta-cell phenotype. Horm Metab Res 1997;29:265-270.
    [17]Massari ME, Murre C. Helix-loop-helix proteins:Regulators of transcription in eucaryotic organisms. Mol Cell Biol 2000;20:429-440.
    [18]Malecki MT, Jhala US, Antonellis A, et al. Mutations in neurodl are associated with the development of type 2 diabetes mellitus. Nat Genet 1999;23:323-328.
    [19]Kristinsson SY, Thorolfsdottir ET, Talseth B, et al. Mody in iceland is associated with mutations in hnf-1alpha and a novel mutation in neurodl. Diabetologia 2001;44:2098-2103.
    [20]Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N Engl J Med 2001;345:971-980.
    [21]Iwata I, Nagafuchi S, Nakashima H, et al. Association of polymorphism in the neurod/beta2 gene with type 1 diabetes in the japanese. Diabetes 1999;48:416-419.
    [22]Gromada J, Dissing S, Kofod H, et al. Effects of the hypoglycaemic drugs repaglinide and glibenclamide on atp-sensitive potassium-channels and cytosolic calcium levels in beta tc3 cells and rat pancreatic beta cells. Diabetologia 1995;38:1025-1032.
    [23]徐世松.口服抗糖尿病药的临床评价.中国新药与临床杂志1998;17:385-386.
    [24]Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (tcf2) associated with mody. Nat Genet 1997;17:384-385.
    [25]Sosa-Pineda B, Chowdhury K, Torres M, et al. The pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997;386:399-402.
    [26]St-Onge L, Sosa-Pineda B, Chowdhury K, et al. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature 1997;387:406-409.
    [27]Yamagata K, Furuta H, Oda N, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (modyl). Nature 1996;384:458-460.
    [28]Bonner-Weir S. Life and death of the pancreatic beta cells. Trends Endocrinol Metab 2000; 11:375-378.
    [29]Servitja JM, Ferrer J. Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 2004;47:597-613.
    [30]Pearl EJ, Horb ME. Promoting ectopic pancreatic fates:Pancreas development and future diabetes therapies. Clin Genet 2008;74:316-324.
    [31]Fujitani Y, Kajimoto Y, Yasuda T, et al. Identification of a portable repression domain and an ela-responsive activation domain in pax4:A possible role of pax4 as a transcriptional repressor in the pancreas. Mol Cell Biol 1999;19:8281-8291.
    [32]Smith SB, Ee HC, Conners JR, et al. Paired-homeodomain transcription factor pax4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol 1999;19:8272-8280.
    [33]Sosa-Pineda B. The gene pax4 is an essential regulator of pancreatic beta-cell development. Mol Cells 2004; 18:289-294.
    [34]Ueda Y. Activin a increases pax4 gene expression in pancreatic beta cell lines. FEBS Lett 2000;480:101-105.
    [35]Demeterco C, Beattie GM, Dib SA, et al. A role for activin a and betacellulin in human fetal pancreatic cell differentiation and growth. J Clin Endocrinol Metab 2000;85:3892-3897.
    [36]Wang J, Elghazi L, Parker SE, et al. The concerted activities of pax4 and nkx2.2 are essential to initiate pancreatic beta-cell differentiation. Dev Biol 2004;266:178-189.
    [37]Shimajiri Y, Sanke T, Furuta H, et al. A missense mutation of pax4 gene (r121w) is associated with type 2 diabetes in Japanese. Diabetes 2001;50:2864-2869.
    [38]Tokuyama Y, Matsui K, Ishizuka T, et al. The arg121trp variant in pax4 gene is associated with beta-cell dysfunction in Japanese subjects with type 2 diabetes mellitus. Metabolism 2006;55:213-216.
    [39]Kanatsuka A, Tokuyama Y, Nozaki O, et al. Beta-cell dysfunction in late-onset diabetic subjects carrying homozygous mutation in transcription factors neurodl and pax4. Metabolism 2002;51:1161-1165.
    [40]Shimajiri Y, Shimabukuro M, Tomoyose T, et al. Pax4 mutation (r121w) as a prodiabetic variant in okinawans. Biochem Biophys Res Commun 2003;302:342-344.
    [41]Guay DR. Repaglinide, a novel, short-acting hypoglycemic agent for type 2 diabetes mellitus. Pharmacotherapy 1998; 18:1195-1204.
    [42]Hatorp V. Clinical pharmacokinetics and pharmacodynamics of repaglinide. Clin Pharmacokinet 2002;41:471-483.
    [43]Papa G, Fedele V, Rizzo MR, et al. Safety of type 2 diabetes treatment with repaglinide compared with glibenclamide in elderly people:A randomized, open-label, two-period, cross-over trial. Diabetes Care 2006;29:1918-1920.
    [44]Ashcroft FM, Rorsman P. Electrophysiology of the pancreatic beta-cell. Progress in biophysics and molecular biology 1989;54:87-143.
    [45]Bidstrup TB, Bjornsdottir I, Sidelmann UG, et al. Cyp2c8 and cyp3a4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 2003;56:305-314.
    [46]Niemi M, Leathart JB, Neuvonen M, et al. Polymorphism in cyp2c8 is associated with reduced plasma concentrations of repaglinide. Clinical pharmacology and therapeutics 2003;74:380-387.
    [47]Niemi M, Backman JT, Kajosaari LI, et al. Polymorphic organic anion transporting polypeptide lbl is a major determinant of repaglinide pharmacokinetics. Clinical pharmacology and therapeutics 2005;77:468-478.
    [48]Yu M, Xu XJ, Yin JY, et al. Kcnj11 1ys23glu and tcf712 rs290487(c/t) polymorphisms affect therapeutic efficacy of repaglinide in chinese patients with type 2 diabetes. Clin Pharmacol Ther;87:330-335.
    [49]Koster JC, Marshall B A, Ensor N, et al. Targeted overactivity of beta cell k(atp) channels induces profound neonatal diabetes. Cell 2000; 100:645-654.
    [50]Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (tcf712) gene confers risk of type 2 diabetes. Nat Genet 2006;38:320-323.
    [51]Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes:Principles of pathogenesis and therapy. Lancet 2005;365:1333-1346.
    [52]Hunter DJ, Altshuler D, Rader DJ. From darwin's finches to canaries in the coal mine--mining the genome for new biology. N Engl J Med 2008;358:2760-2763.
    [53]Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science (New York, NY 2007;316:1341-1345.
    [54]Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007;445:881-885.
    [55]Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in uk samples reveals risk loci for type 2 diabetes. Science (New York, NY 2007;316:1336-1341.
    [56]Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661-678.
    [57]Saxena R, Voight BF, Lyssenko V, et al.Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science (New York, NY 2007;316:1331-1336.
    [58]Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in cdkall influences insulin response and risk of type 2 diabetes. Nat Genet 2007;39:770-775.
    [59]Zeggini E, Ioannidis JP. Meta-analysis in genome-wide association studies. Pharmacogenomics 2009; 10:191-201.
    [60]Takeuchi F, Serizawa M, Yamamoto K, et al. Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 2009;58:1690-1699.
    [61]Tsai FJ, Yang CF, Chen CC, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in han chinese. PLoS genetics 2010;6:e1000847.
    [62]Unoki H, Takahashi A, Kawaguchi T, et al. Snps in kcnql are associated with susceptibility to type 2 diabetes in east asian and european populations. Nat Genet 2008;40:1098-1102.
    [63]Splawski I, Shen J, Timothy KW, et al. Genomic structure of three long qt syndrome genes:Kvlqtl, herg, and kcnel. Genomics 1998;51:86-97.
    [64]Tristani-Firouzi M, Sanguinetti MC. Structural determinants and biophysical properties of herg and kcnql channel gating. J Mol Cell Cardiol 2003;35:27-35.
    [65]Cooper EC, Jan LY. Ion channel genes and human neurological disease:Recent progress, prospects, and challenges. Proc Natl Acad Sci U S A 1999;96:4759-4766.
    [66]张莉石,项平.Kcnql基因与2型糖尿病发病关系的研究进展.蚌埠医学院学报2010;35:539-541.
    [67]张留伟,陈大方.Tcf712和kcnql基因多态性与2型糖尿病易感性的meta分析.中国慢性病预防与控制2010;18:554-559.
    [68]Yasuda K, Miyake K, Horikawa Y, et al. Variants in kcnql are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008;40:1092-1097.
    [69]Holmkvist J, Banasik K, Andersen G, et al. The type 2 diabetes associated minor allele of rs2237895 kcnql associates with reduced insulin release following an oral glucose load. PLoS One 2009;4:e5872.
    [70]Niemi M, Backman JT, Neuvonen M, et al. Rifampin decreases the plasma concentrations and effects of repaglinide. Clin Pharmacol Ther 2000;68:495-500.
    [71]Huang Q, Yin JY, Dai XP, et al. Association analysis of slc30a8 rs13266634 and rs 16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in chinese patients. Eur J Clin Pharmacol 2010;66:1207-1215.
    [72]Huang Q, Yin JY, Dai XP, et al. Igf2bp2 variations influence repaglinide response and risk of type 2 diabetes in chinese population. Acta Pharmacol Sin 2010;31:709-717.
    [73]Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene:Kvlqtl mutations cause cardiac arrhythmias. Nat Genet 1996;12:17-23.
    [74]Panaghie G, Tai KK, Abbott GW. Interaction of kcne subunits with the kcnql k+ channel pore. J Physiol 2006;570:455-467.
    [75]Jonsson A, Isomaa B, Tuomi T, et al. A variant in the kcnql gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes 2009;58:2409-2413.
    [76]Chen Z, Yin Q, Ma G, et al. Kcnql gene polymorphisms are associated with lipid parameters in a chinese han population. Cardiovasc Diabetol;9:35.
    [77]Mussig K, Staiger H, Machicao F, et al. Association of type 2 diabetes candidate polymorphisms in kcnql with incretin and insulin secretion. Diabetes 2009;58:1715-1720.
    [78]Warth R, Garcia Alzamora M, Kim JK, et al. The role of kcnql/kcnel k(+) channels in intestine and pancreas:Lessons from the kcnel knockout mouse. Pflugers Arch 2002;443:822-828.
    [79]Panaghie G, Abbott GW. The role of s4 charges in voltage-dependent and voltage-independent kcnql potassium channel complexes. J Gen Physiol 2007;129:121-133.
    [80]Seebohm G, Westenskow P, Lang F, et al. Mutation of colocalized residues of the pore helix and transmembrane segments s5 and s6 disrupt deactivation and modify inactivation of kcnql k+channels. J Physiol 2005;563:359-368.
    [81]Boulet IR, Labro AJ, Raes AL, et al. Role of the s6 c-terminus in kcnql channel gating. J Physiol 2007;585:325-337.
    [82]Roepke TK, Anantharam A, Kirchhoff P, et al. The kcne2 potassium channel ancillary subunit is essential for gastric acid secretion. J Biol Chem 2006;281:23740-23747.
    [83]Angelo K, Jespersen T, Grunnet M, et al. Kcne5 induces time- and voltage-dependent modulation of the kcnql current. Biophys J 2002;83:1997-2006.
    [84]Grunnet M, Jespersen T, Rasmussen HB, et al. Kcne4 is an inhibitory subunit to the kcnql channel. J Physiol 2002;542:119-130.
    [1]Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed rnas [J]. Science,2001,294 (5543):853-858.
    [2]Yanaihara N, Caplen N, Bowman E, et al. Unique microrna molecular profiles in lung cancer diagnosis and prognosis [J]. Cancer Cell,2006,9 (3):189-198.
    [3]Berezikov E, Guryev V, van de Belt J, et al. Phylo-genetic shadowing and computational identification of human microrna genes [J]. Cell,2005,120 (1):21-24.
    [4]Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference [J]. Nature,2001,409 (6818):363-366.
    [5]Pillai RS. Microrna function:Multiple mechanisms for a tiny RNA [J]? Rna, 2005,11 (12):1753-1761.
    [6]Lee Y, Ahn C, Han J, et al. The nuclear RNAse III drosha initiates microrna processing [J]. Nature,2003,425 (6956):415-419.
    [7]Bartel DP. Micrornas:Target recognition and regulatory functions [J]. Cell, 2009,136 (2):215-233.
    [8]Reinhart BJ, Slack FJ, Basson M, et al. The 21 nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans [J]. Nature,2000,403 (6772):901-906.
    [9]Lee RC, Feinbaum RL, Ambros V, et al. Elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14 [J]. Cell,1993,75 (5):843-854. [10] Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microrna regulates insulin secretion [J]. Nature,2004,432 (7014):226-230.
    [11]El Ouaamari A, Baroukh N, Martens GA, et al. Mir-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells [J]. Diabetes,2008,57 (10):2708-2717.
    [12]Poy MN, Hausser J, Trajkovski M, et al. Mir-375 maintains normal pancreatic alpha- and beta-cell mass [J]. Proc Natl Acad Sci USA,2009,106 (14): 5813-5818.
    [13]Plaisance V, Abderrahmani A, Perret-Menoud V, et al. Microrna-9 controls the expression of granuphilin/slp4 and the secretory response of insulin producing cells [J]. J Biol Chem,2006,281 (37):26932-26942.
    [14]Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin secreting cells by micrornas [J]. Biol Chem, 2008,389(3):305-312.
    [15]Baroukh N, Ravier MA, Loder MK, et al. Microrna-124a regulates foxa expression and intracellular signaling in pancreatic beta-cell lines [J]. J Biol Chem, 2007,282 (27):19575-19588.
    [16]Tang X, Muniappan L, Tang G, et al. Identification of glucose-regulated mirnas from pancreatic beta cells reveals a role for mir-30d in insulin transcription [J]. Rna,2009,15 (2):287-293.
    [17]Lovis P, Roggli E, Laybutt DR, et al. Alterations in microrna expression contribute to fatty acid induced pancreatic beta-cell dysfunction [J]. Diabetes,2008, 57 (10):2728-2736.
    [18]Lynn FC, Skewes Cox P, Kosaka Y, et al. Microrna expression is required for pancreatic islet cell genesis in the mouse [J]. Diabetes,2007,56 (12):2938-2945.
    [19]Kloosterman WP, Lagendijk A K, Ketting RF, et al. Targeted inhibition of mirna maturation with morpholinos reveals a role for mir-375 in pancreatic islet development [J]. PLoS Biol,2007,5 (8):e203.
    [20]Bravo Egana V, Rosero S, Molano RD, et al. Quantitative differential expression analysis reveals mir-7 as major islet microrna [J]. Biochem Biophys Res Commun,2008,366 (4):922-926.
    [21]Correa-Medina M, Bravo-Egana V, Rosero S, et al. Microrna mir-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas [J]. Gene Expr Patterns,2009,9 (4):193-199.
    [22]Bradley SP, Rastellini C, da Costa MA, et al. Gene silencing in the endocrine pancreas mediated by short-interfering RNA [J]. Pancreas,2005,31 (4): 373-379.
    [23]Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference [J]. Cancer Cell,2002,2 (3): 243-247.
    [24]Snove O, Rossi JJ. Expressing short hairpin rnas in vivo [J]. Nat Methods, 2006,3(9):689-695.
    [25]Zeng Y, Cai X, Cullen BR. Use of RNA polymerase II to transcribe artificial micrornas [J]. Methods Enzymol,2005,392:371-380.
    [26]Chen X, Ba Y, Ma L, et al. Characterization of micrornas in serum:A novel class of biomarkers for diagnosis of cancer and other diseases [J]. Cell Res,2008,18 (10):997-1006.
    [27]Chin LJ, Slack FJ. A truth serum for cancer micro-rnas have major potential as cancer biomarkers [J]. Cell Res,2008,18(10):983-984.
    [28]Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of microrna in synovial fibroblasts and synovial tissue in rheumatoid arthritis [J]. Arthritis Rheum, 2008,58 (4):1001-1009.
    [29]Xiao J, Luo X, Lin H, et al. Microrna mir-133 represses herg K+ channel expression contributing to qt prolongation in diabetic hearts [J]. J Biol Chem,2007, 282(17):12363-12367.
    [1]Eleonore Frohlich. Size-dependent effects of nanoparticles on the activity of P450 isoenzymes cytochrome. Toxicology and Applied Pharmacology.242 (2010) 326-332.
    [2]成碟,徐为人.细胞色素P450 (CYP450)遗传多态性研究进展.中国药理学报.2006 Dec;22(12):1409-14.
    [3]Taeho Ahn. Involvement of Nonlamellar-Prone Lipids in the Stability Increase of Human Cytochrome P450 1A2 in Reconstituted Membranes. Biochemistry 2005, 44,9188-9196.
    [4]杨秋慧.复方丹参诱导人体P4501A2作用观察.哈尔滨医科大学学报.1997.8.
    [5]肖鹏,周宏灏.细胞色素氧化酶CYP1A2的研究进展.中南大学学报.2008,33(5)
    [6]Jihoon Jung. Regioselectivity Prediction of CYP1A2-Mediated Phase I Metabolism. J. Chem. Inf. Model.2008,48,1074-1080.
    [7]Poongavanam Vasanthanathan. Virtual Screening and Prediction of Site of Metabolism for Cytochrome P4501A2 Ligands. J. Chem. Inf. Model.2009,49, 43-52.
    [8]Mia Birkh(?)j Kjaerstad. Systemic uptake of miconazole during vaginal suppository use and effect on CYP1A2 and CYP3A4 associated enzyme activities in women. Eur J Clin Pharmacol (2010) 66:1189-1197.
    [9]M. Paul Gleeson. Generation of a Set of Simple, Interpretable ADMET Rules of Thumb. J. Med. Chem.2008,51,817-834.
    [10]余齐.吴茱萸次碱对细胞色素P450酶活性的影响.硕士学位论文.20065.
    [11]杜瑜.齐墩果酸对健康人体CYP1A2、CYP2E1及CYP3A4酶活性的影响.硕士学位论文.20065.
    [12]郑姣.葛根素对人肝微粒体中细胞色素P450酶和人体内CYP1A2及CYP2D6活性影响的研究.硕士学位论文.200605.
    [13]彭向前.质子泵抑制剂对药物代谢酶CYP1A2、NAT2和OX的影响.学位论文.20065.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700