自发性高血压大鼠心血管组织中甲羟戊酸途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分法尼基焦磷酸合酶的抑制对自发性高血压大鼠内皮功能的影响及其可能机制
     背景:
     法尼基焦磷酸合酶是甲羟戊酸途径的关键酶之一,能催化合成类异戊二烯中间产物,后者在蛋白异戊二烯化过程中是不可或缺的。而蛋白异戊二烯化过程又是RhoA等小GTP酶活化所必须的。活化的RhoA可负相调节内皮性一氧化氮合酶的表达和磷酸化,从而调控一氧化氮终产物。而一氧化氮减少被认为是多种心血管疾病(包括动脉粥样硬化和高血压等)的致病因子。既往研究发现:自发性高血压大鼠中甲羟戊酸途径的一些关键酶表达显著高于血压正常的Wistar-Kyoto大鼠,其中包括法尼基焦磷酸合酶。另有大量实验证据表明自发性高血压大鼠具有显著的内皮功能障碍。
     目的:
     明确用阿仑膦酸钠抑制法尼基焦磷酸合酶能否改善自发性高血压大鼠的内皮功能,并探索可能机制。
     方法:
     5周龄雄性自发性高血压大鼠和Wistar-Kyoto大鼠用阿仑膦酸钠(低剂量1mg/kg/day;高剂量10 mg/kg/day)干预12周。用离体血管环灌流技术检测内皮依赖性和非依赖性血管舒张作用。用pull-down法测定胸主动脉RhoA的活性。用Western blot法检测胸主动脉内皮性一氧化氮合酶的表达水平。用Griess法测定血浆一氧化氮水平。
     结果:
     高剂量阿仑膦酸钠(10 mg/kg/day)能部分改善自发性高血压大鼠受损的内皮依赖性血管舒张作用。阿仑膦酸钠干预可浓度依赖性的降低胸主动脉中RhoA的活性,上调内皮性一氧化氮合酶的表达水平,以及增加血清一氧化氮终产物的含量。
     结论:
     法尼基焦磷酸合酶的抑制能够改善自发性高血压大鼠的内皮功能,且其可能机制包括抑制RhoA活化,进而上调内皮性一氧化氮合酶的表达。
     第二部分自发性高血压大鼠组织胆固醇含量和HMG-CoA还原酶表达与活性的研究及阿托伐他汀对此的影响
     背景和目的:
     心血管重塑与胆固醇密切相关,HMG-CoA还原酶是胆固醇合成途径——甲羟戊酸途径的限速酶,该酶的抑制剂——他汀类药物可在一定程度上抑制心血管重塑。而自发性高血压大鼠,与血压正常的Wistar-Kyoto大鼠相比,具有显著的心血管重塑,但其血清胆固醇水平却较低。本实验的目的主要是为了明确自发性高血压大鼠肝脏和肝外组织(心脏、主动脉和肾脏)中胆固醇含量及HMG-CoA还原酶表达和活性的改变,并进一步研究阿托伐他汀干预对这些指标的影响。
     方法:
     8周龄雄性自发性高血压大鼠和Wistar-Kyoto大鼠用阿托伐他汀(50mg/kg/day)干预10周。用商业化酶法测定血清和组织(心脏、主动脉、肝脏和肾脏)的胆固醇水平。用Western blot法和高效液相色谱法检测这些组织中HMG-CoA还原酶的表达和活性。
     结果:
     自发性高血压大鼠肝脏组织总胆固醇含量明显低于Wistar-Kyoto大鼠,肝外组织(心脏、主动脉和肾脏)总胆固醇水平与Wistar-Kyoto大鼠相似,而四种组织中的HMG-CoA还原酶的表达和活性均明显高于Wistar-Kyoto大鼠。阿托伐他汀处理能显著降低自发性高血压大鼠四种组织心脏、主动脉、肝脏和肾脏组织总胆固醇含量以及HMG-CoA还原酶的表达和活性。然而,在Wistar-Kyoto大鼠,阿托伐他汀仅能影响肝脏HMG-CoA还原酶,使其蛋白表达上调而酶活性却下降。
     结论:
     阿托伐他汀对组织胆固醇以及HMG-CoA还原酶的作用存在种属和组织特异性。
     第三部分阿魏酸钠对大鼠离体胸主动脉环的作用及其可能机制
     背景:
     阿魏酸钠是阿魏酸的钠盐,阿魏酸是许多传统中草药(如当归和川芎等)的主要活性成分,具有强效抗氧化、抗炎症反应、抗血小板聚集和清除氧自由基等药理作用。
     目的:
     明确阿魏酸钠对大鼠离体胸主动脉环的作用,探讨其具体机制。
     方法:
     用血管环体外灌流技术观测阿魏酸钠对大鼠离体胸主动脉环的作用。培养的大鼠主动脉平滑肌细胞加载Fluo-3标记后,用荧光酶标仪检测不同处理下的细胞内游离钙离子浓度。
     结果:
     在内皮完整的胸主动脉环中,阿魏酸钠可浓度依赖性的舒张苯肾上腺素或氯化钾预收缩的血管环,并且去除内皮对该舒张作用无明显影响。在无钙灌流液条件下,阿魏酸钠能浓度依赖性的抑制由外源性钙离子引起的血管收缩,同时也能抑制由苯肾上腺素或咖啡因诱发内钙释放所致的血管收缩。钾离子通道抑制剂四乙铵、4-氨基吡啶、格列本脲或氯化钡的预处理不影响阿魏酸钠诱导的血管舒张作用。另外,在无钙液条件下,阿魏酸钠也能浓度依赖性的舒张由佛波酯预收缩的血管。在体外培养的大鼠主动脉平滑肌细胞中,在有钙或无钙培养液条件下,阿魏酸钠均不能阻断苯肾上腺素或氯化钾诱导的细胞内游离钙离子浓度的升高。
     结论:
     阿魏酸钠可直接作用于血管平滑肌,内皮非依赖性的舒张血管环。在钙离子依赖的收缩反应中,阿魏酸钠不影响细胞内钙离子浓度,其舒张血管的主要机制可能是作用于细胞内钙离子升高之后的环节;而在钙离子非依赖性收缩反应中,阻断蛋白激酶C介导的收缩过程可能是阿魏酸钠舒张血管主要机制。
Part One Effect of farnesyl diphosphate synthase inhibition on endothelial function in spontaneously hypertensive rats and its mechanisms
     Background:
     Famesyl diphosphate synthase(FDS),an essential enzyme in the mevalonate pathway,catalyzes the synthesis of isoprenoid intermediates.The latter is needed for protein isoprenylation of RhoA for its function to negatively regulate expression and phosphorylation of endothelial nitric oxide synthase(eNOS),thereby negatively regulating the production of nitric oxide(NO).Up to date endothelial dysfunction characterized by an impairment of the production and release of the endothelial-derived NO is a strong predictor of cardiovascular disease.We previously reported that spontaneously hypertensive rat(SHR) in which endothelial dysfunction occurred,had higher FDS when compared with Wistar-Kyoto rat(WKY).
     Aims:
     To determine whether chronic inhibition of FDS can improve the endothelial function in SHR and explore its mechanisms.
     Methods:
     After 12-week administration of alendronate(low dose of 1 mg/kg/day;high dose of 10 mg/kg/day),endothelium-dependent and -independent vasorelaxation were measured in isolated aortic rings.Activation of RhoA in aorta was determined by pull-down assay.Aortic expression of eNOS was determined by Western blot.Serum nitric oxide(NO) end products were determined using Griess method.
     Results:
     High-dose of alendronate was able to improve the impaired endothelium-dependent vasodilation in SHR.Biochemically,alendronate was able to suppress the RhoA activation,but upregulate the eNOS expression in a dose-dependent manner.
     Conclusions:
     Our data suggested that chronic FDS inhibition could improve the endothelial function in SHR,and the upregulation of eNOS expression as a result of inhibition of RhoA activation might be an important mechanism.
     Part Two Studies of tissue cholesterol content and HMG-CoA reducatse expression/activity in spontaneously hypertensive rats and effects of atorvastatin on them
     Background and Aim:
     Cardiovascular remodeling is closely associated with cholesterol and is attenuated by statins.The spontaneously hypertensive rat(SHR) has a low serum cholesterol level and evident cardiovascular remodeling.3-hydroxy-3-methylglutaryl- coenzyme A (HMG-CoA) reductase is the rate limiting enzyme of cholesterol synthesis pathway, which is also called mevalonate pathway.The aims of the present study were to characterize the effects of HMG-CoA reductase inhibitor,atorvastatin,on tissue cholesterol content and HMG-CoA reductase expression and activity in four tissues from SHR:liver and extrahepatic tissues(heart,aorta and kidney).
     Methods:
     Eight-week old SHR and normotensive Wistar-Kyoto rats(WKY) were treated daily with atorvastatin(50 mg/kg) for 10 weeks.Cholesterol levels of serum and tissues (liver,heart,aorta and kidney) were determined by commercial enzymatic methods. Western blot analysis and high performance liquid chromatogram(HPLC) were used to assay the expression and activity of enzyme respectively.
     Results:
     The levels of total tissue cholesterol in SHR livers were significantly higer,but in SHR extrahepatic tissues were similar when compared with WKY rats.The expression and activity of HMG-CoA reductase in all these tissues were stringly higher in SHR than in WKY rats.Treatment with atorvastatin decreased cholesterol content and HMG-CoA reductase expression and activity in all four tissues of SHR.However,in WKY,atorvastatin only altered HMG-CoA reductase in liver,where the protein expression was upregulated but the enzyme activity was decreased.
     Conclusions:
     The present study demonstrates that the effects of atorvastatin on tissue cholesterol content and HMG-CoA reductase are strain-and tissue-specific.
     Part Three Effect of sodium ferulate on rat thoracic aorta and its mechanisms
     Background:
     Sodium ferulate(SF) is a sodium salt of ferulic acid(FA).FA is the active ingredient of the traditional Chinese herbal medicine such as Radix Angelicae Sinensis, Rhizoma Chuanxiong.In vitro and in vivo studies revealed that SF or FA possessed beneficial pharmacological effects including its strong antioxidant,antiinflammatory, platelet aggregation inhibitory,and free radical-scavenging activities.
     Aims:
     This study was designed to investigate the effects of SF on rat isolated aortas and the possible mechanisms.
     Methods:
     Isometric tension was recorded in response to drugs in organ bath.Cytosolic free Ca~(2+) concentration([Ca~(2+)]_i) was measured using Fluo-3 in cultured rat aortic smooth muscle cells(RASMC).
     Results:
     SF relaxed the isolated aortic rings precontracted with phenylephrine(PE) or high-K~+ in a concentration- dependent manner,and mechanical removal of endothelium did not significantly modify the SF-induced relaxation.In Ca~(2+)-free solution,SF noticeably inhibited extracellular Ca~(2+)-induced contraction in high-K~+ or PE pre-challenged rings,and suppressed the transient contraction induced by PE or caffeine. The vasorelaxant effect of SF was unaffected by various K~+ channel blockers such as tetraethylammonium,glibenclamide,4-aminopyridine,and barium chloride.In addition, SF concentration- dependently reduced the contraction induced by phorbol-12- myristate-13-acetate,an activator of protein kinase C(PKC),in the absence of extracellular Ca~(2+).In RASMC,SF had no effect on PE- or KCl-induced[Ca~(2+)]i increase either in the presence or in the absence of external Ca~(2+).
     Conclusions:
     These results indicate that SF acts directly as a non-selective relaxant to vascular smooth muscle.SF had no effect on[Ca~(2+)]i,the direct inhibition of the common pathway after[Ca~(2+)]_i increase may account for the SF-induced relaxation in Ca~(2+)-dependent contraction,while the blockage of the PKC-mediated contractile mechanism is likely responsible for the SF-induced relaxation in Ca~(2+)-independent contraction.
引文
[1]Shimokawa H.Primary endothelial dysfunction:atherosclerosis.Journal of Molecular and Cellular Cardiology,1999,31(1):23-37.
    [2]Davignon J,Ganz P.Role of endothelial dysfunction in atherosclerosis.Circulation,2004,109(23 Suppl 1):11127-32.
    [3]Landmesser U,Drexler H.Endothelial function and hypertension.Current Opinion in Cardiology,2007,22(4):316-320.
    [4]Boulanger CM.Secondary endothelial dysfunction:hypertension and heart failure.Journal of Molecular and Cellular Cardiology,1999,31(1):39-49.
    [5]Gokce N.L-arginine and hypertension.The Journal of Nutrition,2004,134(10 Suppl):2807S-2811S.
    [6]Massion PB,Feron O,Dessy C,Balligand JL.Nitric oxide and cardiac function:ten years after,and continuing.Circulation Research,2003,93(5):388-398.
    [7]Yetik-Anacak G,Catravas JD.Nitric oxide and the endothelium:history and impact on cardiovascular disease.Vascular Pharmacology,2006,45(5):268-276.
    [8]Dawson TM,Snyder SH.Gases as biological messengers:nitric oxide and carbon monoxide in the brain.The Journal of Neuroscience,1994,14(9):5147-5159.
    [9]Lowenstein CJ,Michel T.What's in a name?eNOS and anaphylactic shock.The Journal of Clinical Investigation,2006,116(8):2075-2078.
    [10]Laufs U,Liao JK.Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase.The Journal of Biological Chemistry,1998,273(37):24266-24271.
    [11]Ming XF,Viswambharan H,Barandier C,Buffieux J,Kaibuchi K,Rusconi S,Yang Z.Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells.Molecular and Cellular Biology,2002,22(24):8467-8477.
    [12]Brandes RP.Statinomediated inhibition of Rho:only to get more NO? Circulation Research,2005,96(9):927-929.
    [13]Rikitake Y,Liao JK.Rho GTPases,statins,and nitric oxide.Circulation Research,2005,97(12):1232-1235.
    [14]Roskoski R Jr.Protein prenylation:a pivotal posttranslational process.Biochemical and Biophysical Research Communications,2003,303(1):1-7.
    [15]Casey PJ.Protein lipidation in cell signaling.Science 1995,268(5208):221-225.
    [16]Chen GP,Yao L,Lu X,Li L,Hu SJ.Tissue-specific effects of atorvastatin on 3-hydroxy-3-methylglutaryl coenzyme A reductase expression and activity in spontaneously hypertensive rats.Acta Pharmacologica Sinica,2008,29(10):1181-1186.
    [17]李亮,胡申江,董海涛,康兰,陈乃云,方永启.RNA阵列技术检测自发性高血压大鼠甲羟戊酸途径酶的基因表达.中国病理生理杂志,2008,24(1):54-59.
    [18]Szkopinska A,Plochocka D.Farnesyl diphosphate synthase;regulation of product specificity.Acta Biochimica Polonica,2005,52(1):45-55.
    [19]Vanhoutte PM,Feletou M,Taddei S.Endothelium-dependent contractions in hypertension.British Journal of Pharmacology,2005,144(4):449-458.
    [20]Chou TC,Yen MH,Li CY,Ding YA.Alterations of nitric oxide synthase expression with aging and hypertension in rats.Hypertension,1998,31(2):643-648.
    [21]Rogers MJ,Gordon S,Benford HL,Coxon FP,Luckman SP,Monkkonen J,Frith JC.Cellular and molecular mechanisms of action of bisphosphonates.Cancer,2000,88(12 Suppl):2961-2978.
    [22]Roelofs AJ,Thompson K,Gordon S,Rogers MJ.Molecular mechanisms of action of bisphosphonates:current status.Clinical Cancer Research,2006,12(20Pt 2):6222s-6230s.
    [23]Bergstrom JD,Bostedor RG,Masarachia PJ,Reszka AA,Rodan G.Alendronate is a specific,nanomolar inhibitor of farnesyl diphosphate synthase.Archives of Biochemistry and Biophysics,2000,373(1):231-241.
    [24]Kubota Y,Umegaki K,Kagota S,Tanaka N,Nakamura K,Kunitomo M,Shinozuka K.Evaluation of Blood Pressure Measured by Tail-Cuff Methods(without Heating) in Spontaneously Hypertensive Rats.Biological and Pharmaceutical Bulletin,2006,29(8):1756-1758.
    [25]Williams JR,Harrison TR,Grollman A.A simple method for determining the systolic blood pressure of the un-anaesthetized rat.The Journal of Clinical Investigation,1939,18(3):373-6.
    [26]Luscher TF,Vanhoutte PM.Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat.Hypertension,1986,8(4):344-348.
    [27]Roullet JB,Xue H,Chapman J,McDougal P,Roullet CM,McCarron DA.Farnesyl analogues inhibit vasoconstriction in animal and human arteries.The Journal of Clinical Investigation,1996,97(10):2384-2390.
    [28]Nagao T,Illiano S,Vanhoutte PM.Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-1-arginine in rats.The American Journal of Physiology,1992,263(4 Pt 2):H1090-1094.
    [29]Moncada S,Palmer RM,Higgs EA.Nitric oxide:physiology,pathophysiology,and pharmacology.Pharmacological Reviews,1991,43(2):109-142.
    [30]Vaandrager AB,De Jonge HR.Signalling by cGMP-dependent protein kinases.Molecular and Cellular Biochemistry,1996,157(1-2):23-30.
    [31]Yang D,Feletou M,Levens N,Zhang JN,Vanhoutte PM.A diffusible substance(s) mediates endothelium-dependent contractions in the aorta of SHR.Hypertension,2003,41(1):143-148.
    [32]Virtanen SS,Vaananen HK,Harkonen PL,Lakkakorpi PT.Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway.Cancer Research,2002,62(9):2708-2714.
    [33]Fisher JE,Rogers MJ,Halasy JM,Luckman SP,Hughes DE,Masarachia PJ, Wesolowski G,Russell RG,Rodan GA,Reszka AA.Alendronate mechanism of action:geranylgeraniol,an intermediate in the mevalonate pathway,prevents inhibition of osteoclast formation,bone resorption,and kinase activation in vitro.Proceedings of the National Academy of Sciences of the United States of America,1999,96(1):133-138.
    [34]Shiga N,Hirano K,Hirano M,Hishimura J,Nawata H,Kanaide H.Long-term inhibition of RhoA attenuates vascular contractility by enhancing endothelial NO production in an intact rabbit mesenteric artery.Circulation Research,2005,96(9):1014-1021.
    [35]Mount PF,Kemp BE,Power DA.Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation.Journal of Molecular and Cellular Cardiology,2007,42(2):271-279.
    [36]Zhang FL,Casey PJ.Protein prenylation:molecular mechanisms and functional consequences.Annual Review of Biochemistry,1996,65:241-269.
    [37]Moriki N,Ito M,Seko T,Kureishi Y,Okamoto R,Nakakuki T,Kongo M,Isaka N,Kaibuchi K,Nakano T.RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats.Hypertension Research,2004,27(4):263-270.
    [38]Seko T,Ito M,Kureishi Y,Okamato R,Moriki N,Onishi K,Isaka N,Hartshorne DJ,Nakano T.Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle.Circulation Research,2003,92(4):411-418.
    [39]Laufs U,Endres M,Stagliano N,Amin-Hanjani S,Chui DS,Yang SX,Simoncini T,Yamada M,Rabkin E,Allen PG,Huang PL,Bohm M,Schoen FJ,Moskowitz MA,Liao JK.Neuroprotection mediated by changes in the endothelial actin cytoskeleton.The Journal of Clinical Investigation,2000,106(1):15-24.
    [1]Iritani N,Fukuda E,Nara Y,Yamori Y.Lipid metabolism in spontaneously hypertensive rats(SHR).Atherosclerosis,1977,28(3):217-222.
    [2]Gould RG.Lipid metabolism and atherosclerosis.The American Journal of Medicine,1951,11(2):209-227.
    [3]Friedman M,Byers SO,Michaelis F.Production and excretion of cholesterol in mammals.IV.Role of liver in restoration of plasma cholesterol after experimentally induced hypocholesteremia.The American Journal of Physiology,1951,164(3):789-791.
    [4]Hotta S,Chaikoff IL.The role of the liver in the turnover of plasma cholesterol.Archives of Biochemistry,1955,56(1):28-37.
    [5]Dietschy JM,Brown MS.Effect of alterations of the specific activity of the intracellular acetyl CoA pool on apparent rates of hepatic cholesterogenesis.Journal of Lipid Research,1974,15(5):508-516.
    [6]Kennelly PJ,Rodwell VW.Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by reversible phosphorylation-dephosphorylation.Journal of Lipid Research,1985,26(8):903-914.
    [7]Doggrell SA,Brown L.Rat models of hypertension,cardiac hypertrophy and failure.Cardiovascular Research,1998,39(1):89-105.
    [8]Thorin-Trescases N,Deblois D,Hamet P.Evidence of an altered in vivo vascular cell turnover in spontaneously hypertensive rats and its modulation by long-term antihypertensive treatment.Journal of Cardiovascular Pharmacology,2001,38(5):764-774.
    [9]Bell D,Kelso EJ,Argent CC,Lee GR,McDermott BJ.Temporal characteristics of cardiomyocyte hypertrophy in the spontaneously hypertensive rat.Cardiovascular Pathology,2004,13(2):71-78.
    [10]Brown MS,Goldstein JL.The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor.Cell,1997,89(3):331-340.
    [11]Howland DS,Trusko SP,Savage MJ,Reaume AG,Lang DM,Hirsch JD,Maeda N,Siman R,Greenberg BD,Scott RW,Flood DG.Modulation of secreted beta-amyloid precursor protein and amyloid beta-peptide in brain by cholesterol.The Journal of Biological Chemistry,1998,273(26):16576-16582.
    [12]Bezerra DG,Mandarim-de-Lacerda CA.Beneficial effect of simvastatin and pravastatin treatment on adverse cardiac remodeling and glomeruli loss in spontaneously hypertensive rats.Clinical Science,2005,108(4):349-355.
    [13]Lee TM,Lin MS,Chou TF,Tsai CH,Chang NC.Effect of pravastatin on development of left ventricular hypertrophy in spontaneously hypertensive rats.American Journal of Physiology.Heart and Circulatory Physiology,2005,289(1):H220-H227.
    [14]Yang L,Gao YJ,Lee RM.The effects of quinapril and atorvastatin on artery structure and function in adult spontaneously hypertensive rats.European Journal of Pharmacology,2005,518(2-3):145-151.
    [15]Cilia DD,Whitfield LR,Gibson DM,Sedman AJ,Posvar EL.Multiple-dose pharmacokinetics,pharmacodynamics,and safety of atorvastatin,an inhibitor of HMG-CoA reductase,in healthy subjects.Clinical Pharmacology and Therapeutics,1996,60(6):687-695.
    [16]Dostal LA,Whitfield LR,Anderson JA.Fertility and general reproduction studies in rats with the HMG-CoA reductase inhibitor,atorvastatin.Fundamental and Applied Toxicology,1996,32(2):285-292.
    [17]Goodwin CD,Margolis S.Improved methods for the study of hepatic HMG-CoA reductase:one-step isolation of mevalonolactone and rapid preparation of endoplasmic reticulum.Journal of Lipid Research,1976,17(3):97-103.
    [18]Buffalini M,Pierleoni R,Guidi C,Ceccaroli P,Saltarelli R,Vallorani L,Zeppa S,Stocchi V.Novel and simple high-performance liquid chromatographic method for determination of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity.Journal of Chromatography.B,Analytical Technologies in the Biomedical and Life Sciences,2005,819(2):307-313.
    [19]Goldstein JL,Brown MS.Regulation of the mevalonate pathway.Nature,1990,343(6257):425-430.
    [20]Sawamura M,Nara Y,Yamori Y.Liver mevalonate 5-pyrophosphate decarboxylase is responsible for reduced serum cholesterol in stroke-prone spontaneously hypertensive rat.The Journal of Biological Chemistry,1992,267(9):6051-6055.
    [21]Michihara A,Sawamura M,Nara Y,Ikeda K,Yamori Y.Lower mevalonate pyrophosphate decarboxylase activity is caused by the reduced amount of enzyme in stroke-prone spontaneously hypertensive rat.Journal of Biochemistry,1998,124(1):40-44.
    [22]Naoumova RP,Dunn S,Rallidis L,Abu-Muhana O,Neuwirth C,Rendell NB,et al.Prolonged inhibition of cholesterol synthesis explains the efficacy of atorvastatin.Journal of Lipid Research,1997,38(7):1496-1500.
    [23]Ness GC,Chambers CM,Lopez D.Atorvastatin action involves diminished recovery of hepatic HMG-CoA reductase activity.Journal of Lipid Research,1998,39(1):75-84.
    [24]Istvan ES,Deisenhofer J.Structural mechanism for statin inhibition of HMG-CoA reductase.Science,2001,292(5519):1160-1164.
    [25]Brown MS,Goldstein JL.Lipoprotein receptors in the liver.Control signals for plasma cholesterol traffic.The Journal of Clinical Investigation,1983,72(3):743-747.
    [26]Goldstein JL,Brown MS.Lipoprotein receptors and the control of plasma LDL cholesterol levels.European Heart Journal,1992,13(Suppl B):34-36.
    [27]Kesaniemi YA,Witztum JL,Steinbrecher UP.Receptor-mediated catabolism of low density lipoprotein in man.Quantitation using glucosylated low density lipoprotein.The Journal of Clinical Investigation,1983,71(4):950-959.
    [28]Miettinen TA,Gylling H.Synthesis and absorption markers of cholesterol in serum and lipoproteins during a large dose of statin treatment.European Journal of Clinical Investigation,2003,33(11):976-982.
    [29]Briand F,Serisier S,Krempf M,Siliart B,Magot T,Ouguerram K,Nguyen P.Atorvastatin increases intestinal cholesterol absorption in dogs.The Journal of Nutrition,2006,136(7 Suppl):2034S-2036S.
    [30]Cappel RE,Gilbert HF.The effects of mevinolin on the thiol/disulfide exchange between 3-hydroxy-3-methylglutaryl-coenzyme A reductase and glutathione.The Journal of Biological Chemistry,1989,264(16):9180-9187.
    [31]Istvan ES,Palnitkar M,Buchanan SK,Deisenhofer J.Crystal structure of catalytic portion of human HMG-CoA reductase:insights into regulation of activity and catalysis.The EMBO Journal,2000,19(5):819-830.
    [32]Jurevics HA,Morell P.Sources of cholesterol for kidney and nerve during development.Journal of Lipid Research,1994,35(1):112-120.
    [33]Landon EJ,Greenberg DM.Endogenous cholesterol metabolism in the rat studied with C14-labeled acetate.The Journal of Biological Chemistry,1954,209(2):493-502.
    [34]Turley SD,Andersen JM,Dietschy JM.Rates of sterol synthesis and uptake in the major organs of the rat in vivo.Journal of Lipid Research,1981,22(4):551-569.
    [1]Wang BH,Ou-Yang JP.Pharmacological actions of sodium ferulate in cardiovascular system.Cardiovascular Drug Reviews,2005,23(2):161-172.
    [2]Graf E.Antioxidant potential of ferulic acid.Free Radical Biology and Medicine,1992,13(4):435-448.
    [3]Fernandez MA,Saenz MT,Garcia MD.Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens.The Journal of Pharmacy and Pharmacology,1998,50(10):1183-1186.
    [4]Kikuzaki H,Hisamoto M,Hirose K,Akiyama K,Taniguchi H.Antioxidant properties of ferulic acid and its related compounds.Journal of Agricultural and Food Chemistry,2002,50(7):2161-2168.
    [5]Ogiwara T,Satoh K,Kadoma Y,Murakami Y,Unten S,Atsumi T,Sakagami H,Fujisawa S.Radical scavenging activity and cytotoxicity of ferulic acid.Anticancer Research,2002,22(5):2711-2717.
    [6]Masuda T,Yamada K,Maekawa T,Takeda Y,Yamaguchi H.Antioxidant mechanism studies on ferulic acid:identification of oxidative coupling products from methyl ferulate and linoleate.Journal of Agricultural and Food Chemistry,2006,54(16):6069-6074.
    [7]Srinivasan M,Sudheer AR,Menon VP.Ferulic acid:therapeutic potential through its antioxidant property.Journal of Clinical Biochemistry and Nutrition,2007,40(2):92-100.
    [8]Suzuki A,Kagawa D,Fujii A,Ochiai R,Tokimitsu I,Saito I.Short-and longterm effects of ferulic acid on blood pressure in spontaneously hypertensive rats.American Journal of Hypertension,2002,15(4 Pt 1):351-357.
    [9]Suzuki A,Yamamoto M,Jokura H,Fujii A,Tokimitsu I,Hase T,Saito I.Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats.American Journal of Hypertension,2007,20(5):508-513.
    [10]Liu HM,Zhao XF,Guo LN,Tan Z,Wang TH.Effects of caveolin-1 on the 17β-estradiolmediated inhibition of VSMC proliferation induced by vascular injury,2007,80(8):800-812.
    [11]Rauschemberger MB,Selles J,Massheimer V.The direct action of estrone on vascular tissue involves genomic and non-genomic actions.Life Sciences,2008,82(1-2):115-123.
    [12]He SY,Qian ZY,Tang FT,Wen N,Xu GL,Sheng L.Effect of crocin on experimental atherosclerosis in quails and its mechanisms.Life Sciences,2005,77(8):907-921.
    [13]Karaki H,Weiss GB.Calcium channels in smooth muscle.Gastroenterology,1984,87(4):960-970.
    [14]Karaki H,Weiss GB.Calcium release in smooth muscle.Life Sciences,1988,42(2):111-122.
    [15]Horowitz A,Menice CB,Laporte R,Morgan KG.Mechanisms of smooth muscle contraction.Physiological Reviews,1996,76(4):967-1003.
    [16]Karaki H,Ozaki H,Hori M,Mitsui-Saito M,Amano K,Harada K,Miyamoto S,Nakazawa H,Won KJ,Sato K.Calcium movements,distribution,and functions in smooth muscle.Pharmacological Reviews,1997,49(2):157-230.
    [17]Jones RD,Pugh PJ,Jones TH,Channer KS.The vasodilatory action of testosterone:a potassium-channel opening or a calcium antagonistic action?British Journal of Pharmacology,2003,138(5):733-744.
    [18]Ehrlich BE,Watras J.Inositol 1,4,5-trisphosphate activates a channel from smooth muscle sarcoplasmic reticulum.Nature,1988,336(6199):583-586.
    [19]Ehrlich IS,Kaftan E,Bezprozvannaya S,Bezprozvanny I.The pharmacology of intracellular Ca~(2+)-release channels.Trends in Pharmacological Sciences,1994,15(5):145-149.
    [20]Xu L,Lai FA,Cohn A,Etter E,Guerrero A,Fay FS,Meissner G Evidence for a Ca~(2+)-gated ryanodine-sensitive Ca~(2+) release channel in visceral smooth muscle.Proceedings of the National Academy of Sciences of the United States of America,1994,91(8):3294-3298.
    [21]Flynn ER,Bradley KN,Muir TC,McCarron JG.Functionally separate intracellular Ca~(2+) stores in smooth muscle.The Journal of Biological Chemistry,2001,276(39):36411-36418.
    [22]Vane JR,Botting RM.Secretory functions of the vascular endothelium.Journal of Physiology and Pharmacology,1992,43(3):195-207.
    [23]Nagao T,Vanhoutte PM.Endothelium-derived hyperpolarizing factor and endothelium-dependent relaxations.American Journal of Respiratory Cell and Molecular Biology,1993,8(1):1-6.
    [24]Bryan RM Jr,You J,Golding EM,Marrelli SP.Endothelium-derived hyperpolarizing factor:a cousin to nitric oxide and prostacyclin.Anesthesiology,2005,102(6):1262-1277.
    [25]Mitchell JA,Ali F,Bailey L,Moreno L,Harrington LS.Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium.Experimental Physiology,2008,93(1):141-147.
    [26]Rubanyi GM.The role of endothelium in cardiovascular homeostasis and diseases.Journal of Cardiovascular Pharmacology,1993,22(Suppl 4):S1-S14.
    [27]Nagao T,Illiano S,Vanhoutte PM.Heterogeneous distribution of endothelium-dependent relaxations resistant to N-nitro-1-arginine in rats.The American Journal of Physiology,1992,263(4 Pt 2):H1090-1094.
    [28]Moncada S,Palmer RM,Higgs EA.Nitric oxide:physiology,pathophysiology,and pharmacology.Pharmacological Reviews,1991,43(2):109-142.
    [29]Vaandrager AB,De Jonge HR.Signalling by cGMP-dependent protein kinases. Molecular and Cellular Biochemistry,1996,157(1-2):23-30.
    [30]Furchgott RF,Vanhoutte PM.Endothelium-derived relaxing and contracting factors.The FASEB Journal,1989,3(9):2007-2018.
    [31]Smith WL,DeWitt DL,Garavito RM.Cyclooxygenases:structural,cellular,and molecular biology.Annual Review of Biochemistry,2000,69:145-182.
    [32]DeWitt DL,Day JS,Sonnenburg WK,Smith WL.Concentrations of prostaglandin endoperoxide synthase and prostaglandin Ⅰ_2 synthase in the endothelium and smooth muscle of bovine aorta.The Journal of Clinical Investigation,1983,72(6):1882-1888.
    [33]Noguera MA,Ivorra MD,Chuli(?) S,D'Ocon P.Capacitative Ca~(2+) entry associated with α1-adrenoceptors in rat aorta.Naunyn-Schmiedeberg's Archives of Pharmacology,1997,356(1):83-89.
    [34]Nelson MT,Quayle JM.Physiological roles and properties of potassium channels in arterial smooth muscle.The American Journal of Physiology,1995,268(4 Pt 1):C799-C822.
    [35]Walsh MP,Horowitz A,Cl(?)ment-Chomienne O,Andrea JE,Allen BG,Morgan KG.Protein kinase C mediation of Ca~(2+)-independent contractions of vascular smooth muscle.Biochemistry and Cell Biology,1996,74(4):485-502.
    [36]Hirano K,Hirano M,Kanaide H.Regulation of myosin phosphorylation and myofilament Ca~(2+) sensitivity in vascular smooth muscle.Journal of Smooth Muscle Reseach,2004,40(6):219-236.
    [37]Hirano K.Current topics in the regulatory mechanism underlying the Ca~(2+)sensitization of the contractile apparatus in vascular smooth muscle.Journal of Pharmacological Sciences,2007,104(2):109-115.
    [38]Jiang MJ,Morgan KG.Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle.The American Journal of Physiology,1987,253(6 Pt 2):H1365-1371.
    [39]Ruzycky AL,Morgan KG.Involvement of the protein kinase C in calcium-force relationships in ferret aorta.British Journal of Pharmacology,1989,97(2):391-400.
    [40]Sato K,Hori M,Ozaki H,Takano-Ohmuro H,Tsuchiya T,Sugi H,Karaki H.Myosin phosphorylation-independent contraction induced by phorbol ester in vascular smooth muscle.The Journal of Pharmacology and Experimental Therapeutics,1992,261(2):497-505.
    [41]Hori M,Sato K,Miyamoto S,Ozaki H,Karaki H.Different pathways of calcium sensitization activated by receptor agonists and phorbol esters in vascular smooth muscle.British Journal of Pharmacology,1993,110(4):1527-1531.
    [42]Standen NB,Quayle JM.K channel modulation in arterial smooth muscle.Acta Physiological Scandinavica,1998,164(4):549-557.
    [43]Jackson WF.Ion channels and vascular tone.Hypertension,2000,35(1 Pt 2):173-178.
    [44]Jackson WF.Potassium channels in the peripheral microcirculation.Microcirculation,2005,12(1):113-127.
    [45]Langton PD,Nelson MT,Huang Y,Standen NB.Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions.The American Journal of Physiology,1991,260(3 Pt 2):H927-934.
    [46]Wu SN.Large-conductance Ca~(2+)-activated K channels:Physiological role and pharmacology.Current Medicinal Chemistry,2003,10(8):649-661.
    [47]Ghatta S,Nimmagadda D,Xu X,O'Rourke ST.Large-conductance,calcium-activated channels:structural and functional implications.Pharmacology and Therapeutics,2006,110(1):103-116.
    [48]Eichhorn B,Dobrev D.Vascular large conductance calcium-activated potassium channels:functional role and therapeutic potential.Naunyn-Schmiedeberg's Archives of Pharmacology,2007,376(3):145-155.
    [49]Quanyle JM,Standen NB.K_(ATP) channels in vascular smooth muscle.Cardiovascular Research,1994,28(6):797-804.
    [50]Quanyle JM,Nelson MT,Standen NB.ATP-sensitive and inwardly rectifying potassium channels in smooth muscle.Physiological Reviews,1997,77(4):1165-1232.
    [51]Brayden JE.Functional roles of K_(ATP) channels in vascular smooth muscle.Clinical and Experimental Pharmacology and Physiology,2002,29(4):312-316.
    [52]Robertson BE,Nelson MT.Aminopyridine inhibition and voltage dependence of K currents in smooth muscle cells from cerebral arteries.The American Journal of Physiology,1994,267(6 Pt 1):C1589-1597.
    [53]Cox RH,Rush NJ.New expression profiles of voltage-gated ion channels in arteries exposed to high blood pressure.Microcirculation,2002,9(4):243-257.
    [54]Chrissobolis S,Sobey CG.Inwardly rectifying potassium channels in the regulation of vascular tone.Current Drug Targets,2003,4(4):281-289.
    [55]Waldman SA,Murad F.Cyclic cGMP synthesis and function.Pharmacological Reviews,1987,39(3):163-196.
    [56]Warner TD,Mitchell JA,Sheng H,Murad F.Effects of cyclic GMP on smooth muscle relaxation.Advances in Pharmacology,1994,26:171-194.
    [1]网址:http://www.genome.ad.jp/kegg/metabolism.html
    [2]Goldstein JL,Brown MS.Regulation of the mevalonate pathway.Nature,1990,343(6257):425-430.
    [3]Hinson DD,Chambliss KL,Toth MJ,Tanaka RD,Gibson KM.Posttranslational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways.Journal of Lipid Research,1997,38(11):2216-2223.
    [4]Wolf DE,Hoffman CH,Aldrich PE,Skeggs HR,Wright LD,Folker K.p-Hydroxy-P-methyl-8-valerolactone(divalonic acid),a new biological factor.Journal of the American Chemical Society,1956,78(17):4499.
    [5]Tamura G.Hiochic acid,a new growth factor for Lactobacillus homohiochi and Lactobacillus heterohiochi.The Journal of General and Applied Microbiology,1956,2(6):431-434.
    [6]Katsuki H,Bloch K.Studies on the biosynthesis of ergosterol in yeast.Formation of methylated intermediates.The Journal of biological chemistry,1967,242(2):222-227.
    [7]Lynen F.Biosynthetic pathways from acetate to natural products.Pure and applied chemistry,1967,14(1):137-167.
    [8]Horton JD.Sterol regulatory element-binding proteins:transcriptional activators of lipid synthesis.Biochemical Society Transactions,2002,30(Pt 6):1091-1095.
    [9]Weber LW,Boll M,Stampfl A.Maintaining cholesterol homeostasis:sterol regulatory element-binding proteins.World Journal of Gastroenterology,2004,10(21):3081-3087.
    [10]Sakakura Y,Shimano H,Sone H.Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis.Biochemical and Biophysical Research Communications,2001,286(1):176-183.
    [11]Bonetti PO,Lerman LO,Napoli C,Lerman A.Statin effects beyond lipid lowering-are they clinically relevant?European Heart Journal,2003,24(3):225-248.
    [12]Edwards PA,Ericsson J.Sterols and isoprenoids:signaling molecules derived from the cholesterol biosynthetic pathway.Annual Review of Biochemistry,1999,68:157-85.
    [13]Istvan ES.Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase.American Heart Journal,2002,144(6 Suppl):S27-S32.
    [14]Istvan E.Statin inhibition of HMG-CoA reductase:a 3-dimensional view.Atherosclerosis Supplements,2003,4(1):3-8.
    [15]Istvan ES,Deisenhofer J.The structure of the catalytic portion of human HMG-CoA reductase.Biochimica et Biophysica Acta,2000,1529(1-3):9-18.
    [16]Lennernas H,Fager G.Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors.Similarities and differences.Clinical Pharmacokinetics,1997,32(5):403-425.
    [17]Jones P,Kafonek S,Laurora I,Hunninghake D.Comparative dose efficacy study of atorvastatin versus simvastatin,pravastatin,lovastatin,and fluvastatin in patients with hypercholesterolemia(the CURVES study).The American Journal of Cardiology,1998,81(5):582-587.
    [18]Jones PH,Davidson MH,Stein EA,Bays HE,McKenney JM,Miller E,Cain VA,Blasetto JW.Comparison of the efficacy and safety of rosuvastatin versus atorvastatin,simvastatin,and pravastatin across doses(STELLAR* Trial).The American Journal of Cardiology,2003,92(2):152-160.
    [19]Shepherd J,Cobbe SM,Ford I,Isles CG,Lorimer AR,MacFarlane PW,McKillop JH,Packard CJ.Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia.West of Scotland Coronary Prevention Study Group.The New England Journal of Medicine,1995,333(20):1301-1307.
    [20]Downs JR,Clearfield M,Weis S,Whitney E,Shapiro DR,Beere PA,Langendorfer A,Stein EA,Kruyer W,Gotto AM Jr.Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels:results of AFCAPS/TexCAPS.Air Force/Texas Coronary Atherosclerosis Prevention Study.The Journal of the American Medical Association,1998,279(20):1615-1522.
    [21]Sever PS,Dahlof B,Poulter NR,Wedel H,Beevers G,Caulfield M,Collins R,Kjeldsen SE,Kristinsson A,Mclnnes GT,Mehlsen J,Nieminen M,O'Brien E,Ostergren J,ASCOT investigators.Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations,in the Anglo-Scandinavian Cardiac Outcomes Trial Lipid Lowering Arm(ASCOT-LLA):a multicentre randomised controlled trial.Lancet,2003,361(9364):1149-1158.
    [22]Colhoun HM,Betteridge DJ,Durrington PN,Hitman GA,Neil HA,Livingstone SJ,Thomason MJ,Mackness MI,Charlton-Menys V,Fuller JH,CARDS investigators.Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study(CARDS):multicenter randomised placebo-controlled trial.Lancet,2004,364(9435):685-696.
    [23]Prosser LA,Stinnett AA,Goldman PA,Williams LW,Hunink MG,Goldman L,Weinstein MC.Cost-effectiveness of cholesterol-lowering therapies according to selected patient characteristics.Annals of Internal Medicine,2000,132(10):769-779.
    [24]Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease:the Scandinavian Simvastatin Survival Study(4S).Lancet,1994,344 (8934):1383-1389.
    [25]Sacks FM,Pfeffer MA,Moye LA,Rouleau JL,Rutherford JD,Cole TG,Brown L,Warnica JW,Arnold JM,Wun CC,Davis BR,Braunwald E.The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels.Cholesterol and Recurrent Events Trial investigators.The New England Journal of Medicine,1996,335(14):1001-1009.
    [26]Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels.The Long-Term Intervention with Pravastatin in Ischaemic Disease(LIPID) Study Group.The New England Journal of Medicine,1998,339(19):1349-1357.
    [27]Tonkin AM,Colquhoun D,Emberson J,Hague W,Keech A,Lane G,MacMahon S,Shaw J,Simes RJ,Thompson PL,White HD,Hunt D.Effects of pravastatin in 3260 patients with unstable angina:results from the LIPID study.Lancet,2000,356(9245):1871-1875.
    [28]Shepherd J,Blauw GJ,Murphy MB,Bollen EL,Buckley BM,Cobbe SM,Ford I,Gaw A,Hyland M,Jukema JW,Kamper AM,Macfarlane PW,Meinders AE,Norrie J,Packard CJ,Perry IJ,Stott DJ,Sweeney BJ,Twomey C,Westendorp RG;PROSPER study group,PROspective Study of Pravastatin in the Elderly at Risk.Pravastatin in elderly individuals at risk of vascular disease(PROSPER):a randomised controlled trial.Lancet,2002,360(9346):1623-1630.
    [29]Heart Protection Study Collaborative Group.MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals:a randomised placebo-controlled trial.Lancet,2002,360(9326):7-22.
    [30]Shepherd J.Who should receive a statin these days?Lessons from recent clinical trials.Journal of Internal Medicine,2006,260(4):305-319.
    [31]Bellosta S,Ferri N,Bernini F,Paoletti R,Corsini A.Non-lipid-related effects of statins.Annals of Medicine,2000,32(3):164-176.
    [32]Chan KK,Oza AM,Siu LL.The statins as anticancer agents.Clinical Cancer Research,2003,9(1):10-9.
    [33]Weber MS,Youssef S,Dunn SE,Prod'homme T,Neuhaus O,Stuve O,Greenwood J,Steinman L,Zamvil SS.Statins in the treatment of central nervous system autoimmune disease.Journal of Neuroimmunology,2006,178(1-2):140-148.
    [34]Aprahamian T,Bonegio R,Rizzo J,Perlman H,Lefer DJ,Rifkin IR,Walsh K.Simvastatin treatment ameliorates autoimmune disease associated with accelerated atherosclerosis in a murine lupus model.Journal of Immunology,2006,177(5):3028-3034.
    [35]Sena A,Pedrosa R,Graca Morais M.Therapeutic potential of lovastatin in multiple sclerosis.Journal of Neurology,2003,250(6):754-755.
    [36]Vollmer T,Key L,Durkalski V.Oral simvastatin treatment in relapsing-remitting multiple sclerosis.Lancet,2004,363(15):1607-1608.
    [37]Peng X,Jin J,Giri S,Montes M,Sujkowski D,Tang Y,Smrtka J,Vollmer T,Singh I,Markovic-Plese S.Immunomodulatory effects of 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors,potential therapy for relapsing remitting multiple sclerosis.Journal of Neuroimmunology,2006,178(1-2):130-139.
    [38]McCarey DW,McInnes IB,Madhok R.Trial of Atorvastatin in Rheumatoid Arthritis(TARA):double-blind,randomised placebocontrolled trial.Lancet,2004,363(9426):2015-2021.
    [39]Thomsen RW,Hundborg HH,Johnsen SP,Pedersen L,S(?)rensen HT,Schenheyder HC,Lervang HH.Statin use and mortality within 180 days after bacteremia:a population-based cohort study.Critical Care Medicine,2006,34(4):1080-1086.
    [40]Hackam DG,Mamdani M,Li P,Redelmeier DA.Statins and sepsis in patients with cardiovascular disease:a population-based cohort analysis.Lancet,2006,367(9508):413-418.
    [41]Kruger P,Fitzsimmons K,Cook D,Jones M,Nimmo G.Statin therapy is associated with fewer deaths in patients with bacteraemia.Intensive Care Medicine,2006,32(1):75-79.
    [42]Almog Y,Shefer A,Novack V.Prior statin therapy is associated with a decreased rate of severe sepsis.Circulation,2004,110(7):880-885.
    [43]Liappis AP,Kan VL,Rochester CG,Simon GL.The effect of statins on mortality in patients with bacteremia.Clinical Infectious Diseases,2001,33(8):1352-1357.
    [44]Buhaescu I,Izzedine H.Mevalonate pathway:A review of clinical and therapeutical implications.Clinical Biochemistry,2007,40(9-10):575-584.
    [45]Schwartz GG,Olsson AG,Ezekowitz MD,Ganz P,Oliver MF,Waters D,ZeiherA,Chaitman BR,Leslie S,Stern T,Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering(MIRACL) Study Investigators.Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes:the MIRACL study:a randomized controlled trial.The Journal of the American Medical Association,2001,285(13):1711-1718.
    [46]Cannon CP,Braunwald E,McCabe CH,Rader DJ,Rouleau JL,Belder R,Joyal SV,Hill KA,Pfeffer MA,Skene AM,Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators.Intensive versus moderate lipid lowering with statins after acute coronarysyndromes.The New England Journal of Medicine,2004,350(15):1495-504.
    [47]Influence of pravastatin and plasma lipids on clinical events in theWest of Scotland Coronary Prevention Study(WOSCOPS).Circulation,1998,97(15):1440-1445.
    [48]Ridker PM,Rifai N,Pfeffer MA,Sacks F,Braunwald E.Long-term effects of pravastatin on plasma concentration of C-reactive protein.The Cholesterol and Recurrent Events(CARE) Investigators.Circulation,1999,100(3):230-235.
    [49]Albert MA,Danielson E,Rifai N,Ridke PM.PRINCE Investigators.Effect of statin therapy on C-reactive protein levels:the pravastatin inflammation/CRP evaluation(PRINCE):a randomized trial and cohort study.The Journal of the American Medical Association,2001,286(1):64-70.
    [50]Ridker PM,Rifai N,Clearfield M,Downs JR,Weis SE,Miles JS,Gotto AM Jr,Air Force/Texas Coronary Atherosclerosis Prevention Study Investigators.Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events.The New England Journal of Medicine,2001,344(26):1959-1965.
    [51]Ridker PM,Cannon CP,Morrow D,Rifai N,Rode LM,McCabe CH,Pfeffer MA,Braunwald E,Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22(PROVE IT-TIMI 22) Investigators.C-reactive protein levels and outcomes after statin therapy.The New England Journal of Medicine,2005,352(1):20-28.
    [52]Nissen SE,Tuzcu EM,Schoenhagen P,Brown BG,Ganz P,Vogel RA,Crowe T,Howard G,Cooper CJ,Brodie B,Grines CL,DeMaria AN,REVERSAL Investigators.Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis:a randomized controlled trial.The Journal of the American Medical Association,2004,291(9):1071-1080.
    [53]Kobashigawa JA,Katznelson S,Laks H,Johnson JA,Yeatman L,Wang XM,Chia D,Terasaki PI,Sabad A,Cogert GA.Effect of pravastatin on outcomes after cardiac transplantation.The New England Journal of Medicine,1995,333(10):621-627.
    [54]Meier CR,Schlienger RG,Kraenzlin ME,Schlegel B,Jick H.HMGCoA reductase inhibitors and the risk of fractures.The Journal of the American Medical Association,2000,283(24):3205-3210.
    [55]Chan KA,Andrade SE,Boles M,Buist DS,Chase GA,Donahue JG,Goodman MJ,Gurwitz JH,LaCroix AZ,Platt R.Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women.Lancet,2000,355(9222):2185-2188.
    [56]Scranton RE,Young M,Lawler E,Solomon D,Gagnon D,Gaziano JM.Statin use and fracture risk:study of a US veterans population.Archives of Internal Medicine,2005,165(17):2007-2012.
    [57]Reid IR,Tonkin A,Cannon CP.Comparison of the effects of pravastatin and atorvastatin on fracture incidence in the PROVE IT-TIMI 22 trial-secondary analysis of a randomized controlled trial.Bone,2005,37(2):190-191.
    [58]Reid IR,Hague W,Emberson J,Baker J,Tonkin A,Hunt D,MacMahon S,Sharpe N.Effect of pravastatin on frequency of fracture in the LIPID study:secondary analysis of a randomised controlled trial.Long-term Intervention with Pravastatin in Ischaemic Disease.Lancet,2001,357(9255):509-512.
    [59]Van Staa TP,Wegman S,de Vries F,Leufkens B,Cooper C.Use of statins and risk of fractures.The Journal of the American Medical Association,2001,285(14):1850-1855.
    [60]Poynter JN,Gruber SB,Higgins PD,Almog R,Bonner JD,Rennert HS,Low M,Greenson JK,Rennert G.Statins and the risk of colorectal cancer.The New England Journal of Medicine,2005,352(21):2184-2192.
    [61]Graaf MR,Beiderbeck AB,Egberts AC,Richel DJ,Guchelaar HJ.The risk of cancer in users of statins.Journal of Clinical Oncology,2004,22(12):2388-2394.
    [62]Boudreau DM,Gardner JS,Malone KE,Heckbert SR,Blough DK,Daling JR.The association between 3-hydroxy-3-methylglutaryl coenzyme A inhibitor use and breast carcinoma risk among postmenopausal women:a case-control study.Cancer,2004,100(11):2308-2316.
    [63]Rogers MJ,Gordon S,Benford HL,Coxon FP,Luckman SP,Monkkonen J,Frith JC.Cellular and molecular mechanisms of action of bisphosphonates.Cancer,2000,88(12):2961-2978.
    [64]Monkkonen H,Lehenkari PP,Kellinsalmi M.A new mechanism of action for bisphosphonates:Apppi dedicated cytotoxicity of N-BPs.Bone,2004,34:S66-S67.
    [65]Fisher JE,Rogers MJ,Halasy JM,Luckman SP,Hughes DE,Masarachia PJ,Wesolowski G,Russell RG,Rodan GA,Reszka AA.Alendronate mechanism of action:geranylgeraniol,an intermediate in the mevalonate pathway,prevents inhibition of osteoclast formation,bone resorption and kinase activation in vitro.Proceedings of the National Academy of Sciences of the United States of America,1999,96(1):133-138.
    [66]van Beek E,Lowik C,Van der Pluijm G,Papapoulos S.The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro:a clue to the mechanism of action of nitrogen-containing bisphosphonates[In Process Citation].Journal of Bone and Mineral Research,1999,14(5):722-729.
    [67]Swanson KM,Hohl RJ.Anti-cancer therapy:targeting the mevalonate pathway.Current Cancer Drug Targets,2006,6(1):15-37.
    [68]Wakchoure S,Merrell MA,Aldrich W,Millender-Swain T,Harris KW,Triozzi P,Selander KS.Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo.Clinical Cancer Research,2006,12(1):2862-2868.
    [69]Kubista B,Trieb K,Sevelda F,Toma C,Arrich F,Heffeter P,Elbling L,Sutterluty H,Scotlandi K,Kotz R,Micksche M,Berger W.Anticancer effects of zoledronic acid against human osteosarcoma cells.Journal of Orthopaedic Research,2006,24(6):1145-1152.
    [70]Goffinet M,Thoulouzan M,Pradines A,Lajoie-Mazenc I,Weinbaum C,Faye JC,Seronie-Vivien S.Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells.BMC Cancer,2006,6:60.
    [71]Kawashima H,Ogose A,Hotta T,Ito T,Endo N,Kawashima H,Tamura K,Nakano K.Effect of incadronate on proliferation of mesenchymal tumor cells with or without activated Ras mutation.Journal of Experimental & Clinical Cancer Research,2005,24(4):617-624.
    [72]Wada A,Fukui K,Sawai Y,Imanaka K,Kiso S,Tamura S,Shimomura I,Hayashi N.Pamidronate induced anti-proliferative,apoptotic,and anti-migratory effects in hepatocellular carcinoma.Journal of Hepatology,2006,44(1):142-150.
    [73]Iguchi K,Nakano T,Usui S,Hirano K.Incadronate inhibits aminopeptidase N expression in prostatic PC-3 cells.Cancer Letters,2006,237(2):223-233.
    [74]Evdokiou A,Labrinidis A,Bouralexis S,Hay S,Findlay DM.Induction of cell death of human osteogenic sarcoma cells by zoledronic acid resembles anoikis.Bone,2003,33(2):216-228.
    [75]Jagdev SP,Coleman RE,Shipman CM,Rostami AH,Croucher PI.The bisphosphonate,zoledronic acid,induces apoptosis of breast cancer cells:evidence for synergy with paclitaxel.British Journal of Cancer,2001,84(8):1126-1134.
    [76]Shipman CM,Croucher PI,Russell RG,Helfrich MH,Rogers MJ.The bisphosphonate incadronate(YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway.Cancer Research,1998,58(23):5294-5297.
    [77]Tassone P,Tagliaferri P,Viscomi C,Palmieri C,Caraglia M,D'Alessandro A,Galea E,Goel A,Abbruzzese A,Boland CR,Venuta S.Zoledronic acid induces antiproliferative and apoptotic effects in human pancreatic cancer cells in vitro.British Journal of Cancer,2003,88(12):1971-1978.
    [78]Coxon JP,Oades GM,Kirby RS,Colston KW.Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation.BJU International,2004,94(1):164-170.
    [79]Denoyelle C,Hong L,Vannier JP,Soria J,Soria C.New insights into the action of zoledronic acid in breast cancer cells by dual RhoA-dependent and-independent effects.British Journal of Cancer,2003,88(10):1631-1640.
    [80]Sawada K,Morishige K,Tahara M,Kawagishi R,Ikebuchi Y,Tasaka K,Murata Y.Alendronate inhibits lysophosphatidic acid-induced migration of human ovarian cancer cells by attenuating the activation of Rho.Cancer Research,2002,62(21):6015-6020.
    [81]Shipman CM,Rogers MJ,Apperley JF,Russell RGG,Croucher PI.Bisphosphonate induce apoptosis in human myeloma cell lines:a novel anti-tumour activity.British Journal of Haematology,1997,98(3):665-672.
    [82]Fromigue O,Lagneaux L,Body JJ.Bisphosphonates induce breast cancer cell death in vitro.Journal of Bone and Mineral Research,2000,15(11):2211-2221.
    [83]Senaratne SG,Pirianov G,Mansi JL,Arnett TR,Colston KW.Bisphosphonates induce apoptosis in human breast cancer cell line.British Journal of Cancer,2000,82(8):1459-1468.
    [84]Gober HJ,Kistowska M,Angman L,Jeno P,Mori L,De Libero G.Human T cell receptor cells recognize endogenous mevalonate metabolites in tumor cells.The Journal of Experimental Medicine,2003,197(2):163-168.
    [85]Ylitalo R,Kalliovalkama J,Wu X,Kankaanranta H,Salenius JP,Sisto T,Lahteenmaki T,Ylitalo P,Porsti I.Accumulation of bisphosphonates in human artery and their effects on human and rat arterial function in vitro.Pharmacology & toxicology,1998,83(3):125-131.
    [86]Ylitalo R.Bisphosphonates and atherosclerosis.General pharmacology,2000,35(6):287-296.
    [87]Morgillo F,Lee HY Lonafarnib in cancer therapy.Expert Opinion on Investigational Drugs,2006,15(6):709-719.
    [88]Basso AD,Kirschmeier P,Bishop WR.Lipid posttranslational modifications.Farnesyl transferase inhibitors.Journal of Lipid Research,2006,47(1):15-31.
    [89]Mesa RA.Tipifarnib:famesyl transferase inhibition at a crossroads.Expert Review of Anticancer Therapy,2006,6(3):313-319.
    [90]Feldman EJ.Famesyltransferase inhibitors in myelodysplastic syndrome.Current Hematology Reports,2005,4(3):186-190.
    [91]Peterson YK,Kelly P,Weinbaum CA,Casey PJ.A novel protein geranylgeranyltransferase-I inhibitor with high potency,selectivity,and cellular activity.The Journal of Biological Chemistry,2006,281(18):12445-12450.
    [92]El Oualid F,Cohen LH,van der Marel GA,Overhand M.Inhibitors of protein:geranylgeranyl transferases.Current Medicinal Chemistry,2006,13(20):2385-2427.
    [93]Lobell RB,Omer CA,Abrams MT,Bhimnathwala HG,Brucker MJ,Buser CA,Davide JP,deSolms SJ,Dinsmore CJ,Ellis-Hutchings MS,Kral AM,Liu D,Lumma WC,Machotka SV,Rands E,Williams TM,Graham SL,Hartman GD,Oliff AI,Heimbrook DC,Kohl NE.Evaluation of famesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models.Cancer Research,2001,61(24):8758-8768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700