羟基磷灰石表面改性、功能化及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足骨科治疗上提出的新要求,除了设计和制备出综合性能优良的新生物材料外,对传统生物材料进行表面改性也是非常有效的途径,因此表面改性一直都是生物材料研究的热点之一。针对生物活性羟基磷灰石(HA)材料表面呈亲水性难与聚合物形成良好的界面相容性、以及HA表面上缺乏生物信号难以黏附更多细胞等关键问题,本文在HA表面上开展了系统的表面改性、功能化及其材料学和生物学性能的评价研究,主要内容和结果如下:
     1)基于复合材料的力学性能很大程度上取决于有机相与无机相之间的界面结合程度。本文首次采用十八烷基三氯硅烷(OTS),通过硅烷化反应,在HA颗粒的表面构建出共价键键合改性层。系统地分析了HA上形成OTS改性层的规律,当改性剂OTS的用量是10wt%时,在HA表面接枝上的OTS量达到最大值(此时Si原子含量为2.9at%)。
     2)采用OTS改性的HA颗粒,与聚乳酸(PLLA)复合形成了多孔材料。与未改性HA形成多孔复合材料相比,其复合材料弹性模量由改性前的2.14MPa提高到了6.44MPa,提高了2倍;抗压强度从改性前的0.556MPa提高到了0.949MPa,提高了近1倍。采用体外细胞培养结果表明:对骨髓间充质干细胞生长无抑制作用,未发生细胞毒性反应,细胞在材料表面均能正常黏附、生长、增殖,均具有良好的细胞附着形态和细胞增殖率,OTS改性前后的PLLA/HA复合材料均是骨细胞相容性良好的骨替代材料。
     3)采用γ-氨丙基三乙氧基硅烷(APTES)对HA颗粒进行表面改性,随后负载上RGD。Zeta电位和XPS结果都表明APTES改性HA中的APTES是化学键合到HA表面上的。元素分析结果显示了RGD是成功的接枝到HA颗粒上。
     4)采用RGD表面功能化的HA颗粒与PLLA复合形成了多孔材料。体外细胞培养结果表明:RGD功能化的PLLA/RGD-HA复合多孔材料的细胞黏附率明显提高,从37.21%提高到了69.11%,细胞粘附率提高了近1倍,表明了RGD的生物功能发挥良好。
     5)本文首次采用APTES对HA涂层进行表面改性,随后负载上RGD。实验结果表明APTES和RGD均是与HA涂层表面形成共价键键合,使RGD能够很稳定的存在于涂层表面。虽然物理吸附法也可使RGD附着在HA涂层表面上,但RGD的存在状态相当不稳定,在超声处理下会从HA涂层表面完全脱离。
     6)RGD表面功能化的HA涂层的体外细胞培养结果表明:与HA涂层相比,细胞黏附率从功能化前的22.1%提高到了59.3%,提高了近2倍,说明接枝在HA涂层表面的RGD很好地发挥其生物功能,即RGD充分的发挥了其促进更多的细胞的附着的作用。MTT结果显示,RGD功能化HA涂层材料的活细胞增殖能力也明显好于HA涂层材料的,而且两者的活细胞增殖的能力都是随着时间的增加而增长的,表明RGD功能化HA涂层材料的生物性能得到了很好的改善。另外,细胞形态观测表明经过RGD表面功能化后不仅所黏附细胞数量上增多,同时显示出良好的细胞形态,说明这些附着的细胞具有很强的活力状态。
More and more researchers focus on the high performance of biomaterials in these years.The surface modification is considered to be an effective way to meet the new demand of bone repair in orthopaedics,besides design and preparation of new biomaterials with good comprehensive properties.In this paper,surface modification on hydroxyapatite(HA) was investigated systematically in order to improve the bonding of HA with polymer matrix and to increase the cytocompatibility of HA.The biocompatibility of the resulting materials was eValuated.In this work,the main following research results have been obtained.
     1) Since the mechanical performances of inorganic/polymer composites were greatly decided by interfacial boding strength of two phases,octadecyltrichlorosilane (OTS) was used as a coupling agent to modify the surface of HA by a silanization reaction for creating a surface capable of chemical bonding with polymers.The maximum quanlity of OTS modified layer on HA surface was upto 2.9at%Si.
     2) Using the OTS modified HA powders,porous PLLA/HA composites were prepared.Compared with the composite with unmodified HA,elastic modulus of PLLA/OTS modified HA composite increased 2 times from 2.14MPa to 6.44 MPa; compressive strength increased 1 times from 0.556 MPa to 0.949 MPa.In vitro BMSCs(Bone Mesenchymal Stem Cells) cultivation results showed that BMSCs could adhere and grow normally on PLLA/OTS modified HA composite support,and had good living situation and proliferation.Hnece,PLLA/OTS modified HA composites are a bone substitute material with good cytocompatibility.
     3)γ-aminopropyltriethoxysilane(γ-APTES) was used to modify HA as a coupling agent,then RGD was immobilized on the modified surface of HA.Zeta potential and XPS analysis results showed APTES was combined with HA by chemical bonding, and element analysis results showed that RGD were successfully immobilized on HA.
     4) Porous PLLA/RGD immobilized HA composites were prepared.In vitro BMSCs cultivation results showed that BMSCs adhesion ratio of PLLA/RGD immobilized HA cpmosite increased from 37.21%to 69.11%greatly,nearly 2 times of PLLA/HA composite.Hence,RGD in the porous composite functioned well as adhering cells.
     5) HA coatings were firstly modified by APTES and immobilized by RGD later. The results showed that RGD was combined on the surface of APTES modified HA coating through a covalent bond.Thus,RGD can exist on HA coating surface very stably.Although RGD could appear on HA coating by physical absorption,its existing situation of RGD was rather unstable,all RGD molecules on HA coating by physical absorption were removed away by ultrasonic treatment.
     6) In vitro BMSCs cultivation showed:the biological performance of RGD immobilized HA coating was greatly improved,BMSCs adhesive ratio increased nearly 2 times from 22.1%to 59.3%,the RGD on the HA coating could play a significant role in enhancing more BMSCs adherence.MTT results showed the proliferation on the RGD immobilized HA coating was much better than that on HA coating..In addition,morphologic analysis results showed that more BMSCs adhered on the RGD immobilized HA coating,they had good cells shape with strong living situation.
引文
[1]Williams D F.On the mechanisms of biocompatibility[J].Biomaterials,2008,29(20):2941-2953.
    [2]Warren S M,Fong K D,Nacamuli R P,Song H M,Fang T D,Longaker M T.Biomaterials for skin and bone replacement and repair in plastic surgery[J].Operative Techniques in Plastic and Reconstructive Surgery,2003,9(1):10-15.
    [3]Rah D K.Art of replacing craniofacial bone defects[J].Yonsei Medical Journal.2000,41(6):756-765.
    [4]材料科学技术百科全书编辑委员会.材料科学技术百科全书[M].北京:中国大百科全书出版社,1995,927-928.
    [5]顾汉卿,徐国风.生物医学材料学[M].天津:科学技术出版社,1993,361-362.
    [6]Rodriguez L M,Salinas A J,Vallet-Regi M,San Rornrinl J.Composite biomaterials based on ceramic polymers.I.Reinforced systems based on Al_2O_3/PMMA/PLLA[J].Journal of Biomedical Materials Research,1996,30(4):515-522.
    [7]Suchanek W,Yoshimura M.Processing and Properties of Hydroxyapatite based Biomaterials for Use as Hard Tissue Replacement Implants[J].Journal of Materials Research,1998,13(1):94-117.
    [8]Goshima J,Goldberg V M,Caplan A I.Osteogenic Potential of Culture-expanded Rat Marrow Cells as Assayed in Vivo with Porous Calcium Phosphate Ceramic[J].Biomaterials,1991,12(2):253-8.
    [9]Kim H W,Noh Y J,Koh Y H,Kim H E,Kim H M.Effet of CaF_2 on densification and properties of hydroxyapatite-zireonia composites for biomedical applications[J].Biomaterials,2002,23(20):4113-4121.
    [10]Bolland B J R F,Kanczler J M,Dunlop D G.,Oreffo R O C.DeVelopmentof in vivo μCT eValuation of neovascularisation in tissue engineered bone constructs[J]. Bone, 2008, 43: 195-202.
    [11] Laurencin C T, Attawia M A, Nicholson J J. Bone Resorption Mediators Elicited by Degradation Products of Orthopedic Polymers[J]. Society for Biomaterials, 1998,309:22-26.
    [12] Martin I, Miot S, Barbero A, Jakob M, Wendt D, Osteochondral tissue engineering [J]. Journal of biomechanics, 2007, 40(4): 750-765.
    [13] Wang X J, Li Y B, Wei J, Groot K D. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites [J]. Biomaterials, 2002, 23(24): 4787-4791.
    [14] Yuan Q H, Sahu L K, D'Souza N A, Golden T D. Synthesis of hydroxyapatite coatings on metal substrates using a spincasting technique[J]. Materials Chemistry and Physics, 2009, 116(2-3): 523-526.
    [15] Silva R V, Camilli J A, Bertran C A, Moreira N H. The use of hydroxyapatite and autogenous cancellous bone grafts to repair bone defects in rats[J]. International Journal of Oral and Maxillofacial Surgery, 2005, 34(2): 178-184.
    [16] Madhumathi K, Binulal N S, Nagahama H, Tamura H, Shalumon K T, Selvamurugan N, Nair S V, Jayakumar R. Preparation and characterization of novel (3-chitin-hydroxyapatite composite membranes for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2009, 44(1): 1-5.
    [17] Trommer R M, Santos L A, Bergmann C P. Alternative technique for hydroxyapatite coatings[J]. Surface and Coatings Technology, 2007, 201(24): 9587-9593.
    [18] Lu Y P, Chen Y M, Li S T, Wang J H. Surface nanocrystallization of hydroxyapatite coating[J]. Acta Biomaterialia, 2008, 4(6): 1865-1872.
    
    [19] Wen J Q, Li Y B, Zuo Y, Zhou G, Li J F, Jiang L Y, Xu W. Preparation and characterization of nano-hydroxyapatite/silicone rubber composite[J]. Materials Letters, 2008, 62(19): 3307-3309.
    [20] Espanol M, Guipont V, Khor K A, Jeandin M, Llorca-Isern N. Effect of Heat Treatment on High Pressure Plasma Sprayed Hydroxyapatite Coatings[J]. Surface Engineering, 2002, 18(3): 213-218.
    [21] Cheng K C, Huang J Q, Xia J Y. Study on crystallization kinetics of plasma sprayed hydroxyapatite coating[J]. Ceramics international, 1999, 25: 479-483.
     [22] Khor K A, Li H, Cheang P. Processing-microstructure-property relations in HVOF sprayed calcium phosphate based bioceramic coatings[J]. Biomaterials, 2003,24(13): 2233-2243.
    [23] Kim D H, Kong Y M, Lee S H, Lee I S, Kim H E. Composition and Crystallization of Hydroxyapatite Coating Layer Formed by Electron Beam Deposition[J]. Journal of the American Ceramic Society, 2003, 86(1): 186-188.
    [24] Hamdi M, Hakamata S, Ektessabi Hamdi A M. Coating of hydroxyapatite thin film by simultaneous vapor deposition[J]. Thin Solid Films, 2000, 377-378: 484-489.
    [25] Liu J Q, Luo Z S, Cui F Z, Duan X F, Peng L M. High-resolution transmission electron microscopy investigations of a highly adhesive hydroxyapatite coating/titanium interface fabricated by ion-beam-assisted deposition[J]. Journal of Biomedical Materials Research, 2000, 52(1): 115-118.
    [26] Vaz C M, Patrick F. N. M. DoeVeren V, Reis R L, Cunha A M. Soy Matrix Drug Delivery Systems Obtained by Melt-Processing Techniques[J]. Biomacromolecules, 2003,4(6): 1520-1529.
    [27] Tkalcec E, Sauer M, Nonninger R, Schmidt H. Sol-gel-derived hydroxyapatite powders and coatings[J]. Journal of Materials Science, 2001, 36(21): 5253-5263.
    [28] Aronov D, Rosen R, Ron E Z, Rosenman G, Electron-induced surface modification of hydroxyapatite-coated implant[J]. Surface & Coatings Technology, 2008, 202: 2093-2102.
    [29] Han Y, Xu K W, Lu J. Morphology and composition of hydroxyapatite coatings prepared by hydrothermal treatment on electrodeposited brushite coatings[J]. Journal of Materials Science: Materials in Medicine, 1999, 10(4): 243-248.
    [30] Han Y, Fu T, Lu J, Xu K W. Characterization and stability of hydroxyapatite coatings prepared by an electrodeposition and alkaline-treatment process[J]. Journal of Biomedical Materials Research, 2001, 54(1): 96-101.
    [31] Fu T, Huang P, Zhang Y, Han Y, Xu K W. Preparation of microarc oxidation layer containing hydroxyapatite crystals on Ti6A14V by hydrothermal synthesis[J]. Journal of Materials Science Letters, 2002, 21(3): 257-258.
    [32] Shirkhanzadeh M. Bioative calcium phosphate coatings prepared by electro deposition[J]. Journal of Materials Science Letters, 1991, 10(23): 1415-1417.
    [33] Wen H B, Liu Q, Wijn J R D, Groot K D, Cui F Z. Preparation of bioactive microporous titanium surface by a new two-step chemical treatment[J]. Journal of Materials Science: Materials in Medicine, 1998, 9(3): 121-128.
    [34] Hamada K, Kon M, Hanawa T, Yokoyama K, Miyamoto Y, Asaoka K. Hydrothermal modification of titanium surface in calcium solutions[J]. Biomaterials 2002, 23: 2265-2272.
    [35] Vatanatham M, Kimura S. Hydroxyapatite Coating on Thermally Oxidized Titanium Substrates[J]. Journal of the American Ceramic Society, 2001, 84(9): 2135-2137.
    [36] Okido M, Kuroda K, Ishikawa M, Ichino R, Takai O. Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions[J]. Solid State Ionics, 2002, 151(1-4): 47-52.
    [37] Simek J, Hrach R. Image analysis in physics-sensitivity analysis of morphological methods and their application in thin film physics[J]. Thin Solid Films, 2004,466(1-2): 16-20.
    [38] Demri B, Hage-Ali M, Moritz M, Muster D. Surface characterization of C/Ti-Al-4V coating treated with ion beam[J]. Biomaterials, 1997, 18(4): 305-310.
    [39] Kokubo T, Kim H M, Kawashita M. Novel bioactive materials with different mechanical properties [J]. Biomaterials, 2003, 24: 2161-2175.
    [40] Nonami T, Kamiya A, Naganuma K, Kameyana T. Implantation of hydroxyapatite granules into superplastic titanium alloy for biomaterials[J]. Materials Science and Engineering: C, 1998, 6(4): 281-284.
    [41] Kay D M I, Young P R A, Posner D A S[J]. Nature, 1964, 204: 1050-1052.
    [42] Ishikawa T, in "Adsorption on New and Modified Inorganic Sorbents"(A. Dabravski and V. A. Tertylkh, Eds.), p.301. ElseVier, Amsterdam, 1996.
    [43] Tanaka H, Watanabe T, Chikazawa M. FTIR and TPD studies on the adsorption of pyridine, n-butylamine and acetic acid on calcium hydroxyapatite[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93(24): 4377-4381.
    [44] Ishikawa T, Wakamura M, Kondo S. Surface characterization of calcium hydroxylapatite by Fourier transform infrared spectroscopy [J]. Langmuir 1989, 5: 140-144.
    [45] Ishikawa T, in: A. Dabrowski, V.A. Terthykh (Eds.), Adsorption on New and Modified Inorganic Sorbents, ElseVier, Amsterdam, 1996, p. 301.
    [46] H. Tanaka, in: A. Hubbard (Ed.), Encyclopedia of Colloid and Surface Science, Dekker, New York, 2002, p. 5096.
    [47] Tanaka H, Chikazawa M, Kandori K, Ishikawa T. Influence of thermal treatment on the structure of calcium hydroxyapatite [J]. Physical Chemistry Chemical Physics, 2000, 2: 2647-2650.
    [48] Borum-Nicholas L, Wilson J O C. Surface modification of hydroxyapatite. Part I. Dodecyl alcohol[J]. Biomaterials 2003, 24(21): 3671 - 3679.
    [49] Liu Q, Joost R. Wrjn D, Groot K D, Clemens A. Blitterswijk V. Surface modification of nano-apatite by grafting organic polymer[J]. Biomaterials 1998, 19(11-12):1067-1072.
    [50] Aissa A, Debbabi M, Gruselle M, Thouvenot R, Gredin P, Traksmaa R, Tonsuaadu K. Covalent modication of calcium hydroxyapatite surface by grafting phenyl phosphonate moieties[J]. Journal of Solid State Chemistry, 2007, 180(8): 2273-2278.
    [51] Tanaka H, Futaoka M, Hino R, Kandori K, Ishikawa T. Structure of synthetic calcium hydroxyapatite particles modified with pyrophosphoric acid[J]. Journal of Colloid and Interface Science, 2005, 283(2): 609-612.
    [52] Li J, Lu X L, Zheng Y F. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite[J]. Applied Surface Science, 2008, 255(2): 494-497.
    [53] Zhang S M, Liu J, Zhou W, Cheng L, Guo X D. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites[J]. Current Applied Physics, 2005, 5(5): 516-518.
    [54] Jr. O C W, Hull J R. Surface modification of nanophase hydroxyapatite with chitosan[J]. Materials Science & Engineering C, 2008, 28(3): 434-437.
    [55] Ding J, Binss V, Liu G. Formation and Properties of Polystyrene-block-poly (2-cinnamoylethyl methacrylate) Brushes Studied by Surface-Enhanced Raman Scattering and Transmission Electron Microscopy[J]. Macromolecules, 1997, 30: 1442-1448.
    [56] D'Andrea S C, FadeeV A Y. Covalent Surface Modification of Calcium Hydroxyapatite Using n-Alkyl- and n-Fluoroalkylphosphonic Acids[J]. Langmuir, 2003, 19:7904-7910.
    [57] Liu Q, deWijn J R., Blitterswijk C A V, Covalent bonding of PMMA, PBMA, and poly(HEMA) to hydroxyapatite particles[J]. Journal of Biomedical Materials Research, 1998, 40(2): 257-263.
    [58] Liu Q, deWijn J R., Blitterswijk C A V, A study on the grafting reaction of isocyanates with hydroxyapatiteparticles[J]. Journal of Biomedical Materials Research, 1998, 40: 358-364.
    [59] Moriguchi T, Yano K, Nakagawa S, Kaji F. Elucidation of adsorption mechanism of bone-staining agent alizarin red S on hydroxyapatite by FT-IR microspectroscopy[J]. Journal of Colloid and Interface Science, 2003, 260: 19-25.
    [60] Misra D N. Adsorption of Low Molecular Weight Poly(acrylic acid) on Hydroxyapatite: Role of Molecular Association and Apatite Dissolution[J]. Langmuir, 1991, 7(11): 2422-2424.
    [61] Ellis J, Jackson A M, Scott B P, Wilson A D. Adhesion of carboxylate cements to hydroxyapatite: III. Adsorption of poly(alkenoic acids)[J]. Biomaterials, 1990, 11:379-384.
    [62] Hlady V, Furedi-Milhofer H. Adsorption of human serum albumin on precipitated hydroxyapatite [J]. Journal of Colloid and Interface Science, 1978, 69(3): 460-468.
    [63]Schaad P,Thomaan J M,Voegel J C,Gramain P.Adsorption of Neutral and Anionic Polyacrylamides on Hydroxyapatite and Human Enamel:Influence on the Dissolution Kinetics[J].Journal of Colloid and Interface Science,1994,164(2):291-295.
    [64]Yang X,Shi J,Johnson S,Swanson B.Growth of ultrathin covalently attached polymer films:uniform thin films for chemical microsensors[J].Langmuir,1998,14(7):1505-1507.
    [65]Koutso V,Pelletier E,Stamouli A,Hadziioannou G,Structure of Chemically End-Grafted Polymer Chains Studied by Scanning Force Microscopy in Bad-Solvent Conditions[J].Macromolecules,1997,30:4719-4726.
    [66]Yoshikawa S,Machida S,Tsubokawa N.Polymer grafting onto carbon black by use of TEMPO-terminated polystyrene with controlled molecular weight[J].Journal of Polymer Science Part A:Polymer Chemistry,1998,36:3165-3172.
    [67]Plueddemann E P.Silane coupling agents,2nd ed.;Plenum:New York,1991
    [68]Barbot C,Bouloussa O,Szymczak W,Plaschke M,Buckau G,Durand J P,Pieri J,Kim J I,Goudard F.Self-assembled monolayers of aminosilanes chemically bonded onto silicon wafers for immobilization of purified humic acids[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,297(1-3):221-239.
    [69]陈德敏,傅远飞,顾国珍,等.掺锶羟基磷灰石固溶体的制备及离解度测定.中国生物医学工程学报,2001,20(3):278-280.
    [70]Cheng K,Shen G,Weng W J,Han G R,Ferreira J M F,Yang J.Synthesis of hydroxyapatite/fluorapatite solid solutions by a sol-gel method[J].Materials Letters,2001,51(1):37-41.
    [71]Miao S D,Cheng K,Weng W J,Du P Y,Shen G,Han G R,Yan W Q,Zhang S.Fabrication and eValuation of Zn containing fluoridated hydroxyapatite layer with Zn release ability[J].Acta Biomaterialia,2008,4(2):441-446.
    [72]Lee Y,Ko J S,Kim H.The role of cell signaling defects on the proliferation of osteoblasts on the calcium phosphate apatite thin film[J].Biomaterials,2006,27(20):3738-3744.
    [73] Zhao F, Warren L, Grayson, Ma T, Bunnel B, Lu W W. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct deVelopment[J]. Biomaterials, 2006, 27(9): 1859-1867.
    [74] Lee J H, Jung H W, Kang I, Lee H B. Cell behavior on polymer surfaces with different functional groups[J]. Biomaterials, 1994, 15(9): 705- 711.
    [75] Kooten T G V, Schakenraad J M, Busscher H J. Influence of substratum wettability on the strength of adhesion of human fibroblasts[J]. Biomaterials, 1992, 13(13): 897-904.
    
    [76] Bet M R, Goissis G., S. Vargas, Selistre-de-Araujo H S. Cell adhesion and cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and wettability [J]. Biomaterials, 2003, 24(1): 131-137.
    
    [77] Shelton R M, Rasmussen A C, Davies J E. Protein adsorption at the surface between charged polymer substrata and migrating osteoblasts[J]. Biomaterials, 1988,9(1): 24-29.
    [78] Huang S L, Ou C F, Chao M S, Lai J Y. Structure-protein adsorption relationships of polyure thanes [J]. Journal of Applied Polymer Science, 1999, 74(2): 297-305.
    [79] Jean L D, Aurora D, Aurora D, Yves-J S. Competitive adsorption of proteins: Key of the relationship between substratum surface properties and adhesion of epithelial cells[J]. Biomaterials, 1999, 20(6): 547-559.
    [80] Horwitz, Alan F. Integrins and health[J]. Scientific American, 1997, 277(5):68-75.
    
    [81] Pierschbacher M D, Ruoslahiti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule[J]. Nature, 1984, 309: 30-33.
    
    [82] Lutolf M P, Hubbell J A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering[J]. Nature Biotechnology, 2005, 23 (1): 47-55.
    
    [83] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond[J]. Biomaterials, 2003, 24 (24): 4385-4415.
    [84] Ruoslahti E. RGD and other recognition sequences for integrins[J]. Annual ReView of Cell and Developmental Biology, 1996, 12: 697-715.
    [85] Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium[J]. Biomaterials,2000,21 (11): 1121-1127.
    [86] Yang D Z, Hao J. Surface modification of biomaterials with polypeptides[J]. Biomedical Engineering Foreign Medical Sciences, 2004, 27(2):65-68.
    [87] Pang X, Zhitomirsky I. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings[J]. Materials Characterization, 2007, 58 (4): 339-348.
    [88] Guild F J, Bonfield W. Predictive modelling of hydroxyapatite-polyethylene composite[J]. Biomaterials, 1993, 14(13): 985-993.
    [89] Y. E. Greish, J. D. Bender, S. Lakshmi, P. W. Brown, H. R. Allcock, C. T. Laurencin. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications[J]. Biomaterials, 2005, 26(113): 1-9.
    [90] Qiu H J, Yang J, Kodali P, Koh J, Ameer G A. A citric acid-based hydroxyapatite composite for orthopedic implants[J]. Biomaterials, 2006,27(34): 5845-5854.
    
    [91] Luong N D, Moon I K, Lee D S, Lee Y K, Nam J D. Surface modification of poly(1-lactide) electrospun fibers with nanocrystal hydroxyapatite for engineered scaffold applications [J]. Materials Science and Engineering: C, 2008, 28(8): 1242-1249.
     [92] Gay S, Arostegui S, Lemaitre J. Preparation and characterization of dense nanohydroxyapatite/PLLA composites[J]. Materials Science and Engineering: C, 2009,29(1): 172-177.
    [93] Hasegawa S, Ishii S, Tamura J, Furukawa T, Neo M, Matsusue Y, Shikinami Y, Okuno M, Nakamura T. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(1-lactide) composite rods for the internal fixation of bone fractures[J]. Biomaterials, 2006, 27(8): 1327-1332.
    [94] Shikinami Y, Okuno M. Bioresorbable deVices made of forged composites of hydroxyapatite (HA) particles and poly -lactide (PLLA). Part II: practical properties of miniscrews and miniplates[J]. Biomaterials, 2001, 22(23): 3197-3211.
    
    [95] Shikinami Y, Okuno M. Bioresorbable deVices made of forged composites of hydroxyapatite (HA) particles and poly-lactide (PLLA): Part I. Basic characteristics[J]. Biomaterials, 1999, 20(9): 859-877.
    
    [96] Xiaoming Li, Qingling Feng, Fuzhai Cui. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres[J]. Materials Science and Engineering: C, 2006, 26(4): 716-720.
    
    [97] Weng W J, Han G, Du P Y, Shen G. The effect of citric acid addition on the formation of sol-gel derived hydroxyapatite [J]. Materials Chemistry and Physics, 2002, 74(1):92-97.
    
    [98] Weng W J, Baptisata J L. Preparation and characterizaiton of hydroxyapatite coatings on Ti6A14V alloy by a sol-gel method[J]. Journal of the American Society, 1999, 82(1):27-32.
    
    [99] S'lo'sarczyk A, Paszkiewicz Z, Paluszkiewicz C, FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods[J]. Journal of Molecular Structure, 2005, 744-747 (3): 657-661.
    
    [100] Benning L G, Phoenix V R, Yee N, Tobin M J, Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 729-741.
    
    [101] Massiot P, Centeno M A, Carrizosa I, Odriozola J A, Thermal eVolution of sol-gel-obtained phosphosilicate solids (SiPO) [J]. Journal of Non-Crystalline Solids, 2001,292(1-3): 158-166.
    
    [102] H. Niida, M. Takahashi, T. Uchino, T. Yoko, Preparation and structure of organic-inorganic hybrid precursors for new type low-melting glasses[J]. Journal of Non-Crystalline Solids, 2002, 306(3): 292-299.
    
    [103] B. Menaa, M. Mizuno, M. Takahashi, Y. Tokuda, T. Yoko, Polycarboxylic acids as network modifiers for water durability improvement of inorganic-organic hybrid tin-silico-phosphate low-melting glasses[J]. Journal of Solid State Chemistry, 2006, 179(2): 492-499.
    [104] NIST (1989) Databank in X-ray photoelectron spectroscopy version 1.0.
    
    [105] Sahota M S, Short E L, Beynon J, An analysis of silicon oxide thin films by computer simulation of Si 2p XPS spectra using the Sanderson technique[J]. Journal of Non-Crystalline Solids, 1996, 195(1-2): 83-88.
    [106] Zioupos P, Currey J D. Changes in the sti□ness, strength and toughness of human cortical bone with age[J]. Bone, 1998, 22:57-66.
    [107] Tian T, Jiang D L, Zhang J X, Lin Q L. Fabrication of bioactive composite by developing PLLA onto the framework of sintered HA scaffold[J]. Materials Science and Engineering C, 2008, 28:51-56.
    [108] Karakecili A G, Demirtas TT, Satriano C, Gu ¨mu¨sderelioglu M,Marletta G. Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser (RGDS)-immobilized chitosan in serum-containing/serum-free cultures [J]. Journal of Bioscience and Bioengineering, 2007,104: 69-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700