离子膜电解同时制备金属锰与二氧化锰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决电解锰与电解二氧化锰工业生产中存在的电流效率低、能耗高、污染严重、设备利用率低等不足,应用离子交换膜替代电解锰生产中常用的物理隔膜,进行了离子膜电解同时制备金属锰与二氧化锰的研究。
     单因素实验结果表明,离子膜阴极电解金属锰电流效率高于工业普通隔膜电解的电流效率,同时能耗降低;降低电流密度及pH值,升高温度有利于降低槽电压;降低电流密度,升高温度及保持pH为7.5,能够降低能耗;在电解液中添加Se及Na2SO3等能够细化锰晶粒,光亮锰层表面,并维持电解液澄清;实验中电解液pH值2h内保持不变。正交实验结果表明各因素对槽电压影响的显著程度依次为:电流密度、温度、锰离子浓度、硫酸铵浓度、pH;各因素对能耗影响的显著程度依次为:硫酸铵浓度、锰离子浓度、电流密度、温度、pH。最佳工艺条件为:锰离子浓度为35g·L~(-1),硫酸铵浓度为130g·L~(-1),电流密度为400A·m~(-2),pH值为7.5,温度为40℃。探索实验表明在低温、pH为3~4时离子膜电解可以在阳极生成电解二氧化锰。单因素实验结果表明,降低电流密度,增大氢离子浓度,有利于降低槽电压;电流密度为50A·m~(-2),pH大于3,硫酸铵浓度低时可以得到较高的电流效率与较低的能耗。正交实验结果表明各因素对槽电压影响的显著程度依次为:电流密度、锰离子浓度、pH与硫酸铵浓度;对能耗影响的显著程度依次为:pH、硫酸铵浓度、电流密度、锰离子浓度。最佳工艺条件为:电流密度为50A·m~(-2),pH大于3,锰离子浓度在45~55g·L~(-1)之间。
     离子膜电解同时制备金属锰与二氧化锰时,阳极电流效率、能耗等受阴极电解参数的影响不大,而阴极电流效率、能耗受阳极电解参数的影响较大。最佳工艺条件为:阳极液锰离子浓度为50g·L~(-1),阳极液pH为4,阳极电流密度为40A·m~(-2),阴极液锰离子浓度为40g·L~(-1),阴极液硫酸铵浓度为100g·L~(-1),阴极液pH为7.5,阴极电流密度400A·m~(-2)。
     XRD谱图显示电解锰无杂峰,为立方晶型,电解二氧化锰晶型不完整。阳极产物中含二氧化锰大于82mass%,金属锰达到DJMn99.8的质量标准。线性电位扫描极化曲线显示,pH为7.5及加入添加剂会使阴极极化增大,同时抑制氢的析出。
     与工业化生产相比,离子膜电解同时制备金属锰与二氧化锰能够在阴、阳两极都制备出锰产品,提高了设备利用率,降低了氢气与氧气的析出量。阴、阳极电流效率分别达到97.53%及98.62%,金属锰与二氧化锰的能耗分别为3591kWh·t~(-1)及2245kWh·t~(-1)。
The electrodeposition of manganese metal and simultaneous production of EMD by ion-exchange membrane electrolysis was carried out by the ion exchange membrane in place of the diaphragm used in the manganese electrolydeposition to solve the problems of low current efficiency, high energy consumption, high pollution and low utilization rate of equipment that exit in the manganese electrodeposition and manganese dioxide production,
     The current efficiency was found higher in the cathodic manganese electrodeposition of ionic membrane electrolysis than that in ordinary industrial diaphragm electrolysis by single factor experiments, meanwhile energy consumption values decreased. The voltage could be reduced by reducing the current density and pH and raising the temperature. The energy consumption could be reduced by reducing the current density, raising the temperature and keeping pH aroumd 7.5. The additives as Se and Na2SO3 added in the electrolyte could minish the manganese crystal, make the electrolytic manganese bright and keep the electrolyte clean. The pH maintained the same in 2h in the electrolysis. By orthogonal experiments, it was found that the significance of factors affecting the cell voltage was current density, temperature, concentration of manganese ion, concentration of ammonium sulfate, pH respectively. The significance of factors affecting the energy consumption was concentration of ammonium sulfate, concentration of manganese ion, current density, temperature, pH respectively. Optimized process was as follows: manganese ion concentration of 35g·L~(-1), ammonium sulfate concentration of 130g·L~(-1), current density of 400A·m~(-2), pH of 7.5, temperature of 40℃.
     It was found that manganese dioxide could be produced on the anode at low temperature and the electrolyte’s pH 3~4 by tests. The results of single factor experiments show as follows: The cell voltage could be reduced by reducing current density and increasing the concentration of hydrogen ions. Higher current efficiency and lower energy consumption could be attained in the conditions of current density of 50A·m~(-2), pH above 3 and low concentration of ammonium sulfate. By orthogonal experiments, it was found that the significance of factors affecting the cell voltage was current density, concentration of manganese ion, pH and concentration of ammonium sulfate respectively. The significance of factors affecting the energy consumption was pH, concentration of ammonium sulfate, current density and concentration of manganese ion recpectively. Optimized process was as follows: current density of 50A·m~(-2), pH above 3, manganese ion concentration of 45~55g·L~(-1).
     In the electrodeposition of manganese metal and simultaneous production of EMD by ion-exchange membrane electrolysis, the results showed that the anodic current efficiency and energy consumption were affected a little by the cathode factors, but the cathodic current efficiency and energy consumption were affected more by the anode factors. Optimized process was as follows: anodic manganese ion concentration of 50g·L~(-1), anodic pH of 4, anodic current density of 40A·m~(-2), cathodic manganese ion concentration of 40g·L~(-1), cathodic ammonium sulfate concentration of 100g·L~(-1), cathodic pH of 7.5, cathodic current density of 400A·m~(-2).
     XRD patterns showed that the purity of electrolytic manganese with cubic crystal was high without miscellaneous peaks, and the crystal of electrolytic manganese dioxide is incomplete. The manganese dioxide in the anode products is greater than 82mass%. It indicated that pH of 7.5 and the addition of additives could make the cathodic polarization increase and the hydrogen reduction inhibited from the linear potential sweep.
     Compared with the industry product, manganese products can be produced on both anode and cathode by the method of electrodeposition of manganese metal and simultaneous production of EMD by ion-exchange membrane electrolysis in the advantage of higher utilization rate of equipment and lower evolution of hydrogen and oxygen. The cathodic and anodic current efficiencies are 97.53% and 98.62% respectively. The energy consumption of manganese and manganese dioxide are 3591kWh·t~(-1) and 2245kWh·t~(-1).
引文
1梅光贵,谭柱中,李维健等.锰冶金学.湖南:中南工业大学出版社. 2004: 322~324, 465~467
    2罗东岳.无硒电解锰添加剂的研制及电解生产工艺研究.中国地质大学硕士学位论文. 2006: 1~12
    3 T. W. Coleman, R. A. Griffin. Method for Electrodepositing Metallic Manganese. U.S. Patent: 4478697. 1984-10-23
    4谭柱中.中国电解金属锰工业现状.中国锰业. 2005, 23(2): 5~6
    5谭柱中. 1996~2006年中国电解金属锰工业的发展与展望.中国锰业. 2007, 25(1): 5~10
    6刘庭军,谭中坚,廖胜群.中国电解锰产业发展趋势分析.中国锰业. 2006, 24(1): 9~10
    7彭长宏,陈艺锋,唐谟堂.直接法制备铁锰锌共沉淀粉的工业试验. 2007,
    26(1): 33~38
    8 M. Rorman, M. Drofenik. Hydrothermal Synthesis of Manganese Zinc Ferrites. J. of America Ceramic Society. 1995, 78(9): 2449~2455
    9张野.四氧化三锰超细粉体的制备.金属矿山. 2001, (7): 22~31
    10 Arai H, Okada S., Sakurai Y. et al. Reversibility of LiNiO2 Cathode. Solid State Ion. 1997, 95(3-4): 275~282
    11张碧泉,卢兆忠.铵型锌锰电池用化学锰的研制.电池. 2000, 30(4): 161~162
    12李穗中.废干电池电解制取锌和二氧化锰的研究.广州环境科学. 2005, 20(2): 27~31
    13张泾生.中国锰业面临的机遇和挑战.中国锰业. 2007, 25(1): 1~4
    14 J. B. Goddard, D. J. Hansen. Method for Electrolytic Deposition of Manganese. U.S. Patent: 4,149,944. 1979-04-17
    15 Mnrti R. Electrodeposition of Manganese from Aqueous Manganese Sulphate Solution. Indian Journal of Technology. 1986, 24(5): 270~274
    16 Petru Ilea, Ionel-Cǎtǎlin Popescu, Melania Urdǎet al. The Electrodeposition of Manganese from Aqueous Solutions of MnSO4.Ⅳ: Electrowinning by Galvanostatic Electrolysis. Hydrometallurgy. 1997, (46): 149~156
    17郑一雄,张其昕.从MnCl 2 -NH4 Cl-H2 SeO3体系制备电解锰的研究.华侨大学学报自然科学版. 1993, 14(3): 332~336
    18郑一雄,柯伙钊.用PbO2 /Ti作阳极从MnCl2体系制备电解锰(Ⅱ).华侨大学学报(自然科学版). 1997, 18(2): 142~145
    19郑一雄.石墨基二氧化铅作阳极从MnCl2体系制备电解金属锰,中国锰业. 1998, 16(3): 30~33
    20王敬民.电解金属锰阴极过程初探.中国锰业. 1994, 12(1): 47~49
    21郑一雄.β-氧化铅电极在制备电解锰中的应用.无机盐工业. 1999, 31(2): 13~15
    22 J. E. Lenwis. Electrolytic Manganese Metal from Chloride Electrolytes. J. Applied Electrochem. 1976, (6): 199~209
    23张其昕,陈安,朱则善.从氯化锰电解液电解金属锰的研究(Ⅰ) .福建师大学报. 1981, (2): 73~78
    24李海东.低硅电解金属锰试验.中国锰业. 2001, 19(2): 17~19
    25张邵春.高纯无硒电解金属锰混合添加剂的研制.湖南地质. 2002, 21(4):
    299~301
    26何雨石,裴力,马紫峰.层状结构Li[Ni,Co,Mn]O2正极材料制备与改性研究进展.化工进展. 2007, 26(3): 337~342
    27李同庆.现代电解二氧化锰工业发展动向.电池. 2001, 31(2): 25~32
    28符剑刚,许定胜,毛耀清.电解MnO2生产工艺的现状及发展.中国锰业. 2004, 22(1): 26~32
    29梅光贵,周元敏,刘荣义.电解二氧化锰国内外产销现状和发展.中国锰业. 2003, 21(4): 10~12
    30曾克新,张武.中国四氧化三锰工业可持续发展面临的问题与对策.中国锰业. 2005, 23(2): 7~10
    31朱力才.新型锰氧化物的制备及其电化学性能研究.华南师范大学硕士论文. 2005: 1~10
    32楼颖伟.纳米二氧化锰制备及电化学性能研究.浙江工业大学硕士论文. 2004: 24~27
    33 F. Leroux, L. F. Nazar. 3-volt Manganese Dioxide: the Amorphous Alternative. Solid State Ionics. 1997, (100): 103~113
    34 Jinxiang Dai, Sam F. Y. Li, Kok Siong Siow, et al. Synthesis and Characterization of the Hollandite-type MnO2 as a Cathode Material in Lithium Batteries. Electrochimica Acta. 2000, (45): 2211~2217
    35何英.电池用二氧化锰的制造方法及其进展.电池工业. 1999, 4(6): 230~233
    36 Chaojiong Zhang. Method of Preparing a Rechargeable Modified Manganese Containing Material by Electrolytic Deposition and Related Material. U.S. Patent: 5,250,374. 1993-10-05
    37肖峥.高纯、高活性电解二氧化锰.中国专利: CN 1341777A. 2002-03-27
    38 W. J. Dawson. Hydrothermal Synthesis of Advanced Ceramic Powders. America Ceramic Society Bulletin. 1988, 67(10): 1673~1678
    39董丽丽.新生态MnO2吸附法处理阳离子染料废水的研究.工业用水与废水. 2002, 33(2): 55~57
    40武正簧.钌钛阳极生产二氧化锰及钌的回收研究.氯碱工业. 1999, (6): 6~8
    41张其星.电池级二氧化锰的生产.中国专利: CN 1034185, 1989-07-26
    42王绍斌,董孟君.电解二氧化锰的电极过程与影响因素.中国锰业. 1997, 15(1): 31~35
    43江培海,张寅生,王合渊等.矿浆电解法制取电解二氧化锰.有色金属(冶炼部分), 1998, (5): 2~5
    44王绍斌,董孟君.电解二氧化锰的电极过程与影响因素.中国锰业. 1997,
    15(1): 31~35
    45 Fleischman M. Thirsk H. R. The Mechanism of Processing for Electrolytic Manganese Dioxide. J. Electroche. Soc. Japan(Overseas Edition), 1960, 28(2): 170~175
    46杉森正敏,关根太郎.电解二氧化锰的电极过程.电气化学. 1969, 37(2): 63~69
    47 C. J. Clarke, G. J. Browning, S. W. Donne. An RDE and RRDE Study into the Electrodeposition of Manganese Dioxide. Electrochimica Acta. 2006, (51): 5773~5784
    48 C. E. Byrd. Preparation and Use of Electrodes. U.S. Patent: 4,970,094. 1990-11-13
    49 I. R. Higgins. Simultaneous Electro-deposition of Manganese and Manganese Dioxide. U.S. Patent: 4,707,227. 1987-11-17
    50桑兆昌,孟民权,巩淑清等.成对电解法制备高纯金属锰和微粒二氧化锰的试验研究.中国锰业. 1998, 16(1): 42~43
    51 G. Csicsovszki, T. Kékesi, T. I. T?r?k. Selective Recovery of Zn and Fe from Spent Pickling Solutions by the Combination of Anion Exchange and MembraneElectrowinning Techniques. Hydrometallyrgy. 2005, (77): 19~28
    52 K. N. Njau, M. vd. Woude, G. J. Visser, L. J. J. Janssen. Electrochemical Removal of Nickel Ions from Industrial Wastewater. Chemical Engineering Journal. 2000, (79): 187~195
    53钟琼,高栗,杨婵等.用离子交换膜-电解法处理金属锰生产废水的研究. 2007, 25(1): 27~29
    54龚安华,孙岳玲.离子交换膜电解分离溶液中硫酸根离子的实验研究.化学工程师. 2006, (11): 59~61
    55张明月,廖列文.新型膜分离技术及其在化工行业中的应用.广西化工. 2002, 31(2): 20~23
    56张启修,肖连生.膜技术在稀有金属冶炼中的应用.稀有金属. 2003, 27(1): 1~5
    57顾觉奋.膜分离技术在微生物制药中的应用.中国抗生素杂志. 2005, 30(1): 26~30
    58 M. Szumski, E. Klodzinska, B. Buszewski. Separation of Microorganisms Using Electromigration Techniques. J. of Chromatography A. 2005, (1084): 186~193
    59宋世红.离子交换膜综述.浙江国际海运职业技术学院学报. 2006, (2): 16~17
    60 Gab-Jin Hwang, H. Ohya. Preparation of Cation Exchange Membrane as a Separator for the All-vanadium Redox Flow Battery. J. of Membrane Science. 1996, (120): 55~67
    61文越华,张华民,钱鹏等.离子交换膜全钒液流电池的研究.电池. 2005, 35(6): 414~416
    62 Tian B., Yan C. W., Wang F. H.. Modification and Evaluation of Membrane for Vanadium Redox Battery Applications. J. of Applied Electrochem. 2004, 34(12): 1205~1210
    63 E. K. Z., M. C. Müller, E. Staude. The Storage Battery with Bipolar Membranes. J. of Membrane Science. 1998, (141): 231~243
    64 D. Bessarabov, R. Sanderson. Solid Polyelectrolyte (SPE) Membrane with Textured Surface. J. of Membrane Science. 2004, (244): 69~76
    65王亚军.伍迪BM27离子膜电解槽的生产工艺控制.中国氯碱. 2006, (9): 20~22
    66陈孟军.电解锰产品发黑探讨.四川冶金. 1995, (3): 46~48
    67 M. Ghaemi, Z. Biglari, L. Binder. Effect of Bath Temperature on Electrochemical Properties of the Anodically Deposited Manganese Dioxide. Power Sources. 2001, (102): 29~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700