Nischarin在中枢神经系统的分布及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     目前针对脊髓损伤的临床治疗仍然缺乏有效手段,如何促进损伤后神经再生,提高临床治疗效果,是神经科学研究者的研究重点。轴突内细胞骨架是脊髓损伤后微环境中多种细胞外部信号在细胞内的整合位点,越来越多的研究均证明通过调控细胞骨架蛋白的重组可综合细胞外部因素和内在因子的作用,显著改善轴突再生的能力并促进功能的恢复。细胞骨架蛋白则受细胞内多种蛋白调控因子调控,因而这些能作用于轴突内细胞骨架蛋白的调控因子对脊髓损伤的修复有着举足轻重的作用。
     Nischarin是2000年发现的一种分布于多种细胞胞浆的蛋白质。在过去的十年中关于Nischarin蛋白的功能研究主要集中于它对肿瘤细胞迁移能力的抑制作用上Alahari及同事发现Nischarin在胞浆内可与Rho GTPase家族的重要成员Rac1、PAK结合并直接抑制它们的活性,从而减弱细胞的活动能力。随着研究的深入,又发现Nischarin不仅能抑制PAK,还能直接抑制PAK下游的关键激酶LIMK的活性,从而阻碍细胞骨架相关蛋白cofilin的磷酸化,进而影响细胞运动能力。这些研究表明,肿瘤细胞的内源性Nischarin可通过调控RhoGTPase/PAK/LIMK/cofilin信号通路,影响细胞骨架蛋白的重组。如前所述,能调控神经元轴突内细胞骨架蛋白重组的因子对脊髓损伤修复有极其重要的意义,Nischarin若在神经元中表达,且也能通过Rho GTPase信号通路调控轴突内细胞骨架蛋白重组,则应该有理由成为脊髓损伤治疗中的一个新靶标。
     为此,本课题的主要研究目的为:探讨新蛋白Nischarin在正常成年大鼠中枢神经系统的表达与分布;研究Nischarin蛋白在脊髓损伤后轴突再生过程中的作用及其可能机制。获得以上两块内容的实验结果并加以分析,可望拓展对新蛋白Nischarin功能的研究范围,并可能为脊髓损伤的基因或分子治疗提供新的思路和靶点。
     方法:
     1取正常成年大鼠组织,用RT-qPCR、western blot及免疫荧光染色方法检测大鼠各主要器官和中枢神经系统各部位Nischarin的表达情况。
     2建立大鼠脊髓损伤模型,探讨损伤后不同阶段Nischarin蛋白在脊髓组织的表达情况;在细胞水平通过RNAi技术抑制内源性Nischarin蛋白表达,采用活细胞成像技术观察神经细胞突起生长的变化。
     3采用免疫共沉淀技术研究神经元内源性Nischarin与PAK1、LIMK1的互作情况;探讨Nischarin对PAK1、LIMK1及cofilin的磷酸化调控作用及其对细胞骨架蛋白F-actin的调控;活细胞成像法观察PAK1的特异性抑制剂IPA3对Nischarin-shRNA调控神经突起生长作用的影响。
     结果:
     1Nischarin蛋白在正常成年大鼠的心、肺、、肾、胃、小肠、脑和脊髓组织中均有表达,在脏和脑组织中最为丰富;其mRNA及蛋白广泛表达于脑的各个部位,在大脑皮层神经元上表达量最高,海马区神经元其次,脑干和嗅球部位则较低,且只表达于神经元而非胶质细胞;在神经细胞内,Nischarin的表达集中在细胞的核周及细胞突起的前缘。
     2在正常成年大鼠脊髓组织上,Nischarin主要分布在前角运动核神经元的核周胞浆中;与正常大鼠脊髓组织比较,Nischarin mRNA的表达从SCI后1d起显著增高,损伤后7d达到顶峰(P<0.01),随后下降;与之相符,SCI后1d起Nischarin蛋白的表达即有显著增高(P<0.05),损伤后7d达到最高(P<0.05),此后下降;免疫荧光染色结果提示SCI后3d,脊髓组织结构紊乱,除神经元有Nischarin表达外,胶质细胞上也一定量的表达;损伤后7d,损伤区Nischarin高度表达,大量胶质细胞增生;用aggrecan、CSPGs或TNF-α三种脊髓损伤局部产物处理Neuro-2a细胞,孵育2h后对Nischarin的表达影响不大(P>0.05),孵育24h和48h后三者均显著促进Nischarin的表达(P<0.05)。
     3①用Nis-siRNA转染Neuro-2a细胞能有效抑制内源性Nischarin的表达,抑制率达到86%(P<0.01),Neuro-2a细胞的神经突起形态发生明显变化,有突起细胞百分比较control-siRNA组细胞增加3.3倍(P<0.001),最长突起平均值增长5.4倍(P<0.001),而平均细胞突起数目增加了1.57倍(P<0.01);②将4条Nis-shRNA克隆到慢病毒质粒载体,用脂质体转染Neuro-2a细胞评价其对Nischarin的内源性表达的抑制效果,实时定量PCR结果显示Neuro-2a细胞上的转染效率达到80%以上,与未处理细胞和对照shRNA比较,4个Nis-shRNA质粒均能有效抑制Nischarin的表达,其中Nis-shRNA-3的抑制效率到达60%(P<0.05),Western Blotting实验结果与RT-qPCR实验结果相符,4个Nis-shRNA质粒中以3号质粒的抑制效果为最佳,抑制率为81.3%(P<0.01);③用慢病毒包装体系对3号质粒及其scramble对照质粒进行包装,收获病毒液,感染PC-12细胞和原代培养神经元,荧光显微镜下发现抑制内源性Nischarin表达显著促进PC-12细胞神经突起的生长,细胞最长神经突起的平均值增加140%(P<0.01),每个细胞的平均突起数目增加56%(P<0.05),神经突起生长速度明显增快;抑制内源性Nischarin表达也促进原代培养大脑皮层神经元突起的生长,细胞最长神经突起的平均值增加51%(P<0.05),但对神经元的平均突起数目影响不显著(P>0.05);④胶质瘢痕抑制物aggrecan或CSPGs使Neuro-2a细胞的最长神经突起平均值和突起数目均显著下降,而当内源性Nischarin被抑制后,不仅使得PDL基质上的神经细胞的突起生长加速,而且还促使细胞克服CSPGs或aggrecan对神经生长的抑制作用(P<0.05)。
     4①免疫共沉淀结果显示,神经元内源性Nischarin可以与PAK1、LIMK1结合;②用Nischarin-shRNA转染Neuro-2a细胞使其内源性Nischarin表达量降低75%(P<0.01),于此同时,p-PAK1/PAK1比值、p-LIMK1/LIMK1比值及p-cofilin/cofilin比值分别增加了41.5%(P<0.05)、40%(P<0.05)及57.5%(P<0.01);而在SCI大鼠模型上,Nischarin的表达先增高再下降,在损伤后一周达到峰值,比sham组增高196%(P<0.01),而p-PAK1/PAK1、p-LIMK1/LIMK1及p-cofilin/cofilin比值均呈现先降低再增高的趋势,并且均在损伤后一周达到最低值,分别比sham组下降了40.2%(P<0.05)、56.3%(P<0.01)及61.8%(P<0.01);③免疫荧光染色结果显示,在感染Nischarin-shRNA病毒的EGFP阳性神经元上,神经突起生长锥处F-actin的含量显著增高;④抑制内源性Nischarin的表达可促使抑制性环境下神经细胞的突起生长,但这种促进作用在加入PAK1的抑制剂IPA3之后被完全逆转(P<0.05)。
     结论:
     1Nischarin在正常成年大鼠的中枢神经系统呈区域化分布,主要表达于神经元胞浆核周部位及神经突起前缘。
     2脊髓损伤可引起Nischarin的表达时间依赖性增高,其表达上调可能与脊髓损伤局部高浓度的TNF-α、抑制性物质CSPGs和aggrecan有关。
     3用RNAi技术抑制神经细胞内源性Nischarin的表达后有效促进神经细胞在正常及抑制性环境中神经突起的生长。
     4神经元内源性Nischarin与PAKl及LIMK1存在互作关系,直接抑制PAK1的磷酸化,并影响LIMK1和cofilin的磷酸化过程;这一机制可能介导了Nischarin蛋白对神经突起生长的抑制作用。
Introduction
     There is still a lack of effective means of clinical treatment for spinal cord injury at present. How to promote nerve regeneration and to improve the clinical treatment effect is still the focus of neuroscience researchers. The axon cytoskeleton is the intracellular site where a variety of the outside cell signals in microenvironment integrated after spinal cord injury. More and more studies have proved that reorganization of cytoskeletal proteins, resulted from regulation by both the intracelluar and extracellular factors, improve the ability of axonal regeneration and promote functional recovery. Cytoskeletal proteins are affected by many intracellular protein regulators. Thus, these regulatory factors acting on the cytoskeleton in the axon play a decisive role in repair of spinal cord injury.
     Nischarin is a novel protein found in2000and located in the cytoplasm of a variety of cells. In the past decade, functional studies of Nischarin protein mainly focus on its inhibitory effect on the migration of tumor cells. Alahari and colleagues found that Nischarin bind to Racl and PAK, important members of and Rho-GTPase family, and directly inhibit their activity in the cytosol, which suppresses the cell motility. With the deepening of the study, it was also found that Nischarin can not only inhibit PAK, but also directly inhibit the activity of LIMK, a key downstream kinase of PAK, thereby negatively regulate the phosphorylation of cofilin, a cytoskeleton associated protein, and finally affect cell motility. As mentioned above, factors which can regulate cytoskeletal protein reorganization in axon play an important role on the repair of spinal cord injury. If Nischarin is expressed in neurons, and also regulates the cytoskeleton reorganization via Rho-GTPase signaling pathway in the axon, it should have become a novel target in the treatment of spinal cord injury.
     Therefore, the main purposes of the study are to investigate the expression and distribution of Nischarin protein in the nervous system of normal adult rats, especially in the spinal cord, and to study the function of Nischarin protein on axonal regeneration after spinal cord injury and its possible mechanism. Based on these experimental results and analysis, the scope of functional study of Nischarin protein is expected to expand, and it may provide new ideas and targets for gene or molecular treatment of spinal cord injury.
     Methods
     1The expression of Nischarin in different parts of organs and central nervous system in the normal adult rats was detected by real-time quantitative reverse transcription-PCR (RT-qPCR), Western blot assay and immunofluorescence staining.
     2A rat model of spinal cord injury was established and the expression of Nischarin protein in different stages of SCI was evaluated by RT-qPCR and Western blot. By inhibiting the expression of Nischarin with RNAi technique in neuronal cells and primary cortical neurons, changes in neurite growth of neuronal cells were analyzed by live cell imaging technique.
     3The interaction between endogenous Nischarin and PAK1, Nischarin and LIMK1were examined by co-immunoprecipitation. The phosphorylation regulation of Nischarin on PAK1, LIMK1and cofilin in Neuro-2a cells was detected by Western blot assay. The regulation effect of Nischarin on cytoskeletal protein F-actin was observed after immunofluorescence staining. Finally, the effect of IPA3, the specific inhibitor of PAK1, against Nischarin-shRNA was assessed by live cell imaging method.
     Results
     1Nischarin protein is differentially expressed in heart, lung, liver, kidney, stomach, intestine, brain and spinal cord tissues from normal adult rats, with a higher expression in the liver, brain and spinal cord tissue. It's mRNA and protein is widely expressed in brain, strongest staining for Nischarin was present in the pyramidal neurons of the cerebral cortex and hippocampus, while weak in brain stem and the olfactory bulbs. In addition, Nischarin is only expressed in neurons but not glial cells. The subcellular distribution of Nischarin in neurons or Neuro-2a and PC-12cells were concentrated in the perinuclear and the leading cytoplasmic processes of cells.
     2In the spinal cord of normal adult rats, Nischarin was distributed mainly in the perinuclear cytoplasm of the neurons in lateral anterior horn motor nucleus. Compared with normal rats, the Nischarin mRNA level was significantly increased1d after injury, and reached the peak by7d after SCI (P<0.01), then decreased. Consistently, the expression of Nischarin protein were significantly increased at1d after injury (P<0.05) and reached the highest at7d after SCI (P<0.05), then dropped briefly and began to increase from3w after SCI (P<0.05). Immunofluorescence staining results showed that in addition to neurons, glial cells also have a certain amount of expression of Nischarin at3d after SCI, the expression of Nischarin in the damage zone strongly expressed at7d after injury. With the treatment of aggrecan, CSPGs or TNF-a, the local products in the injury sites of the spinal cord, the expression of Nischarin did not changed after2h-incubation (P>0.05), but were significantly promoted after24h-or48h-incubation (P<0.05).
     3①Expression of the endogenous Nischarin in Neuro-2a cells transfected by Nis-siRNA was effectively inhibited and the inhibition rate reached86%(P<0.01). In the meantime, the neurite morphology of Neuro-2a cells changed obviously. Compared to cells in control-siRNA group, the percentage of neurite-bearing cells increased by3.3times (P<0.001), the mean length of the longest neurite increased by5.4times (P<0.001), while the number of neurites per cell increased by1.57times (P<0.01).
     ②The4Nis-shRNA was cloned into the lentiviral vector, and the inhibitory effect was evaluated by checking the expression of endogenous Nischarin in Neuro-2a cells transfected with the vectors using lipofectamine. Real-time quantity PCR results revealed that the transfection efficiency reaches above80%. Compared to cells of the untreated and control shRNA groups, all of the4Nis-shRNA plasmids effectively knocked down Nischarin expression, amone which, the inhibition efficiency of Nis-shRNA-3reached60%(P<0.05). Consistently, Western Blotting results indicated that plasmid Nis-shRNA-3had the highest inhibitory rate of81.3%(P<0.01).
     ③The No.3plasmid and the scramble control were packaged into the virus using lentiviral packaging system and the virus liquid was harvested and infected into the PC-12cells and primary cultured neurons. The fluorescence microscopy results indicated that knockdown of endogenous Nischarin expression significantly promote neurite outgrowth in PC-12cell. The mean length of the longest neurite increased by140%(P<0.01) and the average number of neurites per cell increased by56%(P <0.05). It also promotes neurites outgrowth in the cultured cortical neurons. The average length of the longest neurite cells increased by51%(P<0.05), but the average numbers of neurites did not changed (P<0.05).
     ④The length of the longest neurites and the number of average neurites per cell were significantly decreased when Neuro-2a cells were treated by myelin inhibitors aggrecan or CSPGs. When the expression of the endogenous Nischarin was inhibited, the neurite outgrowth was accelerated not only on the PDL matrix, but also on the CSPGs or aggrecan by promoting cells overcome the inhibitors (P<0.05).
     4①Co-immunoprecipitation data suggested that the endogenous Nischarin in neurons interacted with PAK1and LIMK1.②The expression of endogenous Nischarin in Neuro-2a cells decreased by75%by Nischarin-shRNA transfection (P<0.01). At the same time, p-PAK1/PAK1, p-LIMK1/LIMKl and p-cofilin/cofilin ratio were increased by41.5%(P<0.05),40%(P<0.05) and57.5%(P<0.01), respectively. In the model of SCI rats, the expression of Nischarin increased with time, reached the peak in one week after injury with a196%increase over control (P <0.01), and then decreased. On the contrary, p-PAK1/PAKl, p-LIMK1/LIMK1and p-cofilin/cofilin ratio were decreased firstly and then increased, and reached the minimum in one week after injury, decreased by40.2%(P<0.05),56.3%(P<0.01) and61.8%(P<0.01), respectively.③mmunofluorescence staining revealed that F-actin increased significantly in the growth cones of the neurons infected by Nischarin-shRNA lentivirus.④The neurite outgrowth was promoted by inhibition of endogenous Nischarin expression in the neuronal cells, however, this promoting effect was completely reversed after adding IPA3, a PAK1inhibitor (P<0.05).
     Conclusions
     1Nischarin is regionally distributed in the central nervous system of the normal adult rats, mainly in the perinuclear region and the leading edges of the protrusions of the neurons.
     2The expression of Nischarin increased as a time-dependent manner after spinal cord injury. The upregulation may be associated with TNF and the inhibitory substances CSPGs and aggrecan.
     3Inhibiting expression of endogenous Nischarin using RNAi techniques effectively promote neurite outgrowth of the neuronal cells in both normal and inhibitory environments.
     4The interaction between endogenous Nischarin and PAK1or LIMK1in neurons directly inhibits phosphorylation of PAK1, and regulates LIMK1and cofilin phosphorylation activity. The mechanism may mediate the inhibitory effect of Nischarin protein on the neurite outgrowth.
引文
[1]Alahari SK, Lee JW, and Juliano RL. Nischarin, a novel protein that interacts with the integrin alpha 5 subunit and inhibits cell migration [J]. J Cell Biol,2000, 151(6):1141-54.
    [2]Alahari SK. Nischarin inhibits Rac induced migration and invasion of epithelial cells by affecting signaling cascades involving PAK[J]. Exp Cell Res ,2003, 288(2):415-24.
    [3]Alahari SK and Nasrallah H. A membrane proximal region of the integrin alpha5 subunit is important for its interaction with nischarin [J]. Biochem J,2004, 377(Pt 2):449-57.
    [4]Alahari SK, Reddig PJ, and Juliano RL. The integrin-binding protein Nischarin regulates cell migration by inhibiting PAK[J]. EMBO J,2004,23(14):2777-88.
    [5]Ding Y, Milosavljevic T, and Alahari SK. Nischarin inhibits LIM kinase to regulate cofilin phosphorylation and cell invasion [J]. Mol Cell Biol,2008, 28(11):3742-56.
    [6]Endo M, Ohashi K, and Mizuno K. LIM kinase and slingshot are critical for neurite extension [J]. J Biol Chem,2007,282(18):13692-702.
    [7]Montani L, Gerrits B, Gehrig P, et al. Neuronal Nogo-A modulates growth cone motility via Rho-GTP/LIMKl/cofilin in the unlesioned adult nervous system [J]. J Biol Chem,2009, 284(16):10793-807.
    [8]Heasman SJ and Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol, 2008,9(9):690-701.
    [9]Machacek M, Hodgson L, Welch C, et al. Coordination of Rho GTPase activities during cell protrusion [J]. Nature, 2009, 461(7260):99-103.
    [10]Bouquet C and Nothias F. Molecular mechanisms of axonal growth [J]. Adv Exp Med Biol,2007, 621:1-16.
    [11]Yiu G and He Z. Glial inhibition of CNS axon regeneration [J]. Nat Rev Neurosci,2006, 7(8):617-27.
    [12]Chen TJ, Gehler S, Shaw AE, et al. Cdc42 participates in the regulation of ADF/cofilin and retinal growth cone filopodia by brain derived neurotrophic factor [J]. J Neurobio,2006, 66(2):103-14.
    [13]Sun Z, Chang CH, and Ernsberger P. Identification of IRAS/Nischarin as an 11-imidazoline receptor in PC12 rat pheochromocytoma cells [J]. J Neurochem,2007, 101(1):99-108.
    [14]李斐.吴宁.李锦.咪唑啉1型受体与其候选蛋白的研究进展.[J].中国药理学通报.,2005,21(6):641-645.
    [15]Piletz JE, Ivanov TR, Sharp JD, et al. Imidazoline receptor antisera-selected (IRAS) cDNA: cloning and characterization [J]. DNA Cell Biol,2000,19(6):319-29.
    [16]Jain P, Baranwal S, Dong S, et al. Integrin-binding protein nischarin interacts with tumor suppressor liver kinase B1 (LK1B1) to regulate cell migration of breast epithelial cells [J]. J Biol Chem,2013,288(22):15495-509.
    [17]Kuijl C, Pilli M, Alahari SK, et al. Rac and Rab GTPases dual effector Nischarin regulates vesicle maturation to facilitate survival of intracellular bacteria [J]. EMBO J,2013, 32(5):713-27.
    [18]Dontenwill M, Pascal G, Piletz JE, et al. IRAS, the human homologue of Nischarin, prolongs survival of transfected PC12 cells [J]. Cell Death Differ,2003, 10(8):933-5.
    [19]Li F, Wu N, Su RB, et al. Involvement of phosphatidylcholine-selective phospholipase C in activation of mitogen-activated protein kinase pathways in imidazoline receptor antisera-selected protein [J]. J Cell Biochem,2006, 98(6):1615-28.
    [20]Lim KP and Hong W. Human Nischarin/imidazoline receptor antisera-selected protein is targeted to the endosomes by a combined action of a PX domain and a coiled-coil region [J]. J Biol Chem,2004,279(52):54770-82.
    [21]Cooper JA. A mechanism for inside-out lamination in the neocortex [J]. Trends in Neurosciences,2008,31(3):113-119.
    [22]Cayre M, Canoll P, and Goldman JE. Cell migration in the normal and pathological postnatal mammalian brain [J]. Progress in Neurobiology,2009, 88(1):41-63.
    [23]Wu X, Xu W, Cui G, et al. The expression pattern of Nischarin after lipopolysaccharides (LPS)-induced neuroinflammation in rats brain cortex [J]. Inflamm Res,2013,62(11):929-40.
    [24]李建军.高峰.刘舒佳.地震后脊髓损伤患者的救治与康复.[J].中国康复理论与实践.,2008,14(7):602-605.
    [25]Ding Y, Kastin AJ, and Pan W. Neural plasticity after spinal cord injury [J]. Curr Pharm Des,2005,11(11):1441-50.
    [26]Baptiste DC, Tighe A, and Fehlings MG Spinal cord injury and neural repair: focus on neuroregenerative approaches for spinal cord injury [J]. Expert Opin Investig Drugs,2009, 18(5):663-73.
    [27]Yang LJ and Schnaar RL. Axon regeneration inhibitors [J]. Neurol Res,2008, 30(10):1047-52.
    [28]Haas CA, Rauch U, Thon N, et al. Entorhinal cortex lesion in adult rats induces the expression of the neuronal chondroitin sulfate proteoglycan neurocan in reactive astrocytes [J]. J Neurosci, 1999, 19(22):9953-63.
    [29]Rhodes KE and Fawcett JW. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? [J]. J Anat,2004, 204(1):33-48.
    [30]Lemons ML, Sandy JD, Anderson DK, et al. Intact aggrecan and fragments generated by both aggrecanse and metalloproteinase-like activities are present in the developing and adult rat spinal cord and their relative abundance is altered by injury [J]. J Neurosci,2001,21(13):4772-81.
    [31]Pineau I and Lacroix S. Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved [J]. J Comp Neurol,2007,500(2):267-85.
    [32]Baranwal S, Wang Y, Rathinam R, et al. Molecular characterization of the tumor-suppressive function of nischarin in breast cancer [J]. J Natl Cancer Inst,2011,103(20):1513-28.
    [33]Hellal F, Hurtado A, Ruschel J, et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury [J]. Science,2011,331(6019):928-31.
    [34]Sekiguchi A, Kanno H, Ozawa H, et al. Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice [J]. J Neurotrauma,2012,29(5):946-56.
    [35]Kanno H, Ozawa H, Sekiguchi A, et al. The role of mTOR signaling pathway in spinal cord injury [J]. Cell Cycle,2012, 11(17):3175-9.
    [36]Floriddia EM, Rathore KI, Tedeschi A, et al. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury [J]. J Neurosci.2012, 32(40):13956-70.
    [37]Schulz A, Geissler KJ, Kumar S, et al. Merlin inhibits neurite outgrowth in the CNS [J]. J Neurosci,2010,30(30):10177-86.
    [38]Pan W, Ding Y, Yu Y, et al. Stroke upregulates TNFalpha transport across the blood-brain barrier [J]. Exp Neurol,2006, 198(1):222-33.
    [39]Yu C, Kastin AJ, Ding Y, et al. Gamma glutamyl transpeptidase is a dynamic indicator of endothelial response to stroke [J]. Exp Neurol,2007,203(l):116-22.
    [40]Schwab ME. Nogo and axon regeneration [J]. Curr Opin Neurobiol,2004,14(1):118-24.
    [41]Pemet V and Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair [J]. Cell Tissue Res,2012,349(1):97-104.
    [42]Fawcett JW. Overcoming inhibition in the damaged spinal cord [J]. J Neurotrauma,2006, 23(3-4):371-83.
    [43]Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration [J]. Mol Neurobiol,2006,33(2):155-79.
    [44]Blesch A, Fischer I, and Tuszynski MH. Gene therapy, neurotrophic factors and spinal cord regeneration [J]. Handb Clin Neurol,2012,109:563-74.
    [45]Di Giovanni S. Molecular targets for axon regeneration: focus on the intrinsic pathways [J]. Expert Opin Ther Targets, 2009, 13(12):1387-98.
    [46]Afshari FT, Kappagantula S, and Fawcett JW. Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury [J]. Expert Rev Mol Med,2009, 11:e37.
    [47]Ruff RL, McKerracher L, and Selzer ME. Repair and neurorehabilitation strategies for spinal cord injury [J]. Ann N Y Acad Sci,2008,1142:1-20.
    [48]Friedl P and Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer [J]. Nat Rev Mol Cell Biol,2009, 10(7):445-57.
    [49]Dergham P, Ellezam B, Essagian C, et al. Rho signaling pathway targeted to promote spinal cord repair [J]. J Neurosci,2002, 22(15):6570-7.
    [50]Hannila SS and Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury [J]. Exp Neurol,2008,209(2):321-32.
    [51]Gao Y, Deng K, Hou J, et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo [J]. Neuron,2004, 44(4):609-21.
    [52]Lasorella A, Stegmuller J, Guardavaccaro D, et al. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth [J]. Nature,2006, 442(7101):471-4.
    [53]Park KK, Liu K, Hu Y, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway [J]. Science,2008, 322(5903):963-6.
    [54]Moore DL, Blackmore MG, Hu Y, et al. KLF family members regulate intrinsic axon regeneration ability [J]. Science,2009, 326(5950):298-301.
    [55]Ramachandran PV and Ignacimuthu S. RNA interference-a silent but an efficient therapeutic tool [J]. Appl Biochem Biotechnol,2013,169(6):1774-89.
    [56]Ibraheem D, Elaissari A, and Fessi H. Gene therapy and DNA delivery systems [J]. Int J Pharm,2013.
    [57]Vannucci L, Lai M, Chiuppesi F, et al. Viral vectors:a look back and ahead on gene transfer technology [J]. New Microbiol,2013,36(l):1-22.
    [58]Lundberg C, Bjorklund T, Carlsson T, et al. Applications of lentiviral vectors for biology and gene therapy of neurological disorders [J]. Curr Gene Ther,2008,8(6):461-73.
    [59]Hutson TH, Foster E, Moon LD, et al. Lentiviral Vector-Mediated RNA Silencing in the Central Nervous System [J]. Hum Gene Ther Methods,2013.
    [60]Pluta K and Kacprzak MM. Use of HIV as a gene transfer vector [J]. Acta Biochim Pol,2009, 56(4):531-95.
    [61]Valori CF, Ning K, Wyles M, et al. Development and applications of non-HIV-based lentiviral vectors in neurological disorders [J]. Curr Gene Ther,2008, 8(6):406-18.
    [62]Dropulic B. Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research [J]. Hum Gene Ther,2011,22(6):649-57.
    [63]Oertle T, Huber C, van der Putten H, et al. Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4 [J]. J Mol Biol,2003,325(2):299-323.
    [64]Huber AB, Weinmann O, Brosamle C, et al. Patterns of Nogo mRNA and protein expression in the developing and adult rat and after CNS lesions [J]. J Neurosci,2002,22(9):3553-67.
    [65]Li F, Wu N, Su RB, et al. Comparison of agmatine with moxonidine and rilmenidine in morphine dependence in vitro: role of imidazoline I(1) receptors [J]. Eur J Pharmacol,2009, 612(1-3):1-8.
    [66]Li F, Wu N, Su R, et al. Imidazoline receptor antisera-selected/Nischarin regulates the effect of agmatine on the development of morphine dependence [J]. Addict Biol,2012, 17(2):392-408.
    [67]Gao Y, Li F, Wu N, et al. Effect of agmatine on DAMGO-induced mu-opioid receptor down-regulation and internalization via activation of IRAS, a candidate for imidazoline I(1) receptor [J]. Eur J Pharmacol,2008,599(1-3):18-23.
    [68]McKerracher L, Ferraro GB, and Fournier AE. Rho signaling and axon regeneration [J]. Int Rev Neurobiol,2012,105:117-40.
    [69]Lehmann M, Fournier A, Selles-Navarro 1, et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration [J]. J Neurosci,1999, 19(17):7537-47.
    [70]Nash M, Pribiag H, Fournier AE, et al. Central nervous system regeneration inhibitors and their intracellular substrates [J]. Mol Neurobiol,2009,40(3):224-35.
    [71]Missan DS and DiPersio M. Integrin control of tumor invasion [J]. Crit Rev Eukaryot Gene Expr,2012,22(4):309-24.
    [72]Scales TM and Parsons M. Spatial and temporal regulation of integrin signalling during cell migration [J]. Curr Opin Cell Biol,2011,23(5):562-8.
    [73]Malinin NL, Pluskota E, and Byzova TV. Integrin signaling in vascular function [J]. Curr Opin Hematol,2012,19(3):206-11.
    [74]Myers JP, Santiago-Medina M, and Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions [J]. Dev Neurobiol,2011,71(11):901-23.
    [75]Morini R and Becchetti A. Integrin receptors and ligand-gated channels [J]. Adv Exp Med Biol,2010,674:95-105.
    [76]Scaringi C, Minniti G, Caporello P, et al. Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results [J]. Anticancer Res,2012, 32(10):4213-23.
    [77]Giangreco A, Goldie SJ, Failla V, et al. Human skin aging is associated with reduced expression of the stem cell markers betal integrin and MCSP [J]. J Invest Dermatol,2010, 130(2):604-8.
    [78]Hunt D, Coffin RS, and Anderson PN. The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review [J]. J Neurocytol,2002,31(2):93-120.
    [79]Gross RE, Mei Q, Gutekunst CA, et al. The pivotal role of RhoA GTPase in the molecular signaling of axon growth inhibition after CNS injury and targeted therapeutic strategies [J]. Cell Transplant,2007,16(3):245-62.
    [80]Nobes CD and Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia [J]. Cell 1995, 81(1):53-62.
    [81]Hall A. Rho GTPases and the actin cytoskeleton [J]. Science,1998, 279(5350):509-14.
    [82]McKerracher L and Higuchi H. Targeting Rho to stimulate repair after spinal cord injury [J]. J Neurotrauma,2006,23(3-4):309-17.
    [83]Dubreuil CI, Winton MJ, and McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system [J]. J Cell Biol,2003, 162(2):233-43.
    [84]Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension [J]. Nature, 1997, 389(6654):990-4.
    [85]Hara M, Takayasu M, Watanabe K, et al. Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats [J]. J Neurosurg,2000, 93(1 Suppl):94-101.
    [86]Fehlings MG, Theodore N, Harrop J, et al. A phase I/Ila clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury [J]. J Neurotrauma,2011,28(5):787-96.
    [87]Hall A and Lalli G. Rho and Ras GTPases in axon growth, guidance, and branching [J]. Cold Spring Harb Perspect Biol,2010,2(2):a001818.
    [88]Tahirovic S, Hellal F, Neukirchen D, et al. Racl regulates neuronal polarization through the WAVE complex [J]. J Neurosci,2010,30(20):6930-43.
    [89]Jacobs T, Causeret F, Nishimura YV, et al. Localized activation of p21-activated kinase controls neuronal polarity and morphology [J]. J Neurosci.2007,27(32):8604-15.
    [90]Zhang Z, Ottens AK, Lamer SF, et al. Direct Rho-associated kinase inhibition [correction of inhibiton] induces cofilin dephosphorylation and neurite outgrowth in PC-12 cells [J]. Cell Mol Biol Lett,2006, 11(1):12-29.
    [91]Bamburg JR, Bray D, and Chapman K. Assembly of microtubules at the tip of growing axons [J]. Nature, 1986,321(6072):788-90.
    [92]Bentley D and Toroian-Raymond A. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment [J]. Nature, 1986, 323(6090):712-5.
    [93]Dent EW and Gertler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance [J]. Neuron,2003,40(2):209-27.
    [94]Geraldo S and Gordon-Weeks PR. Cytoskeletal dynamics in growth-cone steering [J]. J Cell Sci,2009,122(Pt 20):3595-604.
    [95]Conde C and Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites [J]. Nat Rev Neurosci,2009,10(5):319-32.
    [96]Schaefer AW, Schoonderwoert VT, Ji L, et al. Coordination of actin filament and microtubule dynamics during neurite outgrowth [J]. Dev Cell,2008,15(1):146-62.
    [97]Kuhn TB, Meberg PJ, Brown MD, et al. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and rho family GTPases [J]. J Neurobiot2000,44(2):126-44.
    [98]Bernstein BW and Bamburg JR. ADF/cofilin: a functional node in cell biology [J]. Trends Cell Biol,2010,20(4):187-95.
    [99]Fass J, Gehler S, Sarmiere P, et al Regulating filopodial dynamics through actin-depolymerizing factor/cofilin[J]. Anat Sci Int,2004,79(4):173-83.
    [100]Ahmed Z, Douglas MR, Read ML, et al. Citron kinase regulates axon growth through a pathway that converges on cofilin downstream of RhoA [J]. Neurobiol Dis,2011,41(2):421-9.
    [101]Meberg PJ and Bamburg JR. Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor [J]. J Neurosci,2000, 20(7):2459-69.
    [102]Gehler S, Shaw AE, Sarmiere PD, et al. Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin [J]. J Neurosci,2004,24(47):10741-9.
    [1]Dehmelt L and Halpain S. Actin and microtubules in neurite initiation:are MAPs the missing link? [J]. J Neurobiol,2004,58(1):18-33.
    [2]Gungabissoon RA and Bamburg JR. Regulation of growth cone actin dynamics by ADF/cofilin [J]. J Histochem Cytochem,2003, 51(4):411-20.
    [3]Kornack DR and Giger RJ. Probing microtubule +TIPs: regulation of axon branching [J]. Curr OpinNeurobiol,2005, 15(1):58-66.
    [4]Suter DM and Forscher P. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance [J]. J Neurobiol,2000,44(2):97-113.
    [5]Pollard TD and Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments [J]. Cell,2003,112(4):453-65.
    [6]Bridgman PC and Dailey ME. The organization of myosin and actin in rapid frozen nerve growth cones [J]. J Cell Biol,1989,108(1):95-109.
    [7]Forscher P and Smith SJ. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone [J]. J Cell Biol,1988, 107(4):1505-16.
    [8]Lewis AK and Bridgman PC. Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity [J]. J Cell Biol, 1992, 119(5):1219-43.
    [9]Yang Q, Zhang XF, Pollard TD, et al. Arp2/3 complex-dependent actin networks constrain myosin Ⅱ function in driving retrograde actin flow [J]. J Cell Biol,2012, 197(7):939-56.
    [10]Dent EW and Gertler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance [J]. Neuron,2003, 40(2):209-27.
    [11]Millard TH, Sharp SJ, and Machesky LM. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex [J]. Biochem J,2004, 380(Pt 1):1-17.
    [12]Kovar DR. Molecular details of formin-mediated actin assembly [J]. Curr Opin Cell Biol,2006, 18(1):11-7.
    [13]Huang TY, DerMardirossian C, and Bokoch GM. Cofilin phosphatases and regulation of actin dynamics [J]. Curr Opin Cell Biof,2006,18(1):26-31.
    [14]Nag S, Larsson M, Robinson RC, et al. Gelsolin: The tail of a molecular gymnast [J]. Cytoskeleton (Hoboken),2013.
    [15]Luduena RF. Multiple forms of tubulin: different gene products and covalent modifications [J]. int Rev Cytol,1998, 178:207-75.
    [16]Matov A, Applegate K, Kumar P, et al. Analysis of microtubule dynamic instability using a plus-end growth marker [J]. Nat Methods,2010,7(9):761-8.
    [17]Mitchison T and Kirschner M. Dynamic instability of microtubule growth [J]. Nature, 1984, 312(5991):237-42.
    [18]Baas PW. Microtubules and axonal growth [J]. Curr Opin Cell Biol,1997,9(1):29-36.
    [19]Tanaka EM and Kirschner MW. Microtubule behavior in the growth cones of living neurons during axon elongation [J]. J Cell Biol,1991,115(2):345-63.
    [20]Schaefer AW, Kabir N, and Forscher P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones [J]. J Cell Biol,2002,158(1):139-52.
    [21]Dent EW and Kalil K. Axon branching requires interactions between dynamic microtubules and actin filaments [J]. J Neurosci,2001,21(24):9757-69.
    [22]Gordon-Weeks PR. Growth cones:the mechanism of neurite advance [J]. Bioessays,1991, 13(5):235-9.
    [23]Tanaka E, Ho T, and Kirschner MW. The role of microtubule dynamics in growth cone motility and axonal growth [J]. J Cell Biol,1995, 128(1-2):139-55.
    [24]Tanaka E and Kirschner MW. The role of microtubules in growth cone turning at substrate boundaries [J]. J Cell Biol,1995,128(1-2):127-37.
    [25]Buck KB and Zheng JQ. Growth cone turning induced by direct local modification of microtubule dynamics [J]. J Neurosci,2002,22(21):9358-67.
    [26]Mack TG, Koester MP, and Pollerberg GE. The microtubule-associated protein MAP IB is involved in local stabilization of turning growth cones [J]. Mol Cell Neurosci,2000, 15(1):51-65.
    [27]Bonnet C, Boucher D, Lazereg S, et al. Differential binding regulation of microtubule-associated proteins MAPI A, MAP1B, and MAP2 by tubulin polyglutamylation [J]. J Biol Chem,2001, 276(16):12839-48.
    [28]Goold RG, Owen R, and Gordon-Weeks PR. Glycogen synthase kinase 3beta phosphorylation of microtubule-associated protein 1B regulates the stability of microtubules in growth cones [J]. J Cell Sci,1999,112 (Pt 19):3373-84.
    [29]Gelfand VI and Bershadsky AD. Microtubule dynamics:mechanism, regulation, and function [J]. Annu Rev Cell Biol,1991,7:93-116.
    [30]Matus A. Microtubule-associated proteins: their potential role in determining neuronal morphology [J]. Annu Rev Neurosci,1988,11:29-44.
    [31]Gordon-Weeks PR and Fischer I. MAP1B expression and microtubule stability in growing and regenerating axons [J]. Microsc Res Tech,2000,48(2):63-74.
    [32]Matus A. Microtubule-associated proteins and neuronal morphogenesis [J]. J Cell Sci Suppl,1991,15:61-7.
    [33]Hirokawa N. Microtubule organization and dynamics dependent on microtubule-associated proteins [J]. Curr Opin Cell Biol,1994,6(1):74-81.
    [34]Tortosa E, Galjart N, Avila J, et al. MAP1B regulates microtubule dynamics by sequestering EB1/3 in the cytosol of developing neuronal cells [J]. EMBO J,2013,32(9):1293-306.
    [35]Henriquez DR, Bodaleo FJ, Montenegro-Venegas C, et al. The light chain 1 subunit of the microtubule-associated protein 1B (MAPIB) is responsible for Tiaml binding and Racl activation in neuronal cells [J]. PLoS One,2012, 7(12):e53123.
    [36]Arendt T and Bullmann T. Neuronal plasticity in hibernation and the role of the microtubule-associated protein tau as a'master switch' regulating synaptic gain in neuronal networks [J]. Am J Physiol Regul Integr Comp Physiol,2013.
    [37]Riederer BM, Pellier V, Antonsson B, et al. Regulation of microtubule dynamics by the neuronal growth-associated protein SCG10 [J]. Proc Natl Acad Sci U S A,1997,94(2):741-5.
    [38]Belmont LD and Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules [J]. Cell, 1996, 84(4):623-31.
    [39]Grenningloh G, Soehrman S, Bondallaz P, et al. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth [J]. J Neurobiol,2004,58(1):60-9.
    [40]Duncan JE, Lytle NK, Zuniga A, et al. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila [J]. PLoS One,2013, 8(6):e68324.
    [41]Westerlund N, Zdrojewska J, Padzik A, et al. Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate [J]. Nat Neurosci,2011,14(3):305-13.
    [42]Baas PW, Ahmad FJ, Pienkowski TP, et al. Sites of microtubule stabilization for the axon [J]. J Neurosci, 1993, 13(5):2177-85.
    [43]Tanaka E and Sabry J. Making the connection: cytoskeletal rearrangements during growth cone guidance [J]. Cell, 1995, 83(2):171-6.
    [44]Kumar P and Wittmann T.+TIPs: SxIPping along microtubule ends [J]. Trends Cell Biol,2012, 22(8):418-28.
    [45]Alves-Silva J, Sanchez-Soriano N, Beaven R, et al. Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (tip interacting proteins) [J]. J Neurosci,2012, 32(27):9143-58.
    [46]Lopus M, Manatschal C, Buey RM, et al. Cooperative stabilization of microtubule dynamics by EB1 and CLIP-170 involves displacement of stably bound P(i) at microtubule ends [J]. Biochemistry,2012, 51(14):3021-30.
    [47]Neukirchen D and Bradke F. Cytoplasmic linker proteins regulate neuronal polarization through microtubule and growth cone dynamics [J]. J Neurosci,2011,31(4):1528-38.
    [48]Lee MK and Cleveland DW. Neuronal intermediate filaments [J]. Annu Rev Neurosci,1996, 19:187-217.
    [49]Gallant PE. Axonal protein synthesis and transport [J]. J Neurocytol,2000, 29(11-12):779-82.
    [50]Eyer 3 and Peterson A. Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein [J]. Neuron,1994, 12(2):389-405.
    [51]Baas PW and Ahmad FJ. Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction [J]. Trends Cell Biol,2001,11(6):244-9.
    [52]Hirokawa N and Takemura R. Molecular motors in neuronal development, intracellular transport and diseases [J]. Curr Opin Neurobiol,2004,14(5):564-73.
    [53]Medeiros NA, Burnette DT, and Forscher P. Myosin Ⅱ functions in actin-bundle turnover in neuronal growth cones [J]. Nat Cell Biol,2006,8(3):215-26.
    [54]Lee SK and Hollenbeck PJ. Organization and translation of mRNA in sympathetic axons [J]. J Cell Sci,2003,116(Pt 21):4467-78.
    [55]Zheng JQ, Kelly TK, Chang B, et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons [J]. J Neurosci,2001,21(23):9291-303.
    [56]Hanz S, Perlson E, Willis D, et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve [J]. Neuron, 2003,40(6):1095-104.
    [57]Willis D, Li KW, Zheng JQ, et al. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons [J]. J Neurosci,2005, 25(4):778-91.
    [58]Galbraith JA and Gallant PE. Axonal transport of tubulin and actin [J]. J Neurocytol,2000, 29(11-12):889-911.
    [59]He Y, Francis F, Myers KA, et al. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments [J]. J Cell Biol,2005,168(5):697-703.
    [60]Baas PW and Buster DW. Slow axonal transport and the genesis of neuronal morphology [J]. J NeurobioL2004,58(1):3-17.
    [61]Gallo G and Letourneau PC. Neurotrophins and the dynamic regulation of the neuronal cytoskeleton [J]. J Neurobiol,2000,44(2):159-73.
    [62]Gallo G and Letourneau PC. Axon guidance: GTPases help axons reach their targets [J]. Curr Biol, 1998,8(3):R80-2.
    [63]Challacombe JF, Snow DM, and Letourneau PC. Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue [J]. J Neurosci,1997, 17(9):3085-95.
    [64]Hall A. Rho GTPases and the actin cytoskeleton [J]. Science, 1998, 279(5350):509-14.
    [65]Luo L. Rho GTPases in neuronal morphogenesis [J]. Nat Rev Neurosci,2000, 1(3):173-80.
    [66]Luo L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity [J]. Annu Rev Cell Dev Biol,2002,18:601-35.
    [67]Moon SY and Zheng Y. Rho GTPase-activating proteins in cell regulation [J]. Trends Cell Biol.2003,13(1):13-22.
    [68]Schmidt A and Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch [J]. Genes Dev,2002, 16(13):1587-609.
    [69]Manganello JM, Huang JS, Kozasa T, et al. Protein kinase A-mediated phosphorylation of the Galphal3 switch I region alters the Galphabetagammal3-G protein-coupled receptor complex and inhibits Rho activation [J]. J Biol Chem,2003,278(1):124-30.
    [70]Ellerbroek SM, Wennerberg K, and Burridge K. Serine phosphorylation negatively regulates RhoA in vivo [J]. J Biol Chem,2003,278(21):19023-31.
    [71]Feoktistov I, Goldstein AE, and Biaggioni I. Cyclic AMP and protein kinase A stimulate Cdc42: role of A(2) adenosine receptors in human mast cells [J]. Mol Pharmacol,2000, 58(5):903-10.
    [72]O'Connor KL and Mercurio AM. Protein kinase A regulates Rac and is required for the growth factor-stimulated migration of carcinoma cells [J]. J Biol Chem,2001,276(51):47895-900.
    [73]Brambilla R, Schnapp A, Casagranda F, et al. Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases [J]. EMBO J,1995, 14(13):3116-26.
    [74]Bruckner K and Klein R. Signaling by Eph receptors and their ephrin ligands [J]. Curr Opin Neurobiol,1998,8(3):375-82.
    [75]Wahl S, Barth H, Ciossek T, et al. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase [J]. J Cell Biol,2000, 149(2):263-70.
    [76]Hu H, Marton TF, and Goodman CS. Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signaling [J]. Neuron,2001, 32(1):39-51.
    [77]Ozdinler PH and Erzurumlu RS. Regulation of neurotrophin-induced axonal responses via Rho GTPases [J]. J Comp Neurol,2001,438(4):377-87.
    [78]Yamauchi J, Chan JR, Miyamoto Y, et al. The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration [J]. Proc Natl Acad Sci U S A,2005,102(14):5198-203.
    [79]Loudon RP, Silver LD, Yee HF, Jr, et al. RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor [J]. J Neurobiol,2006, 66(8):847-67.
    [80]Murray A, Naeem A, Barnes SH, et al. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin Ⅱ [J]. Neural Dev,2010,5:16.
    [81]Rohatgi R, Ma L, Miki H, et al The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly [J]. Cell,1999,97(2):221-31.
    [82]Welch MD and Mullins RD. Cellular control of actin nucleation [J]. Annu Rev Cell Dev Biol,2002,18:247-88.
    [83]Miki H, Yamaguchi H, Suetsugu S, et al. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling [J]. Nature,2000, 408(6813):732-5.
    [84]Amano M, Chihara K, Nakamura N, et al. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase [J]. Genes Cells,1998,3(3):177-88.
    [85]Pruyne D, Evangelista M, Yang C, et al Role of formins in actin assembly: nucleation and barbed-end association [J]. Science,2002, 297(5581):612-5.
    [86]Palazzo AF, Cook TA, Alberts AS, et al. mDia mediates Rho-regulated formation and orientation of stable microtubules [J]. Nat Cell Biol,2001,3(8):723-9.
    [87]Thurston SF, Kulacz WA, Shaikh S, et al. The ability to induce microtubule acetylation is a general feature of formin proteins [J]. PLoS One,2012,7(10):e48041.
    [88]Daub H, Gevaert K, Vandekerckhove J, et al. Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16 [J]. J Biol Chem,2001,276(3):1677-80.
    [89]Wittmann T and Waterman-Storer CM. Cell motiliry: can Rho GTPases and microtubules point the way? [J]. J Cell Sci,2001,114(Pt 21):3795-803.
    [90]Sayas CL, Avila J, and Wandosell F. Glycogen synthase kinase-3 is activated in neuronal cells by Galphal2 and Galphal3 by Rho-independent and Rho-dependent mechanisms [J]. J Neurosci2002,22(16):6863-75.
    [91]Krendel M, Zenke FT, and Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton [J]. Nat Cell Biol,2002, 4(4):294-301.
    [92]Waterman-Storer CM, Worthy lake RA, Liu BP, et al. Microtubule growth activates Racl to promote lamellipodial protrusion in fibroblasts [J]. Nat Cell Biol,1999, 1(1):45-50.
    [93]Zhou FQ, Waterman-Storer CM, and Cohan CS. Focal loss of actin bundles causes microtubule redistribution and growth cone turning [J]. J Cell Biol,2002, 157(5):839-49.
    [94]Challacombe JF, Snow DM, and Letourneau PC. Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue [J]. J Cell Sci,1996,109 (Pt 8):2031-40.
    [95]Rodriguez OC, Schaefer AW, Mandato CA, et al. Conserved microtubule-actin interactions in cell movement and morphogenesis [J]. Nat Cell Biol,2003,5(7):599-609.
    [96]Owen R and Gordon-Weeks PR. Inhibition of glycogen synthase kinase 3beta in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones [J]. Mol Cell Neurosci,2003,23(4):626-37.
    [97]Bouquet C, Soares S, von Boxberg Y, et al. Microtubule-associated protein 1B controls directionality of growth cone migration and axonal branching in regeneration of adult dorsal root ganglia neurons [J]. J Neurosci,2004,24(32):7204-13.
    [98]Ziv NE and Spira ME. Induction of growth cone formation by transient and localized increases of intracellular proteolytic activity [J]. J Cell Biol,1998,140(l):223-32.
    [99]Spira ME, Oren R, Dormann A, et al. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons [J]. J Comp Neurol,2003,457(3):293-312.
    [100]Tetzlaff W, Leonard C, Krekoski CA, et al. Reductions in motoneuronal neurofilament synthesis by successive axotomies: a possible explanation for the conditioning lesion effect on axon regeneration [J]. Exp Neurol,1996, 139(1):95-106.
    [101]Domeniconi M and Filbin MT. Overcoming inhibitors in myelin to promote axonal regeneration [J]. J Neurol Sci,2005,233(1-2):43-7.
    [102]Qiu J, Cai D, Dai H, et al. Spinal axon regeneration induced by elevation of cyclic AMP [J]. Neuron,2002,34(6):895-903.
    [103]Neumann S, Bradke F, Tessier-Lavigne M, et al. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation [J]. Neuron,2002, 34(6):885-93.
    [104]Cai D, Qiu J, Cao Z, et al. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate [J]. J Neurosci,2001,21(13):4731-9.
    [105]Fournier AE, Takizawa BT, and Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS [J]. J Neurosci2003,23(4):1416-23.
    [106]Niederost B, Oertle T, Fritsche J, et al. Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Racl [J]. J Neurosci,2002, 22(23):10368-76.
    [107]Blesch A, Lu P, Tsukada S, et al. Conditioning lesions before or after spinal cord injury recruit broad genetic mechanisms that sustain axonal regeneration: superiority to camp-mediated effects [J]. ExpNeurol,2012,235(1):162-73.
    [108]Gao Y, Deng K, Hou J, et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo [J]. Neuron,2004,44(4):609-21.
    [109]Cai D, Deng K, Mellado W, et al. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro [J]. Neuron,2002, 35(4):711-9.
    [110]Skene JH. Axonal growth-associated proteins [J]. Annu Rev Neurosci,1989,12:127-56.
    [111]Bolsover SR. Calcium signalling in growth cone migration [J]. Cell Calcium,2005, 37(5):395-402.
    [112]Bomze HM, Bulsara KR, Iskandar BJ, et al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons [J]. Nat Neurosci, 2001,4(1):38-43.
    [113]Ma D, Nothias F, Boyne LJ, et al. Differential regulation of microtubule-associated protein 1B (MAP1B) in rat CNS and PNS during development [J]. J Neurosci Res,1997,49(3):319-32.
    [114]Ma D, Connors T, Nothias F, et al. Regulation of the expression and phosphorylation of microtubule-associated protein 1B during regeneration of adult dorsal root ganglion neurons [J]. Neuroscience,2000,99(1):157-70.
    [115]Nothias F, Vernier P, von Boxberg Y, et al. Modulation of NCAM polysialylation is associated with morphofunctional modifications in the hypothalamo-neurohypophysial system during lactation [J]. Eur J Neurosci 1997,9(8):1553-65.
    [116]Nothias F, Fischer I, Murray M, et al. Expression of a phosphorylated isoform of MAP1B is maintained in adult central nervous system areas that retain capacity for structural plasticity [J]. J Comp Neuroi 1996, 368(3):317-34.
    [117]Soares S, von Boxberg Y, Lombard MC, et al. Phosphorylated MAP1B is induced in central sprouting of primary afferents in response to peripheral injury but not in response to rhizotomy [J]. Eur J Neurosci,2002, 16(4):593-606.
    [118]Soares S, Fischer I, Ravaille-Veron M, et al. Induction of MAP1B phosphorylation in target-deprived afferent fibers after kainic acid lesion in the adult rat [J]. J Comp Neurol,1998, 396(2):193-210.
    [119]: Togel M, Wiche G, and Propst F. Novel features of the light chain of microtubule-associated protein MAP1B: microtubule stabilization, self interaction, actin filament binding, and regulation by the heavy chain [J]. J Cell Biol, 1998, 143(3):695-707.
    [120]Pedrotti B and Islam K. Dephosphorylated but not phosphorylated microtubule associated protein MAP1B binds to microfilaments [J]. FEBS Lett; 1996, 388(2-3):131-3.
    [121]Noiges R, Eichinger R, Kutschera W, et al. Microtubule-associated protein 1A (MAP1A) and MAP1B: light chains determine distinct functional properties [J]. J Neurosti,2002, 22(6):2106-14.
    [122]Fuhrmann-Stroissnigg H, Noiges R, Descovich L, et al. The light chains of microtubule-associated proteins MAP1A and MAP1B interact with alpha 1-syntrophin in the central and peripheral nervous system [J]. PLoS One,2012,7(11):e49722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700