大跨预应力混凝土箱梁桥早期开裂和远期下挠控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨预应力混凝土箱梁桥开裂和长期下挠过大的现象较为普遍,已成为桥梁工程界极为重视的重大技术问题。依托荆岳长江公路大桥滩桥(七跨一联的预应力混凝土变截面连续箱梁桥,跨径组合为100m+5×154m+100m)和主桥(主跨为816m的高低塔不对称混合梁斜拉桥,其南边跨为宽达38.5m的分离式混凝土边箱梁)的建设对这两大病害的控制展开研究,以期建成早期无裂缝、远期下挠可控的大跨预应力混凝土箱梁桥,项目研究无疑具有重要的实用价值和理论意义。
     本文结合交通部科技计划项目“长联大跨预应力混凝土连续箱梁桥开裂与长期变形控制”和“荆岳长江公路大桥主桥关键技术研究”的子项“分离式混凝土边箱梁的受力性能及合理设计”研究的完成,基于翔实的现场测试,对混凝土箱梁水化热、30m跨预应力混凝土箱梁足尺模型受力性能、自然环境中大跨预应力混凝土箱梁桥收缩徐变模式的合理确定,斜拉桥拉索的索力测试以及分离式混凝土边箱梁的剪力滞效应等有关箱梁受力的典型问题进行了研究,主要内容包括:
     1、箱梁水化热及其温致效应
     (1)在施工现场对泵送混凝土取样,对不同养护条件下箱梁混凝土早龄期力学性能发展规律进行了试验研究。结果表明:就所测试的情形而言,养护条件对混凝土早龄期强度的发展有较大影响,同养试件的强度低于标养试件,但随着龄期的增长其强度差异逐渐减小;
     (2)对两座大跨预应力混凝土箱梁桥施工过程中箱梁的水化热进行了测试,得到其水化热的发展规律。测试结果表明:箱梁混凝土在浇注后1d左右达到峰值温度,在前1-4d将经历较快的升温和降温过程,在此期间容易出现较大的内外温差并可能导致混凝土开裂;
     (3)基于施工现场同条件养护混凝土早龄期力学性能发展规律的实测结果,建立时变模型对箱梁混凝土水化过程中的温度场和应力场进行了分析,计算结果和实测值吻合良好。结果表明:水化热是使箱梁腹板产生早期裂缝的主要原因之一。就文中分析结果而言:大跨预应力混凝土箱梁桥养护期间混凝土内外温差应控制在30℃内,在3级风速时拆模时间应不少于4d。
     2、30m跨预应力混凝土简支箱梁足尺模型试验与分析
     (1)为研究大尺寸混凝土箱梁的受力性能,在荆岳长江公路大桥北引桥选取一片30m跨预制预应力混凝土箱梁进行受弯破坏性试验。试验结果表明试验梁有足够的安全储备并具备良好的极限变形能力,试验终止时试验梁跨中最大挠度为267.85mm,是梁跨的1/108,试验梁最终将以预应力筋拉断导致结构破坏;
     (2)根据试验结果采用5种国内外相关规范对试验梁抗弯极限承载力及正常使用极限状态下的变形、裂缝进行验算,以评估规范相应计算公式的适用性。结果表明:现行混凝土规范中相关计算公式均能较好地预测箱梁的抗弯极限承载力;ACI318M-05、CEB-FIP MC90基本能反映箱梁正常使用极限状态下的变形性能;GB50010-2002、TB10002.3-05基本能反映预应力混凝土箱梁的裂缝特性;
     (3)采用分层法编制了预应力混凝土梁的非线性数值分析程序,并与试验结果进行了验证,计算值和试验结果吻合良好。进而采用此程序对试验梁的受力特征进行了参数分析,结果表明:随着配筋率增加或张拉系数增大,试验梁跨中残余变形及延性指标减小;预应力度增大时,跨中残余变形变小、延性指标降低;
     (4)试验及分析结果表明:试验梁加载至1872kN时,将由于预应力筋的拉断而破坏,而此时跨中顶板混凝土的压应变仅为1456με,远小于混凝土的极限压应变。因此设计可适当增大预应力配筋率至平衡配筋率左右,在兼顾延性指标的前提下建议实际预应力可增加至6束(原设计为4束,每束为4φs15.24高强低松弛钢绞线),相应的配筋率为1.401%(原配筋率为0.934%)。破坏时跨中顶板混凝土压应变可达2925με,抗弯极限承载力达2790kN,较原设计提高47.0%。
     3、自然环境中大跨预应力混凝土箱梁桥结构混凝土收缩徐变模式及其所导致结构反应的合理确定
     (1)为研究恒温、恒湿条件下混凝土收缩徐变计算模式和粉煤灰对收缩徐变的影响,在试验室进行了与滩桥混凝土具有相同配比材料的100mm×100mm×400mm棱柱体收缩徐变试验,并采用AASHTO、ACI209R、JTG D62和GL2000四种收缩徐变预测模式对其进行分析。结果表明:JTG D62和GL2000所推荐的计算模式与试验实测数据较为吻合。粉煤灰对收缩徐变有较大影响,它抑制了混凝土的收缩,增大了早龄期加载试件的徐变,减小了晚龄期加载试件的徐变;
     (2)为研究自然环境中混凝土收缩徐变计算模式,在自然环境条件下进行了200mm×200mm×515mm的棱柱体收缩徐变试验,并采用基于叠加原理的算法考虑温度、湿度以及粉煤灰掺量等参数的影响对其进行了分析。结果表明:采用修正的JTG D62和GL2000计算模型,基本能反映收缩、徐变试块的测试结果。
     (3)为研究自然环境中预应力混凝土箱梁收缩徐变计算模式,在与滩桥自然环境相同的条件下进行了两片30m跨预应力混凝土箱梁足尺模型长期性能试验,采用基于叠加原理算法修正温度、湿度、粉煤灰和配筋率等各参数并对箱梁建立分层模型对其进行分析。就本文的计算结果而言,采用分层法时,计算误差减小达10%以上,GL2000模型预测精度高于JTG D62模型。因此建议采用修正的GL2000模型计算混凝土的收缩徐变;
     (4)基于修正的GL2000模型对滩桥收缩徐变进行分析,在其边跨和主跨分别预设20mm和50mm的徐变预拱度。在滩桥施工及运营期间对其关键截面的应力和挠度进行了实测,结果表明:滩桥的下挠趋势与预测吻合良好,且实测值小于理论值,滩桥下挠量在预测范围之内。
     4、斜拉桥的索力测试及分离式混凝土边箱梁剪力滞效应实测与分析
     (1)斜拉桥主梁的受力状态与索力密切相关。基于斜拉索的振动方程,推导了索力测试实用公式,该公式以显式表达且形式简单,实现了固端梁、简支梁和弦三种模型间的连续过渡,因而更具一般性。试验验证以及实桥应用表明:该公式具有较高的精度,可以应用于现场索力测试;
     (2)较为翔实的测试了分离式混凝土边箱梁在典型施工阶段和成桥时的正截面受力状态,并采用有限元软件ANSYS对其进行了分析。结果表明:分析结果与实测值吻合良好。施工过程中南边跨混凝土边箱梁均为正剪力滞。成桥时在塔区梁段越靠近主塔剪力滞越大;对于跨中截面(非横隔板处)而言,顶板剪力滞系数λ=1.04-1.13,底板λ=1.03-1.10。横隔板对边箱梁的剪力滞影响较大,在进行结构分析时应考虑横隔板的影响。
     荆岳长江公路大桥主桥南边跨分离式混凝土边箱梁和滩桥在交工验收时,第三方独立的检测结果表明:箱梁梁体上无明显可见裂缝。滩桥运营期对结构挠度实测结果表明:滩桥的下挠趋势与预测吻合良好,且实测值小于理论值,滩桥下挠在可控范围内。
The early crack and long term deflection in large span PC box girder bridges were very widespread. Combined with the construction of Tan Bridge of Jingyue Yangtse River Highway Bridge (7spans PC continuous bridge, the sapan was100m+5×154m+100m) and the Main Bridge (asymmetric combine girder cable stayed bridge, the main span was816m, and the38.5m wide concrete side-box girder was adopted in the south side span.), these two problems were studied. The main purpose was to build these two bridges with early crack and deflection controlled. The study would be of great practical and theoretic significance.
     Based on two Ministry of Communications' subjects, which were "the Crack and Deflection Prevention of Long Unit and Large Span PC Continuous Box Girder Bridge", and a subitem "the Mechanical Behavior and Reasonable Design of Concrete Side-box Girder" of "The Critical Technique of Jingyue Yangtse River Highway Main Bridge", some detailed test and analyses were carried out. The main contents included some typical problems, the hydration heat of concrete box girder, the mechanical behavior experiment of a full scale modal of a30m span PC box girder, the rational shrinkage and creep modal for the large span PC box girder bridges, the cable tension measurement and the shear lag of concrete side-box girder.1. The hydration heat and thermal effect on concrete box girder
     (1) The strength of large span PC box girder bridge concrete at early age was tested. The standard and site curing specimens, which was sampled from the construction site, was made from pumping concrete. The results demonstrate that the curing condition had great influence on the concrete strength at early age. The strength of standard curing specimens was higher than the site curing one. As the age became longer, this difference in strength was smaller.
     (2) The hydration heat of two long-span PC box girder bridges was tested and the development of hydration heat was obtained. The results showed that the peak temperature would appear about1day after the concrete was poured, and the maximum temperature difference between inside and outside would appear within the1st to4th day, which could induce the early crack.
     (3) Based on the mechanical properties of specimens cured at construction sites, the temperature field and stress field of PC box girder during hydration were simulated in time varying model with finite element method. The results demonstrated that the hydration heat was one of the main reasons which caused the early cracks in the web of box girder. Effective measures should be taken to control the temperature difference between the inside and the surface less than30℃, and the stripping time should be more the4days under the Beaufort-scale3.
     2. The experiment and analysis on full-scale model of30m span PC simply supported box girder
     (1) The experiment was carried out on full-scale model of30m span PC simply supported box girder. The test results demonstrated that the deformation behavior was very excellent. The maximum deformation was267.85mm, which was1/108of the span. The prestress bar would be tensile failure, and then the beam would be broken. The ultimate bearing capacity of the beam was sufficient.
     (2) Based on the test results, the ultimate flexural strength, deformation and crack width of the box girder were calculated with the relative equations in five different domestic and international codes. The results showed all of the codes could be applied to the ultimate flexural resistance calculation. ACI318M-05and CEB-FIP MC90were suituable for the deformation determination, while GB50010-2002and TB10002.3-05were applicable for the crack calculation of the box girder.
     (3) A full range nonlinear program was developed and parametric study was conducted. The calculated value agreed well with experiment. Further analyses was conducted by this program, the results showed that as the reinforcement ratio or the tension coefficient of the prestress increased, the residual deformation at the mid-span and the ductility performance were decreased. While the prestress ratio of the tendons increased, the residual deformation at the mid-span and the ductility were decreased, the maximum deformation increased.
     (4) The results of experiment and analyse demonstrated that when the load was1872kN the prestress bar would be tensile failure. But the strain of the concrete of the top flat at mid-span was only1456με. Therefore, the ratio of reinforcement could be increased. Taking account of the ductility, prestress bar would be6bunches (The original design was6bunches,44(?)s S15.24strands). When the beam was broken, the strain of the concrete of the top flat at mid-span was only2925με. The ultimate bearing capacity was2790kN, which was1.47times of the original design.
     3. The shrinkage and creep of large span PC box girder bridge in nature environment
     (1) The shrinkage and creep experiment of100mm×100mm×400mm prisms was carried out in the laboratory. Analyse was conducted with AASHTO, ACI209R, JTG D62and GL2000, the results demonstrated JTG D62and GL2000were more suitable for the shrinkage and creep calculation. The fly ash had a significant influence on shrinkage and creep. It could restrain the shrinkage. For creep, it could increase the creep coefficient if the load age was very short, decrease the creep coefficient if the load age was long.
     (2) In order to study the shrinkage and creep of concrete at nature environment, the shrinkage and creep experiment of200mm X200mm X515mm prisms was carried out in the construction site. The results showed that JTG D62and GL2000could reflect the shrinkage and the creep of concrete at nature environment.
     (3) The shrinkage and creep experiment of two30m span PC box girders were carried out in nature environment. Analyse was conducted with superposition principle and all of the parameter corrected. The results demonstrated that GL2000was more accurate to reflect the shrinkage and creep than JTG D62. Therefore, GL2000could be applied to calculated shrinkage and creep in the nature environment.
     (4) The shrinkage and creep of Tan Bridge was analysed based on GL2000model.20mm (50mm) precamber due to creep was applied in the side (main) span. The stress and deflection at the critical section of Tan Bridge were observed during the construction and service stage. The observed deflection due to creep agreed well with calculated one, and the observed deflection was less than the calculated value, which indicated that the deflection had been controlled.
     4. The cable tension measurement and the shear lag of concrete side-box girder
     (1) Based on the transverse vibration equation of a cable, a practical formula expressed in a simply explicit form to estimate cable tension was proposed. The formula was the unified expression covering both cases from string theory and beam theory. The capability of this formulation was verified by the real cable in Jingyue Yangtse River Main Bridge, which indicated that the formula was sufficiently accurate and could be conveniently applied to field measurement.
     (2) The stress of concrete side-box girder was tested during the typical construction stages, and analyse was conducted. The results demonstrated that the calculated result agreed well with the measured one. Positive shear lag occurred in the concrete side-box girder at construction stage. Shear lag became larger when the section closer to the main tower when bridge was completed. For the mid-span section (without transverse diaphragm), the shear lag coefficient was1.04~1.13and1.03~1.10in top flat and bottom plate, separately. The results showed that the transverse diaphragm had a significant influence on the shear lag of side-box girder.
     When the bridge was successfully erected and evaluated by the third party, the result showed that there was not visible crack in the side-box girder of the Main bridge and the box girder of Tan bridge of Jingyue Yangtse River Main Bridge. The results of observed deflection after opening to traffic showed that the deflection agreed well with calculated one. And the observed deflection was less than the calculated value, which indicated that the deflection was within expectation.
引文
[1]范立础.桥梁工程.北京:人民交通出版社,1996,1-18
    [2]范立础.预应力混凝土连续梁桥.北京:人民交通出版社,2001,1-28
    [3]戴竞,风懋润.我国预应力混凝土公路桥的发展与现状.土木工程学报,1997,30(8):3-10
    [4]周军生,楼庄鸿.大跨径预应力混凝土连续刚构桥的现状和发展趋势.中国公路学报,2000,13(1):31-37
    [5]吕志涛,刘钊,孟少平.浅论我国预应力混凝土梁桥的技术与发展.桥梁建设,2001,(1):52-56
    [6]詹建辉,陈卉.特大跨度连续刚构主梁下挠及箱梁裂缝成因分析.中外公路,2005,25(1):56-58
    [7]陈梅.大跨径预应力混凝土箱梁桥腹板斜裂缝研究:[长安大学硕士学位论文].西安,长安大学,2001,15-26
    [8]陆中元,李建华,朱念清.广东南海金沙大桥的维修加固.铁道建筑,2004,(10): 29-31
    [9]陈性凯.广州华南大桥箱梁裂缝的初步分析.中国市政工程,1997,(9):26-32.
    [10]钟新谷.预应力混凝土连续箱梁桥裂缝防治与研究.见:第十三届全国结构工程学术会议特邀报告,2004.
    [11]Podolny, Walter Jr. Cause of Cracking in Post-tensioned Concrete Box Girder Bridges and Retrofit Procedure. Journal of the Prestressed Concrete Institute.1985,30(2):85-139
    [12]中华人民共和国交通部部颁标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004.
    [13]ACI Committee 224. Control of cracking in concrete structures. American Concrete Institute,2001.
    [14]陈肇元,崔京浩,朱金铨,安明喆,俞哲夫.钢筋混凝土裂缝机理与控制措施.工程力学,2006,23(Ⅰ):86-107
    [1 5]江克斌,周旺进,赵启林.预应力混凝土箱梁桥腹板施工裂缝成因与对策.解放军理工大学学报(自然科学版),2005,6(4):370-373
    [16]李青山.预应力混凝土连续箱梁裂缝成因分析研究:[东南大学硕士学位论文].上海:东南大学,2009:15-45
    [17]中华人民共和国行业标准.《公路桥涵施工技术规范》(JTJ 041-2000).中华人 民共和国交通部,人民交通出版社,2000.
    [18]何鑫.预应力混凝土箱梁受力性能的足尺模型试验研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2010,28-65
    [19]汪剑.大跨预应力混凝土箱梁桥非荷载效应及预应力损失研究:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2006,94-139
    [20]周国华.大跨预应力混凝土箱梁桥多目标施工控制体系:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2010,47-60
    [21]方志,汪建群,颜江平.基于频率法的拉索及吊杆张力测试.振动与冲击,2007,26(9):78-82
    [22]余泽.分离式混凝土边箱梁正截面受力性能研究:[湖南大学硕士学位论文].长沙:湖南大学土木工程学院,2011,47-60
    [23]朱伯芳.水工混凝土的温度应力与温度控制.北京:水利水电出版社1976:34-39
    [24]王铁梦.工程结构裂缝控制.北京:中国建筑工业出版社,1998.
    [25]Z P. Bazant, J K. Kim; and S E. Jeon. Cohesive Fracturing and Stresses Caused by Hydration Heat in Massive Concrete Wall. Journal of Engineering Mechanics, ASCE,2003,129(1):21-30
    [26]叶见曙,阮静,钱培舒,贾琳.混凝土箱梁的水化热温度分析.桥梁建设,2000,4:7-9
    [27]阮静,万水,叶见曙,程霞.混凝土箱梁温度场有限元分析.公路,2001,9:55-58
    [28]杨孟刚,文永奎,陈政清.混凝土箱梁的水化热温度监测及裂缝控制.长沙铁道学院学报,2001,19(3):41-44
    [29]陈长华.考虑钢筋作用的水工结构施工期温度场与温度应力分析:[河海大学硕士学位论文].南京,河海大学.2006:11-24
    [30]李杰,王根会,张克华.厚壁混凝土箱梁施工过程中的温度应力分析研究.兰州交通大学学报(自然科学版),2006,25(3):33-36
    [31]冯德飞,卢文良.混凝土箱梁水化热温度试验研究.铁道工程学报,2006,8:62-67
    [32]陈衡治,谢旭,张治成,苟昌焕.混凝土箱梁浇注养护方案数值评估研究.浙江大学学报(工学版),2006,40(2):276-280
    [33]陈保国,丁锐,郑俊杰,张世飙.预应力混凝土箱梁温度场及温度应力现场测试研究.华中科技大学学报(城市科学版),2007,24(4):84-87
    [34]臧华,刘钊,文武松,周新亚.苏通大桥辅桥箱梁节段水化热效应的仿真分析.公路交通科技,2007,24(5):96-98
    [35]黄科,孙家瑛.超长预应力混凝土箱梁裂缝控制研究.公路,2008,3:62-66.
    [36]查进.超大跨径混合梁斜拉桥宽箱梁高性能混凝土防裂技术与耐久性研究:[武汉理工大学博士学位论文].武汉,武汉理工大学,2008,92-144
    [37]李光波.大跨径连续刚构温度水化热分析及应力应变转换:[长安大学硕士学位论文].长安:长安大学,2008,39-49
    [38]曾志长.客运专线铁路预制整孔箱梁施工温度监控与防裂研究:[中南大学硕士学位论文].长沙:中南大学,2008,27-44
    [39]庞彪.连续刚构桥箱梁水化热温度场及其效应研究:[长安大学硕士学位论文].长安:长安大学,2008,33-63
    [40]杜耀辉.混凝土箱梁早期温度裂缝分析及其工程应对措施:[长安大学硕士学位论文].长安:长安大学,2008,35-41
    [41]文武松.大跨度PC连续刚构桥挠曲开裂因素研究:[西南交通大学博士学位论文].成都:西南交通大学,2009,96-111
    [42]乔燕,孙传智,张卫华.预应力混凝土箱梁水化热温度测试和温度应力分析.中外公路,2009,29(5):142-146
    [43]魏俊.悬臂浇注预应力混凝土连续梁桥0号块空间应力状态分析研究:[中南大学硕士学位论文].长沙:中南大学,2009,37-66
    [44]余文涛.预应力混凝土连续刚构桥墩顶箱梁非荷载裂缝分析与控制:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2010,51-63
    [45]缪长青,孙传智,李爱群.混凝土箱梁桥零号块水化热过程分析研究.防灾减灾工程学报,2010,30(4):407-413
    [46]张岗,贺拴海.混凝土箱梁热一力耦合模型及剪力滞时变效应.解放军理工大学学报(自然科学版),2010,11(2):132-136
    [47]AASHTO.美国公路桥梁设计规范(1994),辛济平等译.北京:人民交通出版社,1998,55-65
    [48]刘秉京.混凝土技术.北京:人民交通出版社,1998.
    [49]Zia P., Caner P. Cracking in Large-Sized Long-Span Prestessed Concrete AASHTO Giders. In:Final Report-Center for Transportation Engineering Studies, North Carolina State University, Roport No. FHWA/NC/94-003,1993
    [50]Ozylidirim C., Gormez J. P.. Design of High Performance Concrete Mixtures and Test Beams for a Bridge in Virginia. In:Virginia Transportation Research Council, Report No. FHWA/VA-96R27,1996
    [51]Mohsen A. Issa. Investigation of cracking in concrete bridge decks at early ages. Journal of Bridge Engineering, ASCE,1999,4(2):116-124
    [52]Myers J.J., Carrasquillo R.L.. Influence of Hydration Temperature on Durability and Mechanical Property Performance of Prestressed and Preeast High Performance Concrete Beams. In:The Fifth International Bridge Engineering Conference, Journal ofthe Transportation Research Boars,2001(1): 131-142
    [53]Kovler K L, David A, Stang H. Early age concrete—properties and performance. Cement and Concrete Composites,2004,26(5):413-415
    [54]Burkan I O., Ghani R A. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cement and Concrete Composites,2004,26(1):57-73
    [55]Jean-Paul Lebet. Measurements during construction and launching of a 130 m span length composite bridge. Proceedings of the 5th International Conference, Composite Construction in Steel and Concrete V Proceedings of the 5th International Conference Proceedings of Composite Construction V Engineering Conference International, ASCE,2004:25-34
    [56]Transportation research board of the national academies. Control of Cracking in Concrete. Transportation research circular E-C107, Washington, DC,2006.
    [57]谢家全,吴赞平,华斌等.沪宁扩建桥梁极限承载能力实桥试验研究.现代交通技术,2006,6(5):77-84
    [58]张蓓,徐天昭,王复明等.预应力混凝土空心板梁桥承载能力实桥试验研究.公路,2008,9(6):1-5
    [59]R.A.Miller,A.E.Aktan,B.M.Shahrooz.Destructive Testing of Decommissioned Concrete Slab Bridge.Journal of Structural Engineering,1994,120(7)
    [60]Paul N.Roschke,Kevin R.Pruski.Overload and ultimate load behavior of posttensioned. slab bridge.Journal of bridge engineering,2005,35(5)
    [61]中华人民共和国国家标准.大体积混凝土施工规范(GB 50496-2009).北京:中国计划出版社,2009
    [62]建筑施工手册第三版编写组.建筑施工手册.北京:中国建筑工业出版社,1999
    [63]ACI Committee 209, Prediction of creep, shrinkage, and temperature effects in concrete structures (209R-92).America Concrete Institute. Farmington Hills, Mich.,1992.
    [64]日本建筑学会.日本建筑学会标准(JASS5),2003.
    [65]中华人民共和国行业标准.公路工程水泥及水泥混凝土试验规程(JTG E30-2005). 北京:人民交通出版社,2005.
    [66]中华人民共和国国家标准.混凝土强度检验评定标准(GBJ107-87).北京:人 民交通出版社,1987.
    [67]Zdenek P. Bazant, Wittmann,F.H. Creep and Shrinkage in Concrete Structures. John Wiley&Sons Ltd,1982,2-99
    [68]Zdenek P. Bazant. Mathematical Modeling of Creep and Shrinkage of Concrete. John Wiley&Sons Ltd,1988,6-100
    [69]Neville,A.M., Dilger,W.H., Brooks,J.J. Creep of Plain and Structural Concrete. London&New York,1983,1-50
    [70]Ghail,A, R.Favre. Concrete Structures:Stresses and Deformations. Chapman and Hall Ltd,1994,1-60
    [71]周履,陈永春.收缩徐变.北京:中国铁道出版社,1994,1-30
    [72]AASHTO.美国公路桥梁设计规范(1994),辛济平等译.北京:人民交通出版社,1998,55-65
    [73]ACI Committee 209. Prediction of Creep,Shrinkage,and Temperature Effects in Concrete Structures(209R-92). America Concrete Institute, Farmington Hills,Mich.,1992.
    [74]N.J.Gardner, J.W.Zhao. Creep and Shrinkage Revisited. ACI Materials Journal, 1993,90(3):36-46
    [75]Gardner, N. J., Lockman, M. J. Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete. ACI Materials Journal,2001,98(2): 159-167
    [76]Comite Euro-international du Beton. CEB-FIP Model Code 1990. Published by Thomas Telford Services Ltd., Thomas Telford House, Heron Quay, London E 144JD,1990.
    [77]Zdenek P. Bazant, Baweja. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures (Model B3). Report, Northwestern University, submitted to ACI Comm.209,1994.
    [78]Zdenek P. Bazant, Sandeep Baweja. Justification and Refinements of Model B3 for Concrete Creep and Shrinkage. Materials and Structures,1995,28:415-430.
    [79]Zdenek P. Bazant, Sandeep Baweja. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures (Model B3). Materials and Structures,1995,28:357-365
    [80]耿波.预应力混凝土梁的起拱度控制方法及试验研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2004:38-55
    [81]向秋燕.预应力混凝土T梁起拱度理论分析及控制研究:[长沙理工大学硕士学位论文].长沙:长沙理工大学,2009:34-50
    [82]中华人民共和国交通部部颁标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ 023-85).北京:人民交通出版社,1985.
    [83]曾彦.高标号混凝土徐变理论与试验研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2005:35-57
    [84]James Andrew Gilliland. Thermal and shrinkage effects in high performance concrete structures during construction:[dissertation]. Canada:The University of Calgary,2000,2-220
    [85]Jian-Ping Lam. Evaluation of Concrete Shrinkage and Creep Prediction Models:[thesis]. America:The San Jose State University,2002,1-200.
    [86]Bradley D. Townsend. Creep and Shrinkage of a High Strength Concrete Mixture:[thesis]. America:The Virginia Polytechnic Institute and State University,2003,2-65
    [87]Cole Mortensen. Creep and Shrinkage Losses in Prestressed Concrete in Highly Variable Climate:[thesis]. America:The University of Nevada,2002,6-45
    [88]Karim W.Nasser, A.M.Neville. Creep of Concrete at Elevated Temperatures. Journal of the American Concrete Institute,1965,62(12):1567-1579
    [89]Hani M.Fahmi, Boris Bresler, Milos Polivka. Prediction of Creep of Concrete at Variable Temperatures. Journal of the American Concrete Institute,1973, 70(10):709-713
    [90]Zdenek P. Bazant, Gianluca Cusatis, Luigi Cedolin. Temperature Effect on Concrete Creep Modeled by Microprestress-Solidification Theory. J. Engrg. Mech.,2004,130(6):691-699
    [91]Peter F. Takacs. Deformations in Concrete Cantilever Bridges:Observations and Theoretical Modelling:[dissertation]. Norway:The Norwegian University of Sciencs and Technology,2002,1-105
    [92]Vladimir Kristek, Zdenek P. Bazant, Milos Zich. Box Girder Bridge Deflections. ACI Concrete International,2006,28(1):55-63
    [93]Xianping Li, Ian N. Robertson. Long-term Performance Predictions of the North Halawa Valley Viaduct. In:Research Report UHM/CEE/03-04, University of Hawaii,2003.
    [94]孙海林,叶列平,杨孚衡.城市轨道交通预应力混凝土连续梁桥的收缩和徐变分析.公路交通科技,2005,22(1):89-92
    [95]Torben C.Hanson, Alan H.Mattock. Influence of Size and Shape of Member on the Shrinkage and Creep of Concrete. Journal of the American Concrete Institute,1966,63(2):267-289
    [96]William G.Corley, Mete A.Sozen. Time-Dependent Deflections of Reinforced Concrete Beams. Journal of the American Concrete Institute,1966,63(3): 373-386
    [97]Zdenek P. Bazant. Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method. Journal of the American Concrete Institute,1972, 69(4):212-217
    [98]A.H.Bryant. Creep and Shrinkage of a Bridge-Building Concrete. Journal of the American Concrete Institute,1979,76(3):387-403
    [99]Zdenek P. Bazant, Jenn-Chuan Chern. Log Double Power Law for Concrete Creep. Journal of the American Concrete Institute,1985,82(5):665-675
    [100]Luigino Dezi, Angelo Marcello Tarantino. Creep in Composite Continuous Beams-Parametric Study. Journal of Structural Engineering,1993,119(7): 2112-2133
    [101]潘家英.混凝土结构的徐变计算.土木工程学报,1983,16(4):29-40
    [102]周履,诸林,黎锡吾.长跨度预应力混凝土铁路连续梁的收缩徐变计算.桥梁建设,1984,(4):59-72
    [103]范立础,杜国华,鲍卫刚.桥梁结构徐变次内力分析.同济大学学报,1991,19(1):23-31
    [104]郑信光,韩振勇,项海帆.桥梁节段施工过程的徐变分析.同济大学学报,1991,19(3): 355-362
    [105]周乐农.预应力混凝土简支梁徐变特性影响因素的分析.长沙铁道学院学报,1993,11(2):1-7
    [106]周乐农.预应力混凝土简支梁徐变特性参数的确定.长沙铁道学院学报,1993,11(1):19-26
    [107]刘忠.混凝土徐变收缩的递推AEMM法.重庆交通学院学报,1994,13(5):31-34
    [108]刘德宝,郑信光.徐变系数计算的应用研究.同济大学学报,1998,26(5):533-536
    [109]段明德.预应力混凝土桥施工仿真分析徐变计算.铁道学报,1998,20(5):91-97
    [110]朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999,1-207
    [111]王书庆.徐变自动增量分析方法及其实现.同济大学学报,2000,28(2):138-142
    [112]杨美良,李传习,夏桂云.初应变法在节段施工桥梁徐变分析中的应用.长 沙交通学报,2000,16(3):47-52
    [113]李传习,杨飞跃,张建仁.节段施工桥梁的徐变变形及内力重分布研究.中国公路学报,2000,13(4):47-52
    [114]陈太聪,苏成,韩大建.桥梁节段施工过程中混凝土收缩徐变效应仿真计算.中国公路学报,2003,16(4):55-58
    [115]胡狄,陈政清.预应力混凝土桥梁收缩与徐变变形试验研究.土木工程学报,2003,36(8):79-85
    [116]胡狄.预应力混凝土桥梁徐变效应分析:[中南大学博士学位论文].长沙:中南大学土木建筑学院,2003,1-20
    [117]颜东煌,田仲初,李学文等.混凝土桥梁收缩徐变计算的有限元方法与应用.中国公路学报,2004,17(2):55-58
    [118]丁文胜,吕志涛,孟少平等.混凝土收缩徐变预测模型的分析比较.桥梁建设,2004,(6):13-16
    [119]胡狄,陈政清.预应力混凝土桥梁徐变分析的全量形式自动递进法.工程力学,2004,21(5):41-45,71
    [120]张子明,周红军,殷波.基于等效时间的混凝土徐变.河海大学学报,2005,33(2):173-176
    [121]韩福前.天津永定河斜拉桥维修加固关键技术研究:[天津大学硕士学位论文].天津:天津大学,2009:1-4
    [122]曹海顺,廖宜勤.混凝土斜拉桥塔梁临时固结构造设计.桥梁建设,2007,1:51-56
    [123]杜延昭.某斜拉桥主梁底板纵向裂缝成因分析.河北工业大学学报,2009,38(4):95-98
    [124]谭良玉.地锚式预应力斜拉桥成桥状态与索力控制研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2010:7-8
    [125]方志,张智勇.斜拉桥的索力测试.中国公路学报,1997,10(1):51-58
    [126]郝超,裴岷山,强士中.斜拉桥索力测试新方法—磁通量法.公路,2000,(11):30-31
    [127]Casas, J. R. (1994). "A combined method for measuring cable forces:the cable-stayed Alamillo Bridge, Spain." Struct. Engrg. Int.,3,235-240
    [128]Humar, J.L.(1990), Dynamics of Structures. Prentice Hall, Englewood Cliffs, NJ.
    [129]Zui H., Shinke T., and Namita Y. (1996). "Practical formulas for estimation of cable tension by vibration method." J. Struct. Engrg.,122(6):651-656
    [130]Russell J.C., Lardner T.J. (1998). "Experimental determination of frequencies and tension for elastic cables." J. Engrg. Mech.,124 (10),1067-1072
    [131]Tabatabai, H., Mehrabi, A, B.; Yen, W. P. (2003). "Bridge stay cable condition assessment using vibration measurement techniques." In:Proc. SPIE Int. Soc. Opt. Eng.,3400,194-204
    [132]Ren, W. X., Gang Chen, Hu Wei-hua (2005). "Empirical formulas to estimate cable tension by cable fundamental frequency" Struct. Engrg. Mech.,20(3), 363-380
    [133]Ricciardi, G., Saitta, F. (2008). "A continuous vibration analysis model for cables with sag and bending stiffness. " Engrg. Struct.,30 (5) 1459-1472
    [134]邵旭东,李国峰,李立峰.吊杆振动分析与力的测量.中外公路,2004,24(6):29-31
    [135]冉志红,李乔.提高斜拉索索力估算精度的一种新方法.公路交通科技,2007,24(8):96-98
    [136]王鲁.预应力混凝土斜拉桥剪力滞效应研究:[西南交通大学研究生学位论文],成都:西南交通大学,2005:2-9
    [137]田仲初,王雷,罗纪彬,颜东煌.鄂黄长江公路大桥成桥状态剪力滞分析.见:第五届全国交通运输领域青年学术会议,湖南,长沙,2003
    [138]张士铎,邓小华,王文州著.箱形薄壁梁剪力滞效应.北京:人民交通出版社,1998,1-11
    [139]D.A.Foutch, P.C.Chang. A shear lag anomaly. Journal of Structural Engineering, ASCE,1982,108(7):1653-1658
    [140]郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析.土木工程学报,1983,16(1):1-13
    [141]Qi-gen Song, A C Scordelis. Shear Lag Analysis of T-,I-,and Box Beams. Journal of the Structural Division, ASCE,1990,116(5):1290-1305
    [142]Prokic A. New finite element or analysis of shear-lag. Computers and Structures,2002,80(11):1011-1024
    [143]Dezi Luigino, Gara Fabrizio, Leoni Graziano. Time-dependment analysis of shear-lag effect in composite beams.Journal of Engineering Mechanics, ASCE,2001,127(1):71-79
    [144]韦成龙,曾庆元,刘小燕.薄壁箱梁的多参数翘曲位移函数及其有限元法.铁道学报,2000,22(5):60-64
    [145]Luo Q Z, Li Q S. Shear lag of thin-walled curved box girder bridge. Journal of Engineering Mechanics,ASCE,2000,126(1):1111-1114
    [146]彭大文,颜海.曲线脊骨箱梁的剪力滞效应分析.铁道学报,2001,23(4):76-80
    [147]李艳.钢筋混凝土薄壁箱梁的非线性受力性能分析:[湖南大学硕士学位论文].长沙:湖南大学,2003,76-99
    [148]程海根,强士中.变截面悬臂箱梁剪滞效应分析.公路.2003(3):54-56
    [149]方志,曹国辉,周先雁等.影响薄壁箱梁剪力滞系数的几何参数分析.中外公路,2003,16(3):39-41
    [150]方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究.桥梁建设,2000,153(4):1-3
    [151]曹国辉.混凝土箱梁的短期与长期受力性能:[湖南大学博士学位论文].长沙:湖南大学,2007.
    [152]方淑君,戴公连,狄谨.梁板结构在轴力及弯矩作用下截面剪力滞效应的研究.长沙铁道学院学报,2001,30(12):45-48
    [153]李德建,戴公连,黄玉盈.混凝土斜拉桥肋板式主梁截面应力分布特性.华中科技大学学报,2002,30(12):107-110
    [154]祝明桥.混凝土箱梁受力性能的试验研究与分析:[湖南大学博士学位论文].长沙:湖南大学,2005,90-118
    [155]陈肇元,朱金铨,吴佩刚.高强混凝土极其应用.清华大学出版社,1992.
    [156]Fritz Kehlbeck著,刘兴法等译.太阳辐射对桥梁结构的影响.中国铁道出版社,1981.:32-36
    [157]Cohn M Z, Bartlett M. Nonlinear Flexural Response of partially Prestressed Concrete Section. ASCE Journal of the structure Division,1982,108 (St12): 2747-2765
    [158]冯建明.大跨径预应力混凝土连续刚构桥施工监控和混凝土应力测试研究:[重庆交通大学硕士论文].成都:重庆交通大学,2007:25-40
    [159]方志,杨剑CFRP预应力筋混凝土梁在重复荷载作用下的受力性能.铁道学报,2006,28(1):72-79
    [160]Grace N F,Solman A K,Bdel-Sayed G A,et al.Behavior and Ductility of Simple and Continuous FRP Reinforced Beams.Journal of Composites for Construction,1998,2(4):186-194
    [161]American Concrete Institute 440. Guide for the Design and Construction of concrete Reinforced with FRP Bars (ACI440.1R-01). Michigan:Farming-tons Hills,2001,1-78
    [162]中华人民共和国建设部.《混凝土结构设计规范》(GB 50010-2002).北京:中国建筑工业出版社,2002.
    [163]中华人民共和国铁道部.铁路桥涵钢筋混凝土及预应力混凝土结构设计规范(TB10002.3.05).北京:中国铁道出版社,2005.
    [164]ACI Committee 318 Structural Building Code. Building Code Requirements for Structural Concrete and Commentary (ACI 318M-05). American Concrete Institute,2005.
    [165]过镇海,时旭东.钢筋混凝土原理和分析.清华大学出版社.2003.
    [166]中华人民共和国建材行业标准.普通混凝土力学性能试验方法标准(GB/T50081-2002),2003,87-174
    [167]杨剑,方志.预应力超高性能混凝土梁的受弯性能研究.中国公路学报,2009,22(1):39-46
    [168]Lohtia R P, Nautiual B D, Jain O. P. Creep of fly ash concreW.Journal of The American Concrete Lnstitute,1976.73(8):469-472
    [169]Gsosh R S, Timusk J, Creep of fly ash concrete. Journal of The American Concrete Institute,1981,78(5):351-357
    [170]Alexander K M. Range in concrete creep when cement S03 content,curing temperature and fly ash content are varied. Cement and Concrete Research, 1986,16(2):173-180
    [171]Wang, M. L., Chen, Z. L., Koontz, Steve S., Lloyd, G. M.. (2000). "Magnetoelastic permeability measurement for stress monitoring in steel tendons and cables." Proc. SPIE. Int. Soc. Opt. Eng.,3995,492-500
    [172]Swamy R N. Fly ash concrete-Potential without misuse. Materials and Structures/Materiaux et Constructions,1990,23(138):397-411
    [173]吴彬,张璐明等.100MPa粉煤灰高性能混凝土徐变的研究.粉煤灰,2002(3):7-9
    [174]邹建喜,李显金,迟培云.粉煤灰混凝土的变形性能研究.2003(6):38-42
    [175]秦鸿根,孙伟,潘钢华等.桥用高性能粉煤灰混凝土性能研究.粉煤灰综合利用,2002(5):23-25
    [176]Naaman A E, Jeong S M, L. Taerwe Structural ductility of concrete beams prestressed with FRP tendons. Non-metallic(FRP) reinforcement for concrete structures, Published in 1995 by E & FN Spon,1995:379-386
    [177]孙伟等.粉煤灰掺量对高性能混凝土徐变性能的影响及其机理.硅酸盐学报.2006.
    [178]谢友均等.复合超细粉煤灰混凝土的徐变性能.硅酸盐学报.2007.
    [179]罗许国,钟新谷,戴公连.无粘结预应力高性能粉煤灰桥梁收缩与徐变变形试验研究.工程力学,2006.7(7):136-141.
    [180]中华人民共和国国家标准.普通混凝土长期性能和耐久性能试验方法(GBJ82-85),1985,22-27.
    [181]Shimada, T. (1994). "Estimating method of cable tension from natural frequency of high mode." Proc., JSCE,501/1-29,163-171. (in Japanese)
    [182]Roy R. Craig, Jr常岭,李振邦译.结构动力学.北京:人民交通出版社,1996:82-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700