新型卟啉可视阵列传感器系统的构建及其在生物分子检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命活动中生物分子及生物体系状态的检测对于医学诊断具有相当重要的作用。目前,在生物分子及生物体系状态的检测中常用的方法是大型仪器检测,大型仪器虽然保证了检测的准确率,却带来了高额的检测费用和低下的检测效率,无法广泛应用于实际检测中。
     立足于开发一种对生物分子及生物体系状态进行快速检测的新方法,本文构建了一种新型可视阵列传感器系统,并应用这种阵列传感器由浅入深地对氨基酸、蛋白质及细胞代谢液进行了识别研究。本文完成的主要工作包括以下两个方面:
     1、完成了卟啉可视阵列传感器系统的设计与实现。在系统构建中主要进行了四方面的工作:可视阵列传感器系统的硬件设计、软件设计、传感芯片设计及芯片上传感材料的筛选。通过硬件设计实现了传感芯片反应前后的图像采集,通过软件设计实现了反应前后芯片数据的采集、图像的处理、可视化指纹响应差谱图的输出和数据的保存。通过传感芯片设计和芯片上传感材料的筛选,得到了一种对生物分子和生物体系具有强大识别能力和广谱识别效果的传感芯片。最终实现了可视阵列传感器系统的集成化和便携化。
     2、应用构建的卟啉可视阵列传感器系统开展了对生命活动中重要生物分子及生物体系状态的检测研究。
     分布有序的进行对生命小分子氨基酸、生命大分子蛋白质、生命大分子蛋白质的混合物系统、复杂生物物质体系全细胞代谢物的识别研究。分析结果显示,本文构建的可视阵列传感器系统能够显著的区别不同的氨基酸,并且反映出不同氨基酸之间的性质和结构差异;本文构建的可视阵列传感器系统能够显著的区分不同的蛋白质及蛋白质混合体系,并且反映出几类蛋白之间在性质和结构上的真实差异,同时,通过分析可以得出,混合蛋白与传感阵列的相互作用方式并不是几种纯蛋白与阵列作用方式的简单叠加,它们之间还存在更为复杂的相互作用关系;本文构建的可视阵列传感器系统能够对同种细胞不同生长周期以及不同种细胞分别进行显著区别。
     本文研究表明,卟啉可视阵列传感器系统能够实现对重要生物分子及生物体系状态的快速检测,并且具有检测时间短、检测费用低、分辨能力强等优点,未来可能成为一种重要的医学诊断方法。
The detection of biomolecules and biosystems plays an important role in medical diagnosis. Currently, the large analytic apparatus are the common method for biomolecules and biosystems detection. Although the large analytic apparatus can ensure the detection accuracy, it brought us high cost and low detection efficiency, So they can not be widely used in medical diagnosis.
     In order to develop a new method for the rapid detection of biomolecules and biosystems, a novel colorimetric sensor array was designed and manufactured in the study. Then the colorimetric sensor array was used for the identification of amino acids, proteins and cell metabolism. Specifically, following work was completed in the paper.
     1. A colorimetric sensor array system was designed and fabricated, Concretely speaking, four part of works were completed: hardware design, software design, sensor array design and sensitive dyes’selection. Through hardware design, image acquisition before and after reaction can be done. Through software design, image processing and detection data visualization can be done. Through sensor array design and sensitive dyes’selection, a novel sensor array chip which was sensitive to biomolecules and biosystems was done.
     2. Important biomolecules and biosystems were detected by the colorimetric sensor array system.
     Amino acids, proteins and cell metabolism were identified by the colorimetric sensor array. The results showed that different amino acids can be easily distinguished by the colorimetric sensor array. It can even reflect the chemical property difference of the different amino acids. Then, different proteins can also be easily distinguished by the colorimetric sensor array. And it can also reflect the chemical property difference of the different proteins. At last, same cells cultured with different times and different cells cultured with same times can also be distinguished by the colorimetric sensor array.
     This study showed that the colorimetric sensor array system designed and fabricated here can be used for the rapid detection of important biomolecules and biosystems. Comparing whit large analytic apparatus, the colorimetric sensor array has the advantages of rapid detection, low-cost and high sensitive. It suggests that the colorimetric sensor array system may become an important method in medical diagnosis in the future.
引文
[1] Phillips M , Gleeson K, Hughes J M et al. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study[J]. Lancet, 1999, 353 (9168): 1930-1933.
    [2] Phillips M, Cataneo R N, Cummin A R C, et al. Detection of lung cancer with volatile markers in the breath[J]. Chest, 2003, 123(6): 2115-2123.
    [3] Diana P, Carbognani D. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study[J]. Respiratory Research, 2005, 6: 71-81.
    [4] Thaler, E R, Lee D D, Hanson C W. Diagnosis of rhinosinusitis with a colorimetric sensor array[J]. Journal of Breath Research, 2008,2(3): 037016 (4 pp.) .
    [5]胡锦云.血清免疫球蛋白检测在肝病诊断中的意义[J].中国初级卫生保健, 2010, 24(7): 109.
    [6]刘爽,孙俊秀,周在咸.儿童反复呼吸道感染与血清免疫球蛋白G亚类及IgA亚类缺陷[J].实用儿科临床杂志, 2002, 17(4): 328-329.
    [7]傅松维,徐友红,潘章立.联合检测尿转铁蛋白微白蛋白及α_1-微球蛋白对早期糖尿病肾损伤的诊断价值[J].浙江临床医学, 2008, 25(5): 696.
    [8] Disney M D, Seeberger P H. The use of carbonhydrate microarrays to study carbohydrate-cell interactions and to detect pathogens[J]. Chemistry & Biology, 2004, 11(12): 1701-1707.
    [9] Shao H, Kumar D, Lear K L. Single-cell detection using optofluidic intracavity spectroscopy[J]. IEEE Sensors Journal, 2006, 6(6): 1543-1550.
    [10] Shao H, Wang W N, Lana SE. Optofluidic intracavity spectroscopy of canine lymphoma and lymphocytes. IEEE Photonics Technology Letters, 2008, 20(5-8): 493-495.
    [11] Chen J J, Peck K, Hong T M, et al. Global annlysis of gene express ion in invasion by a lung cancer model[J]. Cancer Researc, 2001, 61(13): 5223-5230.
    [12] Wu C H, Lin S R, Yu F J, et al. Development of a high-throughput membrane-array method for moleculat diagnosis of circulating tumor cells in patients with gastric cancets[J]. International Journal of Cancer, 2006, 119(2): 373-379.
    [13] Caron D A, Dennett M R, Moran D M, et al. Development and application of a monoclonal-antibody technique for counting auirococcus anophagedderens, an alga causing recurrent brown tides in the Mid-Atlantic United States[J]. Applied and Environmental Microbiology, 2003, 69(9): 5492-5502.
    [14] Chou S F, Hu W L, Huang J M, et al. Development of an immunosensor for human ferritin, anonspecific tumor marker, based on a quartz crystal mircrobalance[J]. Analytica Chimica Acta, 2002, 453(2): 181-189.
    [15] Suraniti E, Sollier E, Calemczuk R, et al. Real-time detection of lymphocytes binging on an antibody chip using SPR imaging[J]. Lab on a chip, 2007,7(9): 206-208.
    [16] Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533): 1289-1292.
    [17] Ingvarsson J, Wingren C, Carlsson A, et al. Detection of pancreatic cancer using antibody microarray-based serum protein profiling[J]. Proteomics, 2008, 8(11):2211-2219.
    [18] Rakow N A, Suslick K S. A Colorimetric Sensor Array for Odour Visualization[J]. Nature, 2000, 406(6797): 710-714.
    [19] C Zhang, Suslick K S. A Colorimetric Sensor Array for Organics in Water[J]. J.AM.CHEM. SOC, 2005, 127(33): 11548-11549.
    [20] Thaler, E R, Lee D D, Hanson C W. Diagnosis of rhinosinusitis with a colorimetric sensor array[J]. Journal of Breath Research, 2008, 2(3): 037016 (4 pp.) .
    [21] Chan S A, Lee J S, Chang Y T. Colorimetric Sensor Array for Qualitative Water Analysis[J]. Aust. J. Chem., 2009, 62(9): 1040-1046.
    [22] Montes-Navajas P, Baumes L A, Corma A, et al. Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host-guest complexation[J]. Tetrahedron Letters, 2009, 50(20): 2301-2304.
    [23] Baumes L A, Sogo M B, Montes-Navajas P, et al. First colorimetric sensor array for the identification of quaternary ammonium salts[J]. Tetrahedron Letters, 2009, 50(50): 7001-7004.
    [24] Li J S, Yao J J, Zhong W W. Membrane blotting for rapid detection of mercury(II) in wate[J]. Chemical Communication, 2009, 33: 4962-4964.
    [25] Jiang H, Wang Y L, Ye Q, et al. Polydiacetylene-based colorimetric sensor microarray for volatile organic compounds[J]. Sensors and Actuators B, 2010, 143(2): 789-794.
    [26] Zhang C, Bailey D P, Suslick K S. Colorimetric sensor arrays for the analysis of beers: A feasibility study[J]. J. Agric. Food Chem. 2006, 54(14): 4925-4931.
    [27] Zhang C, Suslick K S. Colorimetric sensor array for soft drink analysis[J]. J. Agric. Food Chem. 2007, 55(2): 237-242.
    [28] Musto C J, Lim S H, Suslick K S. Colorimetric Detection and Identification of Natural and Artificial Sweeteners[J]. Anal. Chem. 2009, 81(15): 6526–6533.
    [29] Suslick B A, Feng L, Suslick K S. Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas[J]. Anal. Chem. 2010, 82(5): 2067–2073.
    [30] Bang J H, Lim S H, Park E, et al. Chemically Responsive Nanoporous Pigments: Colorimetric Sensor Arrays and the Identification of Aliphatic Amines[J]. Langmuir, 2008, 24 (22): 13168-13172
    [31] Feng L, Musto C J, Suslick K S. A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde[J]. J.AM.CHEM. SOC, 132(12): 4046-4047.
    [32]王荣民,王云普.高分子卟啉及其金属配合物的研究进展[J].高分子通报, 1994, 15(1): 18-25.
    [33]王昕.卟啉化合物合成的最新研究进展[J].湘潭师范学院学报(自然科学版), 2001, 23 (3): 52-59.
    [34] Fiel R J, Howard J C, Mark E H, et al.Interaction of DNA with a porphyrin ligand: evidence for intercalation[J]. Nucleic Acids Res. 1979,6 (9): 3093-3118.
    [35] Roberto P. Porphyrin assemblies as chemical sensors[J]. Coordination Chemistry Reviews, 1999, 190–192: 683-706.
    [36]罗国添,刘海洋,黄锦汪,等.新型手性酪氨酸修饰的锌卟啉对氨基酸酯的分子识别研究[J].中山大学学报, 1997, 36(4): 1256.
    [37]罗国添,马鸣华,刘九辉,等.新型L-苏氨酸尾式卟啉及其锌( II)配合物合成与表征[J].化学世界, 2003, 6: 308、315-317.
    [38] Kenneth I. Novel amperometric glucose biosensor based on an ether-linked cobalt(II) phthalocyanine–cobalt(II) tetraphenylporphyrin pentamer as a redox mediator[J]. Electrochimica Acta, 2006, 51: 5131-5136.
    [39]傅敏.基于聚吡咯和碳纳米管/聚吡咯修饰的碳糊电极的葡萄糖传感器[D].浙江大学, 2006.
    [40]戴明,陈彰评.氢醌卟啉的合成及其对醌的分子识别[J].化学研究与应用, 2003, 2(15): 215-217.
    [41] Maria T M. A novel strapped porphyrin receptor for molecular recognition[J]. Thin Solid Film, 1996 , 284-285: 663-666.
    [42] Masahiko I, Ikuko Y. Foldamer-based pyridine–fullerene tweezer receptors for enhanced binding of zinc porphyrin. Inorganic Chemistry Communications, 1999 , 8(2): 331-333.
    [43] Yohei K. A porphyrin tetramer for a positive homotropic allosteric recognition system: efficient binding information transduction through butadiynyl axis rotation[J]. Tetrahedron Letters, 2001, 42(42): 7435-7438.
    [44] James P K. Formation of porphyrin donor-acceptor complexes via an amidinium- carboxylate salt bridge. TetrahedronLetters, 1995, 20(36): 3477-3480.
    [45] Rei Vilar M, El-Beghdadi J, Debontridder F, et al. Development of nitric oxide sensor forasthma att-ack prevention[J]. Materials Science and Engineering C, 2006, 26(6): 253-259.
    [46] Arnaldo D’Amico. Metalloporphyrins as basic material for volatile sensitive sensors[J]. Sensors and Actuators B, 2000 ,65(8): 209-215.
    [47] Roberto Paolesse. Porphyrin-based array of cross-selective electrodes for analysis of liquid samples[J]. Sensors and Actuators B, 2003, 95(9): 400-405.
    [48]杨荣华,王柯敏.基于环糊精/卟啉包络物荧光猝灭的二氧化碳光学敏感膜的研究[J].高等学校化学学报, 2001, 22(1): 38-42.
    [49] K. Eaton. Luminescent oxygen sensors: time-resolved studies and modeling of heterogeneous oxygen quenching of luminescence emission from Pt and Pd octaethylporphyrins in thin polymer films[J]. Sensors and Actuators B, 2004(97): 2-12.
    [50] Gong F C, Wu D X, Cao Z, et al. A fluorescence enhancement-based sensor using glycosylated metalloporphyrin as a recognition element for levamisole assay[J].Biosensorsand Bioelectronics, 2006, 22(3): 423-428.
    [51] Awawdeh M A, Legako J A, Harmon H J. Solid-State Optical Detection of Amino Acids[J]. Sensors and Actuators B, 2003, 91(1-3): 227-230.
    [52] Wu Y, Xie J, Wang F, Chen Z L. Separation of small molecular peptides with same amino acid composition but different sequences by capillary electrophoresis[J]. Journal of Separation Science, 2009, 32(3): 437-440.
    [53] Yin D G, Wu M H, Xie C J, et al. A Novel Capillary Electrophoresis-Chemilum inescence System for Separa tion and Detection of Amino Acids[J]. Chin. J. Anal. Chem., 2008, 37(1): 152-156.
    [54] Xie Y, Jiang Y N, Ben-Amotz D. Detection of amino acid and peptide phosphate protonation using Raman spectroscopy[J]. Analytical Biochemistry, 2005, 343(2): 223-230.
    [55] Kim B H, Lee H S, Jang, Y A, et al. Development of amino acid composition database for Korean foods[J]. Journal of Food Composition and Analysis, 2009, 22(1): 44-52.
    [56] Carignan M O, Cardozo K H, Oliveira-Silva D, et al. Palythine-threonine, a major novel mycosporine-like amino acid (MAA) isolated from the hermatypic coral Pocillopora capitata[J]. Journal of Photochemistry and Photobiology B, 2009, 94(3): 191-200.
    [57] Villari V, Mineo P, Micali N, et al. Uncharged water-soluble porphyrin tweezers as a supramolecular sensor for alpha-amino acids[J]. Nanotechnology , 2007,18(37): 5503-5516.
    [58] Imai H, Misawa K, Munakata H, et al. Water-Soluble Zinc Porphyrins as Artificial Receptors for Amino Acids[J]. Chemical & Pharmaceutical Bulletin , 2008, 56(10): 1470-1472.
    [59] Angelini N, Micali N, Mineo P, et al. Uncharged Water-Soluble Co(II)?Porphyrin: A Receptor for Aromaticα-Amino Acids[J]. The Journal of Physical Chemistry B, 2005,109(39): 18645-18651.
    [60] Prasad B B, Tiwari K, Singh M. et al. Zwitterionic molecularly imprinted polymer-based solid-phase micro-extraction coupled with molecularly imprinted polymer sensor for ultra-trace sensing of L-histidine[J]. Journal of Separation Science, 2009, 32(7): 1096-1105.
    [61] Vasjari M, Merkoci A, Hart J P, et al. Amino acid determination using screen-printed electrochemical sensors[J]. Microchimica Acta , 2005, 150(3-4): 233-238.
    [62] Buryak A, Severin K J. A Chemosensor Array for the Colorimetric Identification of 20 Natural Amino Acids[J]. J. AM. CHEM. SOC. 2005, 127(11): 3700-3701.
    [63] Nicholson J K, Lindon J C, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29 (11): 1181-1189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700