用户名: 密码: 验证码:
PTEN对抗氧化蛋白调控机制及效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
10号染色体缺失的磷酸酶及张力蛋白同源物(phosphatase and tensin homology deleted on chromosome ten,PTEN),是第一个被发现具有磷酸酶功能的抑癌基因,在多种肿瘤中存在突变或缺失。我们前期以小鼠胚胎成纤维细胞系PTEN+/+ MEFs为基础,成功建立了体外条件敲除PTEN基因具有恶性表型的小鼠胚胎成纤维细胞系PTEN-/- MEFs。运用蛋白质组学技术,研究PTEN+/+ MEFs和PTEN-/- MEFs细胞蛋白表达谱的差异。我们发现在PTEN缺失MEFs细胞中同属抗氧化防御系统的铜锌-超氧化物歧化酶(Cu/Zn-SOD)以及过氧化物还原酶(Prx)5, 6均表达下调。进一步运用Northern blot和Western blot对这一结果进行验证,显示PTEN缺失MEFs细胞中Cu/Zn-SOD和Prx1, 2, 5, 6 mRNA及蛋白表达均下调。
     抗氧化防御系统包括超氧化物歧化酶(Superoxide Dismutase,SOD)、过氧化物还原酶家族(Peroxiredoxins, Prxs)、过氧化氢酶(Catalase, CAT)以及谷胱苷肽过氧化物酶(Glutathione Peroxidase, GPxs)等,是体内活性氧(ROS)的清除系统。过量的ROS会形成氧化压力(oxidative stress),引发脂质过氧化反应,导致DNA分子的损伤,从而引起基因组不稳定性。正常生理情况下,人体主要依靠抗氧化防御系统来维持ROS的生成与清除之间的动态平衡状态。前期研究结果显示:PTEN-/- MEFs细胞抗氧化防御能力降低;细胞内基础ROS水平升高;细胞脂质过氧化损伤增强;细胞DNA氧化损伤增强。
     到目前为止,没有任何关于PTEN对Cu/Zn-SOD以及Prxs表达调控机制的报道。对PTEN的功能研究显示:PTEN具有脂磷酸酶的活性,对脂类底物3,4,5-三磷酸磷脂酰肌醇(PIP3)有强去磷酸化作用,而PIP3是PI3K/AKT信号转导通路的主要信号分子。PTEN的缺失可引起PI3K/AKT信号级联的活化,从而刺激细胞增殖与迁移。已知AKT可通过下游的Forkhead家族转录因子FoxO(s包括FoxO1, FoxO3a和FoxO4)对同属于抗氧化防御系统的CAT和Mn-SOD基因转录进行调控。在此调控过程中,AKT对FoxOs的磷酸化可促进FoxOs从核内排出,继而发生降解失活,减弱其在核内的转录调控活性,使CAT和Mn-SOD基因转录水平降低。结合国内外研究进展以及本实验室前期研究发现,我们提出以下假设:PTEN可通过拮抗PI3K/AKT通路对FoxOs转录因子的磷酸化降解途径,进而影响Prx1, 2, 5, 6以及Cu/Zn-SOD的调控和转录。
     基于上述假设,本研究分三部分进行:
     1.PTEN是否通过PI3K/AKT/FoxOs通路调控抗氧化防御蛋白的蛋白表达:(1)Western Blot比较PTEN+/+ MEFs和PTEN-/- MEFs细胞基础FoxO1、FoxO3a和FoxO4磷酸化水平以初步判断可能相关的转录因子。(2)Western Blot检测PTEN+/+ MEFs瞬时和稳定转染AKT-WT、AKT-AC质粒以及PTEN-/- MEFs瞬时和稳定转染PTEN-WT、AKT-DN质粒,P-FoxOs和抗氧化防御蛋白的蛋白表达水平差异,确定PTEN是否通过PI3K/AKT通路影响FoxOs在核内的转录调控活性从而调控抗氧化防御蛋白的表达。为进一步明确PTEN通过FoxOs亚家族的哪一个转录因子参与对Prx1, 2, 5, 6和Cu/Zn-SOD表达的调控提供线索。
     2.检测PTEN是否通过PI3K/AKT通路对细胞内活性氧和抗氧化防御能力产生影响:(1)DCFH-DA(2’7’-二氯荧光素双乙酸盐)和DHE(二氢乙啶)荧光探针分别标记细胞内H2O2及O2·ˉ,结合流式细胞学检测稳定转染AKT-WT、AKT-AC质粒的PTEN+/+ MEFs以及稳定转染PTEN-WT、AKT-DN质粒的PTEN-/- MEFs细胞中DCF和Eth荧光强度,以明确PTEN是否通过AKT通路影响细胞内基础H2O2及O2·ˉ的水平。(2)中性彗星电泳检测PTEN-/- MEFs和稳定转染PTEN-WT质粒的PTEN-/- MEFs细胞内不同浓度H2O2诱发的DNA DSBs水平变化,从而明确重建PTEN表达对MEFs细胞内抗氧化防御能力的影响。
     3.检测PTEN是否通过PI3K/AKT通路对细胞内DNA双链断裂产生影响:(1)中性彗星电泳检测PTEN-/- MEFs和稳定转染PTEN-WT质粒的PTEN-/- MEFs细胞内DNA DSBs水平;(2)免疫荧光染色检测0.01umol/L H2O2处理15min后,稳定转染AKT-WT、AKT-AC质粒PTEN+/+ MEFs以及稳定转染PTEN-WT、AKT-DN质粒PTEN-/- MEFs细胞按不同时间进行培养,胞核中γH2AX位点数(其直接反映DNA DSBs位点数),从而明确PTEN是否通过AKT通路对细胞内DNA双链断裂水平产生影响。
     主要结果如下:
     1. PTEN通过PI3K/AKT通路的活化抑制调控Prx1, 2, 5, 6及Cu/Zn-SOD的蛋白表达:Western Blot结果显示瞬时和稳定转染AKT-WT、AKT-AC质粒的PTEN+/+ MEFs细胞中Prx1,2,5,6和Cu/Zn-SOD蛋白水平明显下调(p<0.01),说明在PI3K/AKT通路失活的PTEN+/+ MEFs中,活化AKT可下调抗氧化防御蛋白的表达。瞬时和稳定转染PTEN-WT/AKT-DN质粒的PTEN-/- MEFs中Prx1,2,5,6和Cu/Zn-SOD蛋白水平上调(p<0.05),说明在PTEN缺失细胞中抑制AKT可使抗氧化防御蛋白的表达增强。以上结果表示PTEN可通过拮抗PI3K/AKT通路调控Prx1, 2, 5, 6及Cu/Zn-SOD蛋白表达。
     2. PTEN通过拮抗PI3K/AKT通路抑制转录因子FoxO1磷酸化:Western blot结果显示PTEN缺失细胞中转录因子FoxO1和FoxO3a磷酸化水平升高(p<0.01),提示FoxO1和FoxO3a可能参与PTEN对抗氧化防御蛋白的调控;Western blot检测稳定转染AKT-WT/AKT-AC质粒的PTEN+/+ MEFs和稳定转染PTEN-WT/AKT-DN质粒的PTEN-/- MEFs细胞中P-FoxO1蛋白表达,结果表明AKT活化后的PTEN+/+ MEFs细胞P- FoxO1蛋白表达增高(p<0.05),AKT抑制后的PTEN-/- MEFs细胞P- FoxO1蛋白表达显著降低(p<0.01),说明PTEN可通过拮抗PI3K/AKT通路抑制下游转录因子FoxO1磷酸化,维持FoxO1在核内的转录调控活性。
     3. PTEN通过抑制PI3K/AKT通路降低细胞内基础ROS水平:运用流式细胞仪检测DCFH-DA和DHE探针标记稳定转染AKT-WT/AKT-AC质粒的PTEN+/+ MEFs以及稳定转染PTEN-WT/AKT-DN质粒的PTEN-/- MEFs细胞内DCF和Eth荧光强度,结果显示AKT活化后的PTEN+/+MEFs细胞内DCF和Eth荧光强度明显增高(p<0.05),AKT抑制后的PTEN-/- MEFs细胞内DCF和Eth荧光强度则显著降低(p<0.01)。说明PTEN可通过抑制PI3K/AKT通路降低细胞内基础ROS水平。
     4. PTEN再表达引起细胞抗氧化防御能力增强:运用中性单细胞凝胶电泳检测发现0.01 mmol/L H2O2作用PTEN-/- MEFs细胞就出现具有统计学意义的平均尾力矩增长(p<0.01),而稳定转染PTEN-WT质粒的PTEN-/- MEFs细胞则在0.05 mmol/L H2O2作用时才出现有统计学意义的平均尾力矩增长(p<0.01)。说明PTEN再表达抑制PI3K/AKT通路会引起MEFs细胞的抗氧化防御能力明显增强。
     5. PTEN通过拮抗PI3K/AKT通路减少细胞内DNA DSBs水平:中性彗星电泳检测PTEN-/- MEFs和稳定转染PTEN-WT质粒的PTEN-/- MEFs细胞,显示稳定转染PTEN-WT质粒的PTEN-/- MEFs细胞的平均尾力矩(20.34)明显低于PTEN-/- MEFs细胞(27.23)(p<0.01)。说明PTEN再表达可显著降低细胞内DNA DSBs水平。0.01umol/L H2O2作用15min后按不同时间培养,免疫荧光染色显示PTEN+/+ MEFs细胞中γH2AX位点数在30min时即出现了有统计学意义的差异(p<0.05),稳定转染AKT-WT/AKT-AC质粒的PTEN+/+ MEFs细胞则在4h才出现有统计学意义的降低(p<0.05)。PTEN-/- MEFs细胞中γH2AX位点数在4h出现有统计学意义的降低(p<0.05),而稳定转染PTEN-WT/AKT-DN质粒的PTEN-/- MEFs细胞在4h时出现显著的降低(p<0.01)。说明PTEN通过拮抗PI3K/AKT通路促进DNA DSBs损伤的修复,并由此维持基因组稳定性。
     结论如下:
     1. PTEN通过PI3K/AKT/FoxOs通路调控Prx1, 2, 5, 6及Cu/Zn-SOD蛋白表达;
     2.PTEN通过拮抗PI3K/AKT通路降低细胞内基础ROS水平,增强细胞的抗氧化防御能力,减少细胞DNA DSBs损伤水平。说明PTEN在保护细胞免于氧化损伤、维持细胞内氧化还原环境和基因组稳定性方面有着重要作用。
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is the first phosphatase identified as a tumor suppressor. Reduced expression or loss-of-function mutations of the PTEN gene are found at high frequency in a wide variety of human tumors. In early studies, using two-dimensional gel electrophoresis, combined with Western and Northern blot analyses, we observed that PTEN deficiency in mouse embryonic fibroblasts (MEFs) showed deregulated expression of several antioxidant enzymes, including peroxiredoxins 1, 2, 5, and 6 and Cu, Zn superoxide dismutase.
     The present study aimed to demonstrate the mechanism of PTEN for regulation the protein expression of peroxiredoxin(Prx)1, 2, 5, 6 and copper/zinc superoxide dismutase (Cu/Zn-SOD) and the effect of the deregulated expression of Prx1, 2, 5, 6 and Cu/Zn-SOD on the basal levels of reactive oxygen species (ROS), antioxidant defense ability and DNA DSBs damage in PTEN+/+ MEFs transfected stably with plxsp-HAGFP -AKT-WT/AKT-AC and PTEN-/- MEFs transfected stably with plxsp-HAGFP - PTEN-WT/AKT-DN. In this study, we show for the first time that mechanism of PTEN for regulation the protein expression of Prx1,2,5,6 and Cu/Zn-SOD.
     Methods:
     1. To explore whether PTEN can regulate the expression of antioxidant enzymes through inhibiting PI3K/AKT/FoxOs signaling pathway, the protein expression of Prx1, 2, 5, 6 and Cu/Zn-SOD was measured with Western blot in PTEN+/+MEFs transfected transiently with pIRES2-EGFP-AKT-WT /AKT-AC and stably with plxsp-HAGFP-AKT-WT/AKT-AC and PTEN-/- MEFs transfected transiently with pIRES2-EGFP-PTEN-WT/AKT-DN and stably with plxsp-HAGFP-PTEN-WT/AKT-DN. Western blot was further applied to detect the basal expression of FoxOs in PTEN+/+ MEFs and PTEN-/- MEFs and the expression levels of FoxO1 in PTEN+/+ MEFs transfected stably with plxsp-HAGFP-AKT-WT/AKT-AC and PTEN-/- MEFs transfected stably with plxsp-HAGFP-PTEN-WT/AKT-DN to identify if PTEN regulate the phosphorylation of the transcription factor FoxO1 through inhibiting PI3K/AKT signaling pathway.
     2. To detect the effect of PTEN on the basal levels of ROS and antioxidant defense ability through inhibiting PI3K/AKT signaling pathway. Using 2’,7’-dichlorofluorescein diacetate (DCHF-DA) and dihydroethidium (DHE), the intracellular generation of H2O2 and superoxide anion(O2·ˉ) was determined by flow cytometry in PTEN+/+ MEFs transfected stably with plxsp-HAGFP-AKT-WT/AKT-AC and PTEN-/- MEFs transfected stably with plxsp-HAGFP-PTEN-WT/AKT-DN. The comet assay was used for the evaluation of various concentrations of H2O2-induced DNA double-strand breaks (DSBs) in PTEN-/- MEFs and PTEN-/- MEFs transfected stably with plxsp-HAGFP-PTEN-WT.
     3. To determine the effect of PTEN on DNA DSBs through inhibiting PI3K/AKT signaling pathway. The comet assay was applied to detect the levels of DNA DSBs. The expression ofγH2AX was further detected by immunofluorescence in PTEN+/+ MEFs transfected stably with plxsp-HAGFP- AKT-WT/AKT-AC and PTEN-/- MEFs transfected stably with plxsp-HAGFP- PTEN-WT/AKT-DN that were cultured for different hours after being treated with 0.01u mol/L H2O2 for 15 minutes.
     Results:
     1. PTEN can increase the protein expression of Prx1, 2, 5, 6 and Cu/Zn-SOD through inhibiting PI3K/AKT signaling pathway: western blot displayed the protein expression of Prx1, 2, 5, 6 and Cu/Zn-SOD down-regulated in PTEN+/+MEFs transfected transiently and stably with AKT-WT/AKT-AC and up-regulated in PTEN-/- MEFs transfected transiently and stably with PTEN-WT/AKT-DN, indicating that PTEN can increase the expression of Prx1, 2, 5, 6 and Cu/Zn-SOD through inhibiting PI3K/AKT signaling pathway.
     2. PTEN can decrease the phosphorylation level of FoxO1 through inhibiting PI3K/AKT signaling pathway: western blot displayed that the protein expression of P-FoxO1 and P-FoxO3a in PTEN-/- MEFs was higher than that in PTEN+/+ MEFs(p<0.01). Western blot further showed that the protein expression of P-FoxO1 was up-regulated in PTEN+/+ MEFs transfected stably with plxsp-HAGFP-AKT-WT/AKT-AC (p<0.05) and down-regulated in PTEN-/- MEFs transfected stably with plxsp-HAGFP-PTEN-WT/AKT-DN(p<0.01),suggesting that PTEN can decrease the phosphorylation level of FoxO1 through inhibiting PI3K/AKT signaling pathway.
     3. PTEN can decrease ROS levels in MEFs through inhibiting PI3K/AKT signaling pathway: A flow-cytometry-based DCHF-DA and DHE analysis indicated that the levels of both DCF and Eth fluorescence were higher in PTEN+/+ MEFs transfected stably with plxsp-HAGFP-AKT-WT/AKT-AC (p<0.05) and lower in PTEN-/- MEFs transfected stably with plxsp-HAGFP- PTEN-WT/AKT-DN(p<0.01).
     4. Increased antioxidant defense ability in PTEN-reexpression MEFs: The comet assay displayed that exposure to each concentration of H2O2 resulted in a highly statistically significant increase in the frequency of DNA DSBs in PTEN-/- MEFs (p<0.01) compared with H2O2-untreated control at each concentration, whereas this increase was seen only in the 0.05 mmol/L H2O2-treated PTEN-reexpression MEFs(p<0.01 compared with H2O2- untreated control), indicating the increased antioxidant defense ability in PTEN-/- MEFs transfected stably with plxsp-HAGFP-PTEN-WT.
     5. PTEN can decrease DNA DSBs damage in MEFs through inhibiting PI3K/AKT signaling pathway: The comet assay showed that mean tail moment in PTEN-/- MEFs transfected stably with plxsp-HAGFP-PTEN-WT was significantly lower than that in PTEN-/- MEFs(20.34 vs 27.23, p<0.01). The frequency of DNA DSBs was measured by immunofluorescence assay forγH2AX. The result displayed that a statistically significant decrease in the frequency of DNA DSBs in PTEN+/+ MEFs at 30 minuates was detected (p<0.05), whereas this decrease was found only at 4h in PTEN+/+ MEFs transfected stably with plxsp-HAGFP-AKT-WT/AKT-AC (p<0.05). And this decrease in the frequency of DNA DSBs was seen at 4h in PTEN-/- MEFs(p<0.05), whereas a higly statistically significant decrease was showed at 4h in PTEN-/- MEFs transfected stably with plxsp-HAGFP-PTEN-WT /AKT-DN(p<0.01). These results suggest that PTEN can promote DNA damage repair through inhibiting PI3K/AKT signaling pathway.
     Conclusion:
     1. PTEN regulates the protein expression of Prx1, 2, 5, 6 and Cu/Zn-SOD through PI3K/AKT/FoxOs signaling pathway.
     2. PTEN can reduce ROS levels, increase antioxidant defense ability and decrease DNA DSBs damage in MEFs through inhibiting PI3K/AKT signaling pathway. These findings show that PTEN plays an essential role in promoting DNA damage repair and maintaining genomic stability against oxidative damage.
引文
[1]王连唐主编,病理学[M].北京:高等教育出版社. 2008年
    [2] Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers[J] . Nat Genet. 1997,15(4):356-62.
    [3] Jing Li, Clifford Yen, Danny Liaw, et al. PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer[J] . Science. 1997, 275(5308): 1943-1947.
    [4] Li DM, Sun H.TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta[J] . Cancer Res. 1997,57(11):2124-9.
    [5] Stiles B, Groszer M, Wang SY, et al. PTENless mease more[J]. Dev Biol,2004,273(2):175-184.
    [6] Marsit CJ, Zheng S, Aldape K, et al. PTEN expression in non-small-cell lung cancer:evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration[J]. Hum Pathol,2005,36(7):768-776.
    [7] Liaw D, Marsh DJ, Li J, Dahia PL, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome [J]. Nat Genet.1997, 16(1):64-67.
    [8] Li G, Robinson GW, Lesche R, et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland[J] . Development. 2002,129(17):4159-70.
    [9]傅春玲,霍艳英,胡迎春,等.Pten基因敲除对过氧化物酶家族表达和活性氧水平的影响[J] .军事医学科学院院刊,2007,31(3):201-203.
    [10] Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN[J]. Cell, 1998, 95(1):29-39.
    [11] Sun H, Lesche R., Li DM, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway[J]. Proc Natl Acad Sci U S A, 1999, 96(11), 6199-6204.
    [12] Chow LM, Baker SJ. PTEN function in normal and neoplastic growth..Cancer Lett.. 2006; 241(2):184-96.
    [13] Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006; 7(8):606-19.
    [14] Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chem Biol Interact. 2006,160(1):1-40.
    [15] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence[J]. Mol Cell Biochem. 2004,266(1-2):37-56.
    [16] Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer[J]. EMBO reports. 2002,3(5):420-425.
    [17] Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer[J]. Mutat Res. 2001,477(1-2):7-21.
    [18] Yan-Ying Huo, Gang Li, Rui-Feng Duan, et al. PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts[J]. Free Radical Biology & Medicine,2008,44(8):1578-1591.
    [1] Yan-Ying Huo, Gang Li, Rui-Feng Duan, et al. PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts[J]. Free Radical Biology & Medicine.2008,44(8):1578-1591.
    [2]苟巧,米粲,胡迎春,等. Pten基因对小鼠胚胎成纤维细胞中Cu/Zn SOD基因表达的调控[J].第三军医大学学报.2009,31(12):1127-1130.
    [3] T. Maehama and Jack E. Dixon. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5- trisphosphate[J]. J Biol Chem.1998,273(22):13375-13378
    [4] Li L, Ross AH. Why is PTEN an important tumor suppressor? [J]. J Cell Biochem. 2007, 102(6): 1368-1374.
    [5] Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN [J]. Cell.1998;95: 29-39.
    [6] Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN [J]. J Cell Sci. 2008, 121(Pt 3): 249-253.
    [7] Yin Y, Shen WH. PTEN: a new guardian of the genome [J]. Oncogene. 2008, 27(41): 5443-5453.
    [8] Jiang BH, Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis [J].Biochim Biophys Acta. 2008, 1784(1):150-158.
    [9] Rodríguez-Escudero I, Roelants FM, Thorner J, et al. Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast [J]. Biochem J. 2005, 390(Pt 2):613-623.
    [10] Sun H, Lesche R, Li DM, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway [J]. Proc Natl Acad Sci USA. 1999, 96: 6199-6204.
    [11] Tamguney T, Stokoe D. New insights into PTEN [J]. J Cell Sci. 2007, 120(Pt 23): 4071-4079.
    [12] Hartmann W, Digon-S?ntgerath B, Koch, et al. Phosphatidylinositol 3'-kinase /AKT signaling is activated in medulloblastoma cell proliferation and is associated with reduced expression of PTEN [J]. Clin Cancer Res. 2006, 12(10):3019-3027.
    [13] Kops GJ, Dansen TB, Polderman PE, et al. Forkhead transcription factor FOXO3aprotects quiescent cells from oxidative stress [J]. Nature. 2002, 419(6904):316-321.
    [14] Li M, Chiu JF, Mossman BT, et al. Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats [J]. J Biol Chem. 2006, 281(52): 40429-40439.
    [15] Huang H, Tindall DJ. Dynamic FoxO transcription factors [J]. J Cell Sci. 2007, 120(Pt 15): 2479-2487.
    [16] Glauser DA, Schlegel W. The emerging role of FOXO transcription factors in pancreatic beta cells [J]. J Endocrinol. 2007, 193(2):195-207.
    [17] Burgering BM, Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty [J]. J Leukoc Biol.2003, 73(6): 689-701.
    [18] Plas DR, Thompson CB. Akt-dependent transformation: there is more to growth than just surviving [J]. Oncogene. 2005, 24(50): 7435-7442.
    [19] Daitoku H, Fukamizu A. FOXO transcription factors in the regulatory networks of longevity [J]. J Biochem. 2007, 141(6): 769-774.
    [20] Birkenkamp KU, Coffer PJ. Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors [J]. Biochem Soc Trans. 2003, 31(Pt 1): 292-297.
    [21] Chow LM, Baker SJ. PTEN function in normal and neoplastic growth [J]. Cancer Lett. 2006, 241(2): 184-196.
    [22] Lam EW, Francis RE, Petkovic M. FOXO transcription factors: key regulators of cell fate [J]. Biochem Soc Trans. 2006, 34(Pt 5): 722-726.
    [23] Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism [J]. Nat Rev Genet. 2006, 7(8): 606-619.
    [24] Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? [J]. J Immunol. 2003, 171(4): 1623-1629.
    [25] Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress [J]. Cell. 2007,128(2): 325-339.
    [26] Venkatesan B, Mahimainathan L, Das F, et al. Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells [J]. J Cell Physiol. 2007, 211(2): 457-467.
    [27] Blanco-Aparicio C, Renner O, Leal JF, et al. PTEN, more than the AKT pathway[J]. Carcinogenesis. 2007, 28(7):1379-1386.
    [28] Waite KA, Eng C. Protean PTEN: form and function [J]. Am J Hum Genet. 2002,70: 829-844.
    [29] Wang L, Wang W, Zhang Y, et al. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res. 2007, 37(5): 389-396.
    [30] Erkanli S, Kayaselcuk F, Kuscu E, et al. Expression of survivin, PTEN and p27 in normal, hyperplastic, and carcinomatous endometrium [J]. Int J Gynecol Cancer.2006, 16(3): 1412-1418.
    [31] Eng C. PTEN: one gene, many syndromes [J]. Hum Mutat. 2003, 22:183-198.
    [32] Li AG, Piluso LG, Cai X, et al. Mechanistic insights into maintenance of high p53 acetylation by PTEN [J]. Mol Cell. 2006, 23(4): 575-587.
    [33] Okumura K, Mendoza M, Bachoo RM, et al. PCAF modulates PTEN activity [J].J Biol Chem. 2006, 281(36): 26562~26568.
    [1] Dr?ge W. Free Radicals in the Physiological Control of Cell Function [J]. Physiol Rev. 2002, 82(1): 47-95.
    [2] Hensley K, Robinson KA, Gabbita SP, et al. Reactive oxygen species, cell signaling, and cell injury [J]. Free Radic Biol Med. 2000, 28(10):1456-1462.
    [3] Burdon, R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation [J]. Free Radic Biol Med. 1995, 18(4):775-794.
    [4] Conde de la Rosa L, Schoemaker MH, Vrenken TE, et al. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases [J]. J Hepatol. 2006, 44(5): 918-929.
    [5] Simon AR, Rai U, Fanburg BL, et al. Activation of the JAK-STAT pathway by reactive oxygen species [J]. Am J Physiol. 1998, 275(6 Pt 1): C1640-1652.
    [6]蔡露.低剂量辐射诱导适应性反应规律及其机理研究的进展[J].中华放射医学与防护杂志. 1997, 17(5): 291-300.
    [7] Yu HS, Song AQ, Lu YD, et al. Effects of low-dose radiation on tumor growth, erythrocyte immune function and SOD activity in tumor-bearing mice [J]. Chin Med J (Engl). 2004, 117(7):1036-1039.
    [8] Ahsan H, Ali A, Ali R. Oxygen free radicals and systemic autoimmunity. Clin Exp Immunol [J]. 2003, 131(3): 398-404.
    [9] Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals [J]. Int J Cancer. 2007, 121(11):2357-2363.
    [10] Lijnen P, Petrov V, van Pelt J, et al. Inhibition of superoxide dismutase induces collagen production in cardiac fibroblasts [J]. Am J Hypertens. 2008, 21(10):1129-1136.
    [11] Valavanidis A, Vlahogianni T, Dassenakis M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants [J]. Ecotoxicol Environ Saf. 2006, 64(2): 178-189.
    [12] Valdez LB, Arniaiz SL, Bustamante J, et al. Free radical chemistry in biologicalsystems [J]. Bio Res. 2000, 33(2): 65-70.
    [13] El Kebir D, József L, Pan W, et al. Myeloperoxidase delays neutrophil apoptosis through CD11b/CD18 integrins and prolongs inflammation [J]. Circ Res. 2008,103(4): 352-359.
    [14] Choi DW, Semrau JD, Antholine WE, et al. Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs [J]. J Inorg Biochem. 2008, 102(8): 1571-1580.
    [15] Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson's disease [J]. Annu Rev Neurosci. 2005, 28: 57-87.
    [16] Karihtala P, Soini Y. Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies [J]. APMIS 2007, 115(2):81-103.
    [17] Valko M, Izakovic M, Mazur M, et al. Role of oxygen radicals in DNA damage and cancer incidence [J]. Mol Cell Biochem. 2004, 266(1-2): 37-56.
    [18] Benhar M, Engelberg D, Levitzki A. ROS, stress-activated kinases and stress signaling in cancer [J]. EMBO Rep. 2002, 3(5):420-425.
    [19] Jackson AL, Loeb LA. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer [J]. Mutat Res. 2001, 477(1-2):7-21.
    [20] Pietarinen-Runtti P, Raivio KO, Saksela M, et al. Antioxidant enzyme regulation and resistance to oxidants of human bronchial epithelial cells cultured under hyperoxic conditions [J]. Am J Respir Cell Mol Biol. 1998, 19(2): 286-292.
    [21] Kinnula VL, P??kk? P, Soini Y. Antioxidant enzymes and redox regulating thiol proteins in malignancies of human lung [J]. FEBS Lett. 2004, 569(1-3): 1-6.
    [22] Tien Nguyen-nhu N, Knoops B. Mitochondrial and cytosolic expression of human peroxiredoxins 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat [J]. FEBS Lett. 2003, 544: 148-152.
    [23] Rhee SG, Kang SW, Netto LE, et al. A family of novel peroxidases, peroxiredoxins[J]. BioFactors,1999,10:207-209
    [24] Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional,mammalian redox protein [J]. Redox Rep. 2002,7(3): 123-130.
    [25] Rhee SG, Kang SW, Jeong W, et al. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins [J]. Curr Opin Cell Biol. 2005, 17(2):183-189.
    [26] Chae HZ, Kim HJ, Kang SW, et al. Characterization of three isoforms of mammalianperoxiredoxin that reduce peroxides in the presence of thioredoxin [ J ]. Diabetes Re Clin Pract. 1999, 45(2-3): 101-112.
    [27]章波,向渝梅,白云.抗氧化蛋白Peroxiredoxin家族研究进展[J].生理科学进展. 200, 35(4):352-355.
    [28] Kim H, Lee TH, Park ES, et al. Role of Peroxiredoxins in Regulating Intracellular Hydrogen Peroxide and Hydrogen Peroxide-induced Apoptosis in Thyroid Cells [J]. J Biol Chem. 2000, 275(24): 18266-18270.
    [29] Yuan J, Murrell GA, Trickett A, et al. Overexpression of antioxidant enzyme peroxiredoxin 5 protects human tendon cells against apoptosis and loss of cellular function during oxidative stress[ J ]. Biochim Biophys Acta. 2004, 1693(1):37-45.
    [30] Phelan SA, Wang X, Wallbrandt P, et al. Overwxpression of Prdx6 protects H2O2 but dose not prevent diet-induced atherosclession in the aorrtic root [ J ]. Free Radical Biology & Medicine. 2003, 35(9): 1110-1120.
    [31] Neumann C A, Krause D S, Carman C V, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression[ J ]. Nature.2003, 424(6948): 561-565.
    [32] Wang X, Phelan S A, Forsman-Semb K, et al. Mice with targeted mutaton of peroxiredoxin 6 develop normally but are susceptible to oxidative stress [ J ]. J Biol Chem. 2003, 278(27): 25179-25190.
    [33] Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer [J]. Chem Biol Interact. 2006, 160(1): 1-40.
    [34] Landis GN, Tower J. Superoxide dismutase evolution and life span regulation [J].Mech Ageing Dev. 2005, 126(3): 365-379.
    [35]傅春玲,霍艳英,胡迎春,等. Pten基因敲除对过氧化物酶家族表达和活性氧水平的影响[J].军事医学科学院院刊. 2007, 31 (3): 201-203.
    [36] Huo YY, Li G, Duan RF,et al. PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts [J]. Free Radical Biology & Medicine. 2008, 44(8): 1578-1591.
    [37]杨柳,苟巧,米粲. PTEN缺失对小鼠成纤维细胞Cu/Zn超氧化物歧化酶表达的影响及其意义[J].中华病理学杂志. 2008, 37(7): 477-480.
    [38] Seo JH, Ahn Y, Lee SR, et al. The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway [J]. Mol Biol Cell. 2005, 16(1): 348-357.
    [39] Lee SR, Yang KS, Kwon J, et al. Reversible inactivation of the tumor suppressor PTEN by H2O2 [J]. J Biol Chem. 2002, 277(23): 20336-20342.
    [40] Bokoch GM, Diebold BA. Current molecular models for NADPH oxidase regulation by Rac GTPase [J]. Blood. 2002, 100(8): 2692-2696.
    [41] Radcliff K, Tang TB, Lim J, et al. Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways [J]. Circ Res. 2005, 96: 398-400.
    [42] Kwon J, Lee SR, Yang KS,et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors [J]. Proc Natl Acad Sci. 2004, 101(47): 16419-16424.
    [43] Griendling KK, Sorescu D, Lassegue B, et al. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology [J]. Arterioscler Thromb Vasc Biol. 2000, 20:2175-2183.
    [44] Leslie NR, Bennett D, Lindsay YE, et al. Redox regulation of PI 3-kinase signalling via inactivation of PTEN [J]. EMBO J. 2003, 22(20): 5501-5510.
    [45]霍艳英,付春玲,苟巧等.过氧化氢以PTEN依赖方式介导细胞凋亡[J].中国生物化学与分子生物学报. 2007,23(4): 304-308.
    [1]余艳柯,陆源,余应年,等.γH2AX:DNA双链断裂的标志[J].中国药理学与毒理学杂志.2005,19(3):237-240
    [2] Sargis R M , Subbaiah P V . Protection of membrane cholesterol by sphingomyelin against f ree radical-mediated oxidation [J ] .2006,40 ( 12) :2092-2102
    [3] Dhandapani N., Ganesan B., Anandan R., et al. Synergistic effects of squalene and polyunsaturated fatty acid concentrate on lipid peroxidation and antioxidant status in isoprenaline-induced myocardial infarction in rats [J]. African Journal of Biotechnology. 2007, 6(8): 1021-1027.
    [4] Shimizu T, Igarashi J, Ohtuka Y, et al. Effects of n-3 polyunsaturated fatty acids and vitamin E on colonic mucosal leukotriene generation, lipid peroxidation, and microcirculation in rats with experimental colitis [J]. Digestion. 2001, 63(1):49-54.
    [5] Huo YY, Li G, Duan RF,et al. PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mouse embryonic fibroblasts [J]. Free Radical Biology & Medicine. 2008, 44(8): 1578-159
    [6] Jeggo P, L?brich M. Radiation-induced DNA damage responses [J]. Radiat Prot Dosimetry. 2006, 122(1-4): 124-127.
    [7] Hashimoto K, Takasaki W, Sato I, et al. DNA damage measured by comet assay and 8-OH-dG formation related to blood chemical analyses in aged rats [J]. J Toxicol Sci. 2007, 32(3): 249-259.
    [8] McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic disease[J]. Annu Rev Genomics Hum Genet. 2007, 8: 37-55.
    [9] Panayiotidis M, Tsolas O, Galaris D. Glucose oxidase-produced H2O2 induces Ca2+-dependent DNA damage in human peripheral blood lymphocytes [J]. Free Radic Biol Med. 1999, 26(5-6): 548-556.
    [10]苟巧,霍艳英,胡迎春,等.对PTEN缺失小鼠成纤维细胞中的DNA氧化损伤的研究[J].癌变畸变突变. 2008,20(1):6-10.
    [11] Durocher D, Jackson SP. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? [J].Curr Opin Cell Biol,2001,13:225-231.
    [12] Stiff T,O’Dfiseoll M,Rief N.et a1.ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation[J].Cancer Res.2004,64:2390-2396.
    [13] Irene M. Ward, Junjie Chen. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress[J]. J Biol Chem.2001,276(51):47759-47762.
    [14] Shen WH, Balajee AS, Wang J, et al. Essential role for nuclear PTEN in maintaining chromosomal integrity [J]. Cell. 2007, 128(1):157-170.
    [15] Puc J, Parsons R. PTEN loss inhibits CHK1 to cause double stranded-DNA breaks in cells [J]. Cell Cycle. 2005, 4(7): 927-929.
    [16] Kim JS, Lee C, Bonifant CL, et al. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA [J]. Mol Cell Biol.2007, 27(2): 662-677.
    [17] Chu FF, Esworthy RS, Chu PG, et al. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes [J]. Cancer Res. 2004, 64(3): 962-968.
    [18] Wang X, Phelan SA, Forsman-Semb K, et al. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress [J]. J Biol Chem. 2003, 278 (27): 25179 - 25190.
    [19] Neumann CA, Krause DS, Carman CV, et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression [J]. Nature.2003, 424(6948): 561-565.
    [20] Ayaz M, Celik HA, Aydin HH, et al. Sodium selenite protects against diabetes-induced alterations in the antioxidant defense system of the liver [J]. Diabetes Metab Res Rev. 2006, 22(4): 295-299.
    [21] Riccioni G, D’orazio N. The role of selenium, zinc andantioxidant vitamin supplementation in the treatment of bronchial asthma: adjuvant therapy or not? [J]. Expert Opin Investing Drugs. 2005,14(9): 1145-1155.
    [22] Sachidanandam K, Fagan SC, Ergul A. Oxidative stress and cardiovascular disease: antioxidants and unresolved issues [J]. Cardiovasc Drug Rev. 2005, 23(2):115-132.
    [23] Karageuzyan KG. Oxidative stress in the molecular mechanism of pathogenesis at different diseased states of organism in clinics and experiment [J]. Curr Drug Targets Inflamm Allergy. 2005, 4(1): 85-98.
    [24] Janisch KM, Milde J, Schempp H, et al. Vitamin C, vitamin E and flavonoids [J].Dev Ophthalmol. 2005, 38: 59-69.
    [25] Cai HX, Luo JM, Long X, et al. Free-radical oxidation and superoxide dismutase activity in synovial fluid of patients with temporomandibular disorders [J]. J Orofac Pain. 2006, 20(1): 53-58.
    [26] Hankey GJ, Bennett MH, Wasiak J, et al. Hyperbaric oxygen therapy for acute ischemic stroke [J]. Stroke. 2006, 37: 1953-1954.
    [27] Djordjevic VB. Free radicals in cell biology [J]. Int Rev Cytol. 2004, 237: 57-89.
    [28]赵克然,杨毅军,曹道俊.氧自由基与临床[M].北京:中国医药科技大学出版社,2000. 1-56.
    [29] Penserga ET, Skorski T. Fusion tyrosine kinases: a result and cause of genomic instability [J]. Oncogene. 2007, 26(1):11-20.
    [30] Bartsch H, Nair J. Potential role of lipid peroxidation derived DNA damage in human colon carcinogenesis: studies on exocyclic base adducts as stable oxidative stress markers [J]. Cancer Detect Prev. 2002, 26(4): 308-312.
    [31] Oztürk B, Güven M, Arpaci F, et al. Plasma and erythrocyte lipid peroxidation levels in patients with testis tumor after orchiectomy [J]. Biol Trace Elem Res.2000, 73(2): 181-187.
    [32] Li G, Robinson GW, Lesche R, et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland [J]. Development.2002, 129(17): 4159-4170.
    [33] Planchon SM, Waite KA, Eng C. The nuclear affairs of PTEN [J]. J Cell Sci.2008,121(Pt 3): 249-253.
    [34] Tamguney T, Stokoe D. New insights into PTEN [J]. J Cell Sci. 2007, 120(Pt 23):4071-4079.
    [1] KC Arden. Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer[J]. Experimental Gerontology. 2006, 41(8) :709–717.
    [2] Reagan-Shaw S, Ahmad N. The role of Forkhead-box Class O(FoxO) transcription factors in cancer: a target for the management of cancer[J]. Toxicology and Applied Pharmacology. 2007, 224(3):360–368.
    [3] Hermeking H, Benzinger A. 14-3-3 proteins in cell cycle regulation[J]. Seminars in Cancer Biology. 2006,16(3):183–192.
    [4] Huang H, Tindall DJ. Dynamic FoxO transcription factors[J]. Journal of Cell Science. 2007,120(Pt 15):2479–2487.
    [5] Daitoku H, Fukamizu A. FOXO transcription factors in the regulatory networks of longevity[J]. Journal of Biochemistry. 2007,141(6):769–774.
    [6] Boura E, Silhan J, Herman P, et al. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding[J]. Journal of Biological Chemistry. 2007,282(11):8265–8275.
    [7] Tsai KL, Sun YJ, Huang CY, et al. Crystal structure of the human FOXO3a- DBD/DNA complex suggests the effects of posttranslational modification[J]. Nucleic Acids Research. 2007,35(20):6984–6994.
    [8] Dijkers PF, Medema RH, Pals C, et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1) [J]. Molecular and Cellular Biology. 2000,20(24):9138–9148.
    [9] Medema RH, Kops GJ, Bos JL, et al. AFX- like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1[J]. Nature. 2000,404(6779):782–787.
    [10] Reynisdottir I, Polyak K, Iavarone A, et al. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-b[J]. Genes and Develop- ment. 1995,9(15):1831–1845.
    [11] Smith EJ, Leone G, DeGregori J, et al. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state[J]. Molecular and Cellular Biology. 1996,16(12):6965–6976.
    [12] Ramaswamy S, Nakamura N, Sansal I, et al. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR[J]. Cancer Cell.2002,2(1):81–91.
    [13] Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, et al. FOXO forkhead transcription factors induce G(2)-M checkpoint in response to oxidative stress[J]. Journal of Biological Chemistry. 2002,277(30):26729–26732.
    [14] Martinez-Gac L, Marque′s M, Garcia Z, et al. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead[J]. Molecular and Cellular Biology. 2004,24(5):2181–2189.
    [15] Kops GJ, Medema RH, Glassford J, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors[J]. Molecular and Cellular Biology. 2002,22(7):2025–2036.
    [16] Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor[J]. Cell. 1999,96(6):857–868.
    [17] Modur V, Nagarajan R, Evers BM, et al. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer[J]. Journal of Biological Chemistry. 2002,277(49):47928–47937.
    [18] Stahl M, Dijkers PF, Kops GJ, et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2[J]. Journal of Immunology. 2002,168(10):5024–5031.
    [19] Puthalakath H, Huang DC, O’Reilly LA, et al. The proapoptotic activity of the Bcl-2 family member bim is regulated by interaction with the dynein motor complex[J]. Molecular Cell. 1999,3(3):287–296.
    [20] Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy[J]. Oncogene. 2007,26(9):1324–1337.
    [21] You H, Pellegrini M, Tsuchihara K, et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal[J]. Journal of Experimental Medicine. 2006,203(7):1657–1663.
    [22] Tang TT, Dowbenko D, Jackson A, et al. The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor[J]. Journal of Biological Chemistry. 2002,277(16):14255–14265.
    [23] Hollander MC, Sheikh MS, Bulavin DV, et al. Genomic instability in Gadd45a-deficient mice[J]. Nature Genetics. 1999,23(2):176–184.
    [24] Smith ML, Ford JM, Hollander MC, et al. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes[J]. Molecular and Cellular Biology. 2000,20(10):3705–3714.
    [25] Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein[J]. Science. 2002,296(5567):530–534.
    [26] Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress[J]. International Journal of Molecular Medicine. 2005,16(2):237–243.
    [27] Tsai WB, Chung YM, Takahashi Y, et al. Functional interaction between FOXO3a and ATM regulates DNA damage response[J]. Nature Cell Biology. 2008,10(4):460–467.
    [28] Kops GJ, Medema RH, Glassford J, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors[J]. Molecular and Cellular Biology. 2002,22(7):2025–2036.
    [29] Adachi M, Osawa Y, Uchinami H, et al. The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells[J]. Gastroenterology. 2007,132(4):1434–1446.
    [30] Alcendor RR, Gao S, Zhai P, et al. Sirt1 regulates aging and resistance to oxidativestress in the heart[J]. Circulation Research. 2007,100(10):1512–1521.
    [31] Chiribau CB, Cheng L, Cucoranu IC, et al. FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts[J]. Journal of Biological Chemistry. 2008,168:5024–5031.
    [32] Gomis RR, Alarcon C, He W, et al. A FoxO-Smad synexpression group in human keratinocytes[J]. PNAS. 2006,103(34):12747–12752.
    [33] Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. American Journal of Physi- ology[J]. Cell Physiology. 2007,292(1):C188–C199.
    [34] van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease[J]. Molecular Cell Biology. 2007, 8:440–450.
    [35] Bois PR, Grosveld GC. FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts[J]. EMBO Journal. 2003,22(5):1147–1157.
    [36] Bois PR, Izeradjene K, Houghton PJ, et al. FOXO1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma[J]. Journal of Cell Biology . 2007,177(3):563.
    [37] Kikuchi K, Tsuchiya K, Otabe O, et al. Effects of PAX3-FKHR on malignant phenotypes in alveolar rhabdomyosarcoma[J]. Biochemical and Biophysical Research Communications. 2008,365(3):568–574.
    [38] Anderson MJ, Shelton GD, Cavenee WK. Embryonic expression of the tumor-associated PAX3-FKHR fusion protein interferes with the developmental functions of Pax3[J]. PNAS. 2001,98(4):1589–1594.
    [39] Bois PR, Izeradjene K, Houghton PJ, et al. FOXO1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma[J]. Journal of Cell Biology . 2005,170(6):903–912.
    [40] Dong XY, Chen C, Sun X, et al. FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer[J]. Cancer Research. 2006,66(14):6998–7006.
    [41] Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models[J].Cancer. 2007,7(1):35–45.
    [42] Kim JH, Kim MK, Lee HE, et al. Constitutive phosphorylation of the FOXO1A transcription factor as a prognostic variable in gastric cancer[J]. Modern Pathology. 2007,20(8):835–842.
    [43] Yip WK, Leong VC, Abdullah MA, et al. Overexpression of phospho-Akt correlates with phosphorylation of EGF receptor, FKHR and BAD in nasopharyngeal carcinoma[J]. Oncology Reports. 2008,19(2):319–328.
    [44] Emerling BM, Weinberg F, Liu JL, et al. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a) [J]. PNAS. 2008,105(7):2622–2627.
    [45] de la Iglesias N, Konopka G, Puram SV, et al. Identification of a PTEN regulatet STAT3 brain tumour supression pathway[J]. Genes and Development. 2008,22(4):449–462.
    [46] Jung HS, Kim DW, Jo YS, et al. Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases[J]. Mol- ecular Endocrinology. 2005,19(11):2748–2759.
    [47] Dong S, Kang S, Gu TL, et al. 14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells[J]. Blood. 2007,110(1):360–369.
    [48] Birkenkamp KU, Essafi A, van der Vos KE, et al. FOXO3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1[J]. Journal of Biological Chemistry. 2007,282(4):2211–2220.
    [49] Kikuno N, Shiina H, Urakami S, et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity[J]. Oncogene. 2007,26(55):7647–7655.
    [50] Samuels Y, Diaz LA Jr, Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells[J]. Cancer Cell. 2005,7(6):561–573.
    [51] Hu MC, Lee DF, Xia W, et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a[J]. Cell. 2004,117(2):225–237.
    [52] Huang H, Regan KM, Wang F, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation[J]. PNAS. 2005,102(5):1649–1654.
    [53] Yang JY, Zong CS, Xia W, et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation[J]. Nature Cell Biology. 2008,10(2):138–148.
    [54] Sunters A, Fernandez DM, Stahl M, et al. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines[J]. Journal of Biological Chemistry. 2003,278(50):49795–49805.
    [55] Hussain AR, Al Rasheed M, Manogaran PS, et al. Curcumin induces apoptosis via inhibition of PI30 -kinase/AKT pathway in acute T cell leukemias[J]. Apoptosis. 2006,11(2):245–254
    [56] Jin S, Pang RP, Shen JN, et al. Grifolin induces apoptosis via inhibition of PI3K/AKT signalling pathway in human osteosarcoma cells[J]. Apoptosis. 2007,12(7):1317–1326.
    [57] Jin S, Shen JN, Wang J, et al. Oridonin induced apoptosis through Akt and MAPKs signaling pathways in human osteosarcoma cells[J]. Cancer Biology & Therapy. 2007,6(2):261–268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700