胞外5’-AMP信号与2型糖尿病的发病机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病是一种严重威胁人类健康的慢性疾病,其患者数量迅速增加且发病年龄有日益年轻化的趋势,已经成为全世界共同面临的主要公共健康问题之一。高脂饮食和肥胖被认为是诱发胰岛素抵抗及2型糖尿病的最重要因素。目前公认的2型糖尿病发病机制是增多的脂肪细胞释放出高浓度的游离脂肪酸(FFA),使血浆中的FFA水平异常升高,从而导致胰岛素抵抗的发生。但是FFA引起胰岛素抵抗的具体机制到目前为止还未完全阐明。因此深入探索FFA诱导胰岛素抵抗的作用机制从而寻找相应的靶点对于预防和治疗胰岛素抵抗和2型糖尿病有着重要的意义。
     本研究首先发现在2型糖尿病小鼠模型和2型糖尿病病人中,血浆5'-AMP (pAMP)水平异常升高,形成一个新的特定的2型糖尿病特征。用HPLC方法检测了两种不同2型糖尿病小鼠模型的血浆核苷酸和2型糖尿病病人的血浆核苷酸。自发性2型糖尿病小鼠模型——db/db小鼠的pAMP和血浆尿酸(UA)水平明显上升;在高脂食物喂养建立的诱导性2型糖尿病小鼠模型中,其pAMP和血浆UA水平也明显上升;在2型糖尿病病人中,其pAMP水平也异常上升。通过在正常小鼠中强化5'-AMP信号,发现5'-AMP是升高血糖和产生胰岛素抵抗的重要信号分子。葡萄糖耐受性实验和胰岛素耐受性实验显示5’-AMP可以降低正常小鼠的葡萄糖耐受性和胰岛素敏感性,使正常小鼠产生胰岛素抵抗;丙酮酸耐受性实验显示5’-AMP可以升高丙酮酸作为底物的糖异生;并且5'-AMP可以诱导正常小鼠产生高胰岛素和降低其氧代谢水平,这些症状与2型糖尿病小鼠所呈现的相关症状相一致。
     进一步研究发现,高浓度FFA诱发的血管内皮细胞的损伤和凋亡是胞外5'-AMP水平升高的原因。体外实验显示FFA可以诱导人脐静脉血管内皮细胞(HUVECs)的损伤和凋亡,从而增加胞外5’-AMP水平;体内实验显示对小鼠施行手术损伤也可以使得胞外的5'-AMP水平增加同时血糖水平也增加。这些数据表明细胞损伤可以导致胞内5'-AMP的释放,从而升高胞外5'-AMP水平,加强5’-AMP信号强度。腺苷受体基因敲除的小鼠实验证明pAMP升高血糖的作用是通过升高胞内腺苷的浓度来实现的。在四种腺苷受体基因敲除的小鼠(A1-/-,A2a-/-,A2b-/-,A3-/-)中,5'-AMP诱导的血糖变化与野生型小鼠基本一致,这说明5'-AMP信号并不是通过腺苷受体起作用的。在给小鼠注射5'-AMP后1h,HPLC数据显示胞内的腺苷含量明显上升,使得S-腺苷-L-蛋氨酸(AdoMet)与S-腺苷高半胱氨酸(AdoHcy)的比例降低,进一步减少了叉头蛋白家族1(Foxo1)、葡萄糖-6-磷酸酶(G6Pase)和磷酸烯醇式丙酮酸羧激酶(PEPCK)基因启动子区域的组蛋白H3K9二甲基化(Me2-H3K9)水平,导致Foxo1、G6Pase和PEPCK基因表达的增加,从而使血糖含量上升。而在5'-AMP作用前期(15min时),荧光定量PCR结果显示G6Pase基因表达没有变化,但是检测到了G6Pase酶活的增加,HPLC数据显示胞内腺苷的含量明显上升。通过体外实验证明腺苷可以直接升高G6Pase的酶活,因此5'-AMP信号作用前期是通过升高胞内的腺苷含量而直接增加G6Pase酶活来使血糖含量增加。同时,5'-AMP信号可以使骨骼肌中的GLUT4基因表达减少,免疫荧光数据显示5'-AMP信号也可能使GLUT4蛋白易位减少,从而减少了小鼠体内葡萄糖的利用。综上所述,血浆中升高的5'-AMP导致了小鼠高血糖症状的发生。
     5'-AMP诱导产生的高血糖可以通过2型糖尿病治疗药物二甲双胍来降低,证明二甲双胍是通过降低胞内腺苷的浓度这一新的药物作用机制来起作用的。HPLC数据显示二甲双胍降低了5'-AMP信号诱导升高的胞内腺苷浓度,而降低Foxo1、G6Pase和PEPCK的基因表达,从而干预5'-AMP信号诱导的小鼠高血糖作用。这为二甲双胍的作用初步提出了一个新的潜在的机制。接着发现,合并索拉胶喂养可以减弱单纯高脂喂养引起的胞外5'-AMP信号的增强,证实索拉胶是通过影响脂肪的吸收,降低血浆中FFA的浓度,从而减少细胞的损伤和凋亡来起作用的。索拉胶是本实验室制得的一种新型葡聚糖,体内实验表明,给小鼠喂养高脂食物建立小鼠肥胖模型,结果显示合并索拉胶喂养显著改善了高脂食物喂养引起的一系列生理特征(如小鼠体重、体脂的增加,肝脏和脂肪组织重量的增加,血脂和肝脂的增加)以及葡萄糖耐受性的降低,并且索拉胶的改善作用呈现剂量依赖性。HPLC数据显示,索拉胶干预了高脂食物喂养引起的血浆UA水平的增加。索拉胶合并高脂喂养组小鼠粪便中的总甘油三酯含量明显上升,乳化实验显示索拉胶可以影响胆汁对脂肪的乳化作用,使乳化颗粒的直径变大。这些数据显示索拉胶通过抑制脂肪的乳化而减少脂肪的吸收,从而抑制了脂肪在小鼠体内的累积,减少了FFA诱导的细胞损伤,表现为减少了血浆中UA的水平。新型葡聚糖索拉胶的这一功能为预防高脂饮食诱发的2型糖尿病提供了一个潜在的手段。
Type2diabetes is one of the most common chronic diseases affecting people and the prevalence of diabetes increases with age. The number of diabetes cases has increased dramatically in recent decades, and type2diabetes has become one of the world's top health problems. High-fat diet and obesity play an important role in leading to insulin resistance and type2diabetes. The most widely accepted pathogenesis of type2diabetes is that expanded fat mass releases high amount of free fatty acids (FFA), abnormal elevating of plasma FFA levels, can produce insulin resistance. However, precise mechanism by which FFA cause insulin resistance has not yet been fully elucidated. Exploring mechanisms underlying FFA-induced insulin resistance in order to find a therapeutic target is very important in prevention and treatment of insulin resistance and type2diabetes.
     First, abnormally elevated levels of plasma5'-AMP (pAMP) were found in mouse models of type2diabetes and in patients with type2diabetes, forming a new and specific characteristic of type2diabetes. HPLC analysis were performed to investigate the plasma nucleotides in two different mouse models of type2diabetes and in patients with type2diabetes. The results demonstrated that pAMP and UA levels were elevated in spontaneous diabetic db/db mice; In high-fat diet-induced type2diabetic mice, the levels of pAMP and plasma UA were elevated; and the pAMP level was also increased in patients with type2diabetes. Through strengthen the5'-AMP signals in normal mice, we found that5'-AMP is an important signaling molecule that elevated blood sugar and cause insulin resistance. Glucose tolerance test and insulin tolerance test indicated that5'-AMP treatment reduced glucose tolerance and insulin sensitivity in normal mice, and induced insulin resistance; pyruvate tolerance test showed that5'-AMP increased pyruvate-induced gluconeogenesis; and5'-AMP treatment caused hyperinsulimia and lowered oxygen consumption in normal mice. All these phenotypes are similar to diabetic phenotypes in diabetic mice.
     We further found that vein endothelial cells injury and apoptosis induced by high levels of FFA contributed to the increase in pAMP. In vitro, FFA induced damage and apoptosis in human umbilical vein endothelial cells (HUVECs) and contributed to an increase in pAMP. In vivo, surgery-induced injury increased pAMP level and also blood glucose level in mice. Our data indicated that cell injury caused the release of intracellular5'-AMP and increased the extracellular5'-AMP level. Studies on adenosine receptor knockout mice show that pAMP-induced hyperglycemia was achieved by increasing the concentration of intracellular adenosine.5'-AMP elevated blood glucose in mice deficient in adenosine receptors (A1-/-, A2a-/-, A2b-/-, A3-/-) with equal efficiency as wild-type mice. The findings suggested that5'-AMP-induced hyperglycemia was not directly related to adenosine receptor pathways. At1h after5'-AMP injection, HPLC analysis demonstrated that the function of5'-AMP was initiated by the elevation of cellular adenosine levels. It was followed by the decreased dimethylation of histone H3K9related Foxol, G6Pase and PEPCK promoter through declining ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine (AdoHcy), resulting in high blood glucose levels. At the early stage (15min) of5'-AMP injection, our results demonstrated that5'-AMP treatment dramatically increased G6Pase activity but had no effect on G6Pase mRNA abundance. And HPLC data indicated that adenosine levels increased after5'-AMP treatment. Our in vitro experiments showed that adenosine directly increased the activity of G6Pase. Our results revealed that the function of pAMP was initiated by the elevation of cellular adenosine levels, directly stimulating G6Pase enzyme activity. On the other side,5'-AMP treatment decreased the expression of GLUT4and attenuated insulin-dependent GLUT4translocation in skeletal muscle, resulting in decreased glucose utilization. Collectively, mice treated with5'-AMP displayed a rapid and steep increase in blood glucose.
     Metformin improved5'-AMP-induced hyperglycemia by a new mechanism of reducing5'-AMP-induced increase in adenosine content. HPLC data showed that metformin reduced5'-AMP-induced increase in adenosine content, and QRT-PCR analysis showed that mRNA levels of Foxol, G6Pase and PEPCK were significantly decreased in5'-AMP-treated mice, resulting in lower blood glucose level. These results suggested a new potential mechanism for metformin action. By reducing fat absorption and plasma FFA level, Salecan reduced cell injury and apoptosis to weaken high-fat diet-enhanced extracellular5'-AMP signals. Salecan is a novel glucan that isolated by our group recently. Using a high-fat diet-induced obese mouse model, we found that Salecan dose-dependent improved high-fat diet-induced increases in body weight, body fat, liver and adipose weight, lipid profiles of plasma and liver, and a decrease in glucose tolerance. HPLC analysis showed that Salecan reduced high-fat diet-induced increase in plasma UA level in mice. Dietary Salecan intake caused an obvious elevation of fat in feces. Presence of Salecan disturbed bile acid-promoted emulsification and reduced the size of emulsion droplets in vitro. These results indicated that Salecan decreases fat absorption by disturbing bile acid-promoted emulsification of fat and reduced fat accumulation in mice, resulting in a decrease in FFA-induced cell injury and plasma UA level. These findings suggested that Salecan qualify to be useful for treating high fat-induced obesity, indicating a potential application in treating high-fat diet-induced type2diabetes.
引文
[1]杨明功.糖尿病流行现状及防治对策.疾病控制杂志,2000,4:193-196
    [2]潘长玉,金文胜.2型糖尿病流行病学.中华内分泌代谢杂志,2005,21:1-5
    [3]Rees D, Alcolado J. Animal models of diabetes mellitus. Diabetic Medicine,2005,22: 359-370
    [4]Ninichuk V, Kulkarni O, Clauss S, Anders H. Tubular atrophy, interstitial fibrosis, and inflammation in type 2 diabetic db/db mice. An accelerated model of advanced diabetic nephropathy. European Journal of Medical Research,2007,12:351-355.
    [5]Elizabeth MPCEH, Shearman SCW. Vitreous fluid of db/db mice exhibits alterations in angiogenic and metabolic factors consistent with early diabetic retinopathy. Ophthalmic Rresearch,2008,40:5-9
    [6]Rahimian R, Masihkhan E, Lo M, Van Breemen C, Mcmanus BM, Dube GP. Hepatic over-expression of peroxisome proliferator activated receptor y2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus. Molecular and Cellular Biochemistry, 2001,224:29-37
    [7]Ito T, Tanimoto M, Yamada K, Kaneko S, Matsumoto M, Obayashi K, Hagiwara S, Murakoshi M, Aoki T, Wakabayashi M. Glomerular changes in the KK-Ay/Ta mouse:A possible model for human type 2 diabetic nephropathy. Nephrology,2006,11:29-35
    [8]Park SH, Marso SP, Zhou Z, Foroudi F, Topol EJ, Lincoff AM. Neointimal hyperplasia after arterial injury is increased in a rat model of non-insulin-dependent diabetes mellitus. Circulation,2001,104:815-819
    [9]Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets:evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes.2002,51:1437-1442
    [10]都健,谢辉.喂养型胰岛素抵抗动物模型的建立与评价.中国医科大学学报,2002,31:343-346
    [11]Winzell MS, Ahren B. The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes,2004,53: S215-219
    [12]Kershaw EE, Flier JS. Adipose tissue as an endocrine organ Journal of Clinical Endocrinology and Metabolism,2004,89:2548-2556
    [13]Boden G. Obesity and free fatty acids. Endocrinology and Metabolism Clinics of North America,2008,37:635-646
    [14]Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver. Diabetes,2005,54:3458-3465
    [15]Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes,2005,54:S73-78
    [16]Randle PJ, Priestman DA, Mistry SC, Halsall A. Glucose fatty acid interactions and the regulation of glucose disposal. Journal of Cellular Biochemistry,1994,55:1-11
    [17]Baldeweg S, Golay A, Natali A, Balkau B, Del Prato S, Coppack S. Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. European Journal of Clinical Investigation,2000,30:45-52
    [18]Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. Journal of Clinical Investigation,1996,97:2859-2865
    [19]Boden G. Fatty acids and insulin resistance. Diabetes Care,1996,19:394-395
    [20]Szczepaniak LS, Babcock EE, Schick F, Dobbins RL, Garg A, Burns DK, Mcgarry JD, Stein DT. Measurement of intracellular triglyceride stores by H spectroscopy:validation in vivo. American Journal of Physiology-Endocrinology and Metabolism,1999,276: E977-989
    [21]Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. New England Journal of Medicine,1999,341:240-246
    [22]Mingrone G, Degaetano A, Greco A, Capristo E, Benedetti G, Castagneto M, Gasbarrini G. Reversibility of insulin resistance in obese diabetic patients:role of plasma lipids. Diabetologia,1997,40:599-605
    [23]Santomauro A, Boden G, Silva M, Rocha DM, Santos RF, Ursich M, Strassmann P, Wajchenberg B. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes, 1999,48:1836-1841
    [24]Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. Journal of Clinical Investigation,1996,97:2601-2610
    [25]Stepniakowski KT, Goodfriend TL, Egan BM. Fatty acids enhance vascular a-adrenergic sensitivity. Hypertension,1995,25:774-778
    [26]Pleiner J, Schaller G, Mittermayer F, Bayerle-Eder M, Roden M, Wolzt M. FFA-induced endothelial dysfunction can be corrected by vitamin C. Journal of Clinical Endocrinology and Metabolism,2002,87:2913-2917
    [27]Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend TL, Egan BM. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension,1995,26:764-770
    [28]Martens FM, Visseren FL, Lemay J, de Koning EJ, Rabelink TJ. Metabolic and additional vascular effects of thiazolidinediones. Drugs,2002,62:1463-1480
    [29]Lip GY, Blann A. von Willebrand factor: a marker of endothelial dysfunction in vascular disorders? Cardiovascular Research,1997,34:255-265
    [30]陈民.血管内皮细胞体外损伤模型的研究.中华中医药学刊,2007,25:919-921
    [31]Zhu P, Chen G, You T, Yao J, Jiang Q, Lin X, Shen X, Qiao Y, Lin L. High FFA-induced proliferation and apoptosis in human umbilical vein endothelial cell partly through Wnt/β-catenin signal pathway. Molecular and Cellular Biochemistry,2010,338:123-131
    [32]Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation,2003,112:1821-1830
    [33]Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes.2002,51:2005-2011
    [34]Medzhitov R. Toll-like receptors and innate immunity. Nature Reviews Immunology, 2001,1:135-145
    [35]Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nature Medicine,2004,11:90-94
    [36]Bours M, Swennen E, Di Virgilio F, Cronstein B, Dagnelie P. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology & Therapeutics,2006,112:358-404
    [37]Yegutkin GG. Nucleotide-and nucleoside-converting ectoenzymes:important modulators of purinergic signalling cascade. Biochimica et Biophysica Acta,2008,1783:673-694
    [38]Schwiebert EM, Zsembery A. Extracellular ATP as a signaling molecule for epithelial cells. Biochimica et Biophysica Acta,2003,1615:7-32
    [39]Lazarowski ER, Boucher RC, Harden TK. Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. Journal of Biological Chemistry,2000,275: 31061-31068
    [40]Bodin P, Burnstock G. Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. Journal of Cardiovascular Pharmacology, 2001,38:900-908
    [41]Lazarowski ER, Boucher RC, Harden TK. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Molecular Pharmacology,2003,64:785-795
    [42]Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA. International Union of Pharmacology LⅧ:update on the P2Y G protein-coupled nucleotide receptors:from molecular mechanisms and pathophysiology to therapy. Pharmacological Reviews,2006,58: 281-341
    [43]Okada SF, Nicholas RA, Kreda SM, Lazarowski ER, Boucher RC. Physiological regulation of ATP release at the apical surface of human airway epithelia Journal of Biological Chemistry,2006,281:22992-23002
    [44]Madara J, Patapoff T, Gillece-Castro B, Colgan S, Parkos C, Delp C, Mrsny R. 5'-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. Journal of Clinical Investigation, 1993,91:2320-2325
    [45]Lennon PF, Taylor CT, Stahl GL, Colgan SP. Neutrophil-derived 5'-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. Journal of Experimental Medicine, 1998,188:1433-1443
    [46]Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science,2006,314:1792-1795
    [47]Dale N, Pearson T, Frenguelli BG. Direct measurement of adenosine release during hypoxia in the CAl region of the rat hippocampal slice. The Journal of Physiology,2000, 526:143-155
    [48]Martin ED, Fernandez M, Perea G, Pascual O, Haydon PG, Araque A, Cena V. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia,2007,55:36-45
    [49]Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, Lovatt D, Williams E, Takano T, Schnermann J. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nature Medicine,2007,14:75-80
    [50]Lazarowski ER, Tarran R, Grubb BR, Van Heusden CA, Okada S, Boucher RC. Nucleotide release provides a mechanism for airway surface liquid homeostasis. Journal of Biological Chemistry,2004,279:36855-36864
    [51]Kreda SM, Okada SF, Van Heusden CA, O'neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER. Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. The Journal of Physiology,2007,584:245-259
    [52]Robson SC, Sevigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signalling, 2006,2:409-430
    [53]Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochimica et Biophysica Acta,2003,1638:1-19
    [54]Zimmermann H.5'-Nucleotidase:molecular structure and functional aspects. Biochemical Journal,1992,285:345-365
    [55]Millan JL. Mammalian alkaline phosphatases:from biology to applications in medicine and biotechnology. VCH Verlagsgesellschaft Mbh.2006
    [56]Yegutkin GG, Henttinen T, Samburski SS, Spychala J, Jalkanen S. The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochemical Journal,2002,367:121-128
    [57]Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nature Reviews Drug Discovery,2006,5:247-264
    [58]King AE, Ackley MA, Cass CE, Young JD, Baldwin SA. Nucleoside transporters:from scavengers to novel therapeutic targets. Trends in Pharmacological Sciences,2006,27: 416-425
    [59]Blackburn MR, Kellems RE. Adenosine deaminase deficiency:metabolic basis of immune deficiency and pulmonary inflammation. Advances in Immunology,2005,86: 1-41
    [60]Sevigny J, Levesque FP, Grondin G, Beaudoin AR. Purification of the blood vessel ATP diphosphohydrolase, identification and localisation by immunological techniques. Biochimica et Biophysica Acta,1997,1334:73-88
    [61]Zimmermann H. Ectonucleotidases:some recent developments and a note on nomenclature. Drug Development Research,2001,52:44-56
    [62]Yegutkin GG, Henttinen T, Jalkanen S. Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions. FASEB Journal,2001,15:251-260
    [63]Marcus A, Broekman M, Drosopoulos J, Islam N, Pinsky D, Sesti C, Levi R. Heterologous cell-cell interactions: thromboregulation, cerebroprotection and cardioprotection by CD39 (NTPDase-1). Journal of Thrombosis and Haemostasis,2003,1: 2497-2509
    [64]Meghji P, Pearson J, Slakey L. Kinetics of extracellular ATP hydrolysis by microvascular endothelial cells from rat heart. Biochemical Journal,1995,308:725-731
    [65]Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases:unity in diversity. Trends in biochemical sciences,2005,30:542-550
    [66]Vollmayer P, Clair T, Goding JW, Sano K, Servos J, Zimmermann H. Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases. European Journal of Biochemistry,2003,270:2971-2978
    [67]Van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, Van Rooijen MA, Pradere JP, Pettit TR, Wakelam MJO, Saulnier-Blache JS, Mummery CL. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Molecular and Cellular Biology,2006,26:5015-5022
    [68]Rutsch F, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte P, Kalhoff H, Sano K, Boisvert WA, Superti-Furga A. PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. American Journal of Pathology, 2001,158:543-554
    [69]Terkeltaub RA. Inorganic pyrophosphate generation and disposition in pathophysiology. American Journal of Physiology Cell Physiology,2001,281:C1-11
    [70]Resta R, Yamashita Y, Thompson LF. Ecto-enzyme and signaling functions of lymphocyte CD 73. Immunological Reviews,1998,161:95-109
    [71]Airas L, Niemela J, Salmi M, Puurunen T, Smith DJ, Jalkanen S. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. Journal of cell biology,1997,136:421-431
    [72]Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP. Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia Journal of Clinical Investigation,2002,110:993-1002
    [73]Morabito L, Montesinos MC, Schreibman DM, Balter L, Thompson LF, Resta R, Carlin G, Huie MA, Cronstein BN. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5'-nucleotidase-mediated conversion of adenine nucleotides. Journal of Clinical Investigation,1998,101:295-300
    [74]Zernecke A, Bidzhekov K, zuyaman B, Fraemohs L, Liehn EA, Liischer-Firzlaff JM, Luscher B, Schrader J, Weber C. CD73/ecto-5'-nucleotidase protects against vascular inflammation and neointima formation. Circulation,2006,113:2120-2127
    [75]Millan JL. Alkaline phosphatases. Purinergic Signalling,2006,2:335-341
    [76]Salton S. Neurotrophins, growth-factor-regulated genes and the control of energy balance. Mount Sinai Journal of Medicine,2003,70:93-100
    [77]Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine,2002,8:1288-1295
    [78]Steinberg GR, Rush JWE, Dyck DJ. AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment American Journal of Physiology-Endocrinology and Metabolism,2003,284:E648-654
    [79]Schrauwen P, Hesselink M. UCP2 and UCP3 in muscle controlling body metabolism. Journal of Experimental Biology,2002,205:2275-2285
    [80]Zhang J, Kaasik K, Blackburn MR, Lee CC. Constant darkness is a circadian metabolic signal in mammals. Nature,2006,439:340-343
    [81]Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW. Control and function of the homeostatic sleep response by adenosine A1 receptors. The Journal of Neuroscience,2009, 29:1267-1276
    [82]Apfeld J, O'connor G, Mcdonagh T, Distefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes & Development,2004,18:3004-3009
    [83]Zwerschke W, Mazurek S, Stockl P, Hiitter E, Eigenbrodt E, Jansen-Diirr P. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochemical Journal,2003,376:403-411
    [84]Kovacic S, Soltys CLM, Barr AJ, Shiojima I, Walsh K, Dyck JRB. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart Journal of Biological Chemistry,2003,278:39422-39427
    [85]Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. Journal of Biological Chemistry,2005,280:32081-32089
    [86]Zhang L, He H, Balschi JA. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. American Journal of Physiology-Heart and Circulatory Physiology,2007,293:H457-466
    [87]Lebrasseur NK, Kelly M, Tsao TS, Farmer SR, Saha AK, Ruderman NB, Tomas E. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. American Journal of Physiology-Endocrinology and Metabolism,2006,291: E175-181
    [88]Sun W, Lee TS, Zhu M, Gu C, Wang Y, Zhu Y, Shyy JYJ. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation,2006,114:2655-2662
    [89]Boyle JG, Logan PJ, Ewart MA, Reihill JA, Ritchie SA, Connell JMC, Cleland SJ, Salt IP. Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. Journal of Biological Chemistry,2008,283:11210-11217
    [90]Nakatsu K, Drummond GI. Adenylate metabolism and adenosine formation in the heart. American Journal of Physiology,1972,223:1119-1127
    [91]Aymerich I, Foufelle F, Ferre P, Casado FJ, Pastor-Anglada M. Extracellular adenosine activates AMP-dependent protein kinase (AMPK). Journal of Cell Science,2006,119: 1612-1621
    [92]Ming D, Ninomiya Y, Margolskee RF. Blocking taste receptor activation of gustducin inhibits gustatory responses to bitter compounds. Proceedings of the National Academy of Sciences of USA,1999,96:9903-9908
    [93]Carver J. Dietary nucleotides:effects on the immune and gastrointestinal systems. Acta Paediatrica,1999,88:83-88
    [94]Wasserman H, Singh S, Champagne D. Saliva of the Yellow Fever mosquito, Aedes aegypti, modulates murine lymphocyte function. Parasite immunology,2004,26:295-306
    [95]Nath N, Giri S, Prasad R, Salem ML, Singh AK, Singh I. 5-aminoimidazole-4-carboxamide ribonucleoside:a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. The Journal of Immunology,2005,175:566-574
    [96]Kolata GB. The phenformin ban:is the drug an imminent hazard? Science,1979,203: 1094-1096
    [97]Bailey CJ, Turner RC. Metformin. The New England Journal of Medicine,1996,334: 574-579
    [98]Scheen AJ. Clinical pharmacokinetics of metformin. Clinical Pharmacokinetics,1996,30: 359-371
    [99]Hundal RS, Inzucchi SE. Metformin:new understandings, new uses. Drugs,2003,63: 1879-1894
    [100]Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes,2000,49:2063-2069
    [101]Magnusson I, Rothman D, Katz L, Shulman R, Shulman G. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. Journal of Clinical Investigation,1992,90:1323-1327
    [102]Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, Shulman GI. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. New England Journal of Medicine,1998,338:867-873
    [103]Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. New England Journal of Medicine, 1995,333:550-554
    [104]Cusi K, Consoli A, Defronzo R. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. Journal of Clinical Endocrinology and Metabolism,1996,81:4059-4067
    [105]Wiernsperger NF, Bailey CJ. The antihyperglycaemic effect of metformin:therapeutic and cellular mechanisms. Drugs,1999,58:31-39
    [106]Hundal H, Ramlal T, Reyes R, Leiter L, Klip A. Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology,1992,131:1165-1173
    [107]Dominguez L, Davidoff A, Srinivas P, Standley P, Walsh M, Sowers J. Effects of metformin on tyrosine kinase activity, glucose transport, and intracellular calcium in rat vascular smooth muscle. Endocrinology,1996,137:113-121
    [108]Stith B, Goalstone M, Espinoza R, Mossel C, Roberts D, Wiernsperger N. The antidiabetic drug metformin elevates receptor tyrosine kinase activity and inositol 1,4,5-trisphosphate mass in Xenopus oocytes. Endocrinology,1996,137:2990-2999
    [109]Hermann L, Schersten B, Bitzen P, Kjellstrom T, Lindgarde F, Melander A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care,1994,17:1100-1109
    [110]Johansen K. Efficacy of metformin in the treatment of NIDDM. Meta-analysis. Diabetes Care,1999,22:33-37
    [111]Dornan T, Heller S, Peck G, Tattersall R. Double-blind evaluation of efficacy and tolerability of metformin in NIDDM. Diabetes Care,1991,14:342-344
    [112]Fontbonne A, Charles MA, Juhan-Vague I, Bard JM, Andre P, Isnard F, Cohen JM, Grandmottet P, Vague P, Safar ME. The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care,1996,19:920-926
    [113]Glueck C, Wang P, Fontaine R, Tracy T, Sieve-Smith L. Metformin-induced resumption of normal menses in 39 of 43 (91%) previously amenorrheic women with the polycystic ovary syndrome. Metabolism,1999,48:511-519
    [114]Yki-Jarvinen H, Nikkila K, Makimattila S. Metformin prevents weight gain by reducing dietary intake during insulin therapy in patients with type 2 diabetes mellitus. Drugs,1999, 58:53-54
    [115]Kirpichnikov D, Mcfarlane SI, Sowers JR. Metformin:an update. Annals of Internal Medicine,2002,137:25-33
    [116]Pasquali R, Gambineri A, Biscotti D, Vicennati V, Gagliardi L, Colitta D, Fiorini S, Cognigni GE, Filicori M, Morselli-Labate AM. Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. Journal of Clinical Endocrinology and Metabolism,2000,85:2767-2774
    [117]Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science,2005,310:1642-1646
    [118]Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes,2002,51:2420-2425
    [119]Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N. Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation,2001,108:1167-1174
    [120]Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes,2000,49: 896-903
    [121]Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes,2008,57: 306-314
    [122]Owen MR, Halestrap AP. The mechanisms by which mild respiratory chain inhibitors inhibit hepatic gluconeogenesis. Biochimica et Biophysica Acta,1993,1142:11-22
    [123]Pryor HJ, Smyth JE, Quinlan PT, Halestrap AP. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Biochemical Journal,1987,247:449-457
    [124]Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochemical Journal,2000,348:607-614
    [125]Parrish F, Perlin A, Reese E. Selective enzymolysis of poly-β-D-glucans, and the structure of the polymers. Canadian Journal of Chemistry,1960,38:2094-2104
    [126]Wood PJ. Oat β-glucan-physicochemical properties and physiological effects. Trends in Food Science & Technology,1991,2:311-314
    [127]Autio K, Myllymaki O, Suortti T, Saastamoinen M, Poutanen K. Physical properties of (1→3),(1→4)-β-D-glucan preparates isolated from Finnish oat varieties. Food Hydrocolloids,1992,5:513-522
    [128]Autio K, Myllymaki O, Malkki Y. Flow properties of solutions of oat β-glucans. Journal of Food Science,1987,52:1364-1366
    [129]Campbell G, Bedford M. Enzyme applications for monogastric feeds:a review. Canadian Journal of Animal Science,1992,72:449-466
    [130]Chen J, Seviour R. Medicinal importance of fungal [beta]-(1-->3),(1-->6)-glucans. Mycological Research,2007,111:635-652
    [131]Butt MS, Tahir-Nadeem M, Khan MKI, Shabir R. Oat:unique among the cereals. European Journal of Nutrition,2008,47:68-79
    [132]De Groot A, Luyken R, Pikaar N. Cholesterol-lowering effect of rolled oats. Lancet, 1963,282:303-304
    [133]Glore SR, Van Treeck D, Knehans AW, Guild M. Soluble fiber and serum lipids:a literature review. Journal of the American Dietetic Association,1994,94:425-436
    [134]Wright RS, Anderson JW, Bridges SR. Propionate inhibits hepatocyte lipid synthesis. Proceedings of the Society for Experimental Biology and Medicine,1990,195:26-29.
    [135]Jenkins DJA, Wolever TMS, Vuksan V, Brighenti F, Cunnane SC, Rao AV, Jenkins AL, Buckley G, Patten R, Singer W. Nibbling versus gorging: metabolic advantages of increased meal frequency. New England Journal of Medicine,1989,321:929-934
    [136]Van Horn L, Emidy LA, Liu K, Liao Y, Ballew C, King J, Stamler J. Serum lipid response to a fat-modified, oatmeal-enhanced diet Preventive Medicine,1988,17: 377-386
    [137]Swain JF, Rouse IL, Curley CB, Sacks FM. Comparison of the effects of oat bran and low-fiber wheat on serum lipoprotein levels and blood pressure. New England Journal of Medicine,1990,322:147-152
    [138]Malkki Y, Myllymaki O, Autio K, Suorti T. Preparation and properties of oat bran concentrates. Cereal Foods World,1992,37:693-700
    [139]Jenkins D, Wolever T, Leeds AR, Gassull MA, Haisman P, Dilawari J, Goff DV, Metz GL, Alberti K. Dietary fibres, fibre analogues, and glucose tolerance:importance of viscosity. British Medical Journal,1978,1:1392-1394
    [140]J Wood P, Braaten JT, Scott FW, Riedel KD, Wolynetz MS, Collins MW. Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. British Journal of Nutrition,1994,72:731-743
    [141]Wolever T, Katzman-Relle L, Jenkins AL, Vuksan V, Josse RG. Glycaemic index of 102 complex carbohydrate foods in patients with diabetes. Nutrition Research,1994,14: 651-669
    [142]Xiu A, Kong Y, Zhou M, Zhu B, Wang S, Zhang J. The chemical and digestive properties of a soluble glucan from Agrobacterium sp. ZX09. Carbohydrate Polymers, 2010,82:623-628
    [143]Xiu A, Zhan Y, Zhou M, Zhu B, Wang S, Jia A, Dong W, Cai C, Zhang J. Results of a 90-day safety assessment study in mice fed a glucan produced by Agrobacterium sp. ZX09. Food and Chemical Toxicology,2011,49:2377-2384
    [144]Xiu A, Zhou M, Zhu B, Wang S, Zhang J. Rheological properties of Salecan as a new source of thickening agent. Food Hydrocolloids,2011,25:1719-1725
    [145]Chen P, Wang Z, Zeng L, Yang X, Wang S, Dong W, Jia A, Cai C, Zhang J. A Novel soluble beta-glucan salecan protects against acute alcohol-induced hepatotoxicity in mice. Bioscience Biotechnology and Biochemistry,2011,75:1990-1993
    [146]Chen P, Wang Z, Zeng L, Wang S, Dong W, Jia A, Cai C, Zhang J. Protective effects of salecan against carbon tetrachloride-induced acute liver injury in mice. Journal of Applied Toxicology,2011, doi:10.1002/jat.1694.
    [1]Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death and Differentiation,2007,14:1315-1323
    [2]Gordon JL. Extracellular ATP:effects, sources and fate. Biochemical Journal,1986,233: 309-319
    [3]Kinzer D, Lehmann V. Extracellular ATP and adenosine modulate tumor necrosis factor-induced lysis of L929 cells in the presence of actinomycin D. Journal of Immunology,1991,146:2708-2711
    [4]Mazurek S, Michel A, Eigenbrodt E. Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates. Journal of Biological Chemistry,1997,272:4941-4952
    [5]Blachier F, Malaisse WJ. Effect of exogenous ATP upon inositol phosphate production, cationic fluxes and insulin release in pancreatic islet cells. Biochimica et Biophysica Acta, 1988,970:222-229
    [6]Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature,1962,194:927-929
    [7]Lunkes GI, Lunkes D, Stefanello F, Morsch A, Morsch VM, Mazzanti CM, Schetinger MR. Enzymes that hydrolyze adenine nucleotides in diabetes and associated pathologies. Thrombosis Research,2003,109:189-194
    [8]Lee JG, Kang DG, Yu JR, Kim Y, Kim J, Koh G, Lee D. Changes in adenosine deaminase activity in patients with type 2 diabetes mellitus and effect of DPP-4 inhibitor treatment on AD A activity. Diabetes & Metabolism Journal,2011,35:149-158
    [9]Kurtul N, Pence S, Akarsu E, Kocoglu H, Aksoy Y, Aksoy H. Adenosine deaminase activity in the serum of type 2 diabetic patients. Acta Medica (Hradec Kralove),2004,47: 33-35
    [10]Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabetic Medicine,2005,22: 359-370
    [11]Cefalu WT. Animal models of type 2 diabetes:clinical presentation and pathophysiological relevance to the human condition. ILAR Journal,2006,47:186-198
    [12]Bae IY, Lee S, Kim SM, Lee HG. Effect of partially hydrolyzed oat β-glucan on the weight gain and lipid profile of mice. Food Hydrocolloid,2009,23:2016-2021
    [13]Knudsenr TB, Winters RS, Otey SK, Blackburn MR, Airhart MJ, Church JK, Skalko RG. Effects of (R)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology,1992,45:91-103
    [14]Srinivasan K, Ramarao P. Animal models in type 2 diabetes research:an overview. Indian Journal of Medical Research,2007,125:451-472
    [15]Meng R, Zhu DL, Bi Y, Yang DH, Wang YP. Anti-oxidative effect of apocynin on insulin resistance in high-fat diet mice. Annals of Clinical and Laboratory Science,2011,41: 236-243
    [16]Pan W, Ciociola E, Saraf M, Tumurbaatar B, Tuvdendorj D, Prasad S, Chandalia M, Abate N. Metabolic consequences of ENPP1 overexpression in adipose tissue. American Journal of Physiology-Endocrinology and Metabolism,2011,301:E901-911
    [17]Naito E, Yoshida Y, Makino K, Kounoshi Y, Kunihiro S, Takahashi R, Matsuzaki casei strain Shirota on insulin resistance in diet-induced obesity mice. Journal of Applied Microbiology,2011,110:650-657
    [18]Sussman I, Erecinska M, Wilson DF. Regulation of cellular energy metabolism:the Crabtree effect. Biochimica et Biophysica Acta,1980,591:209-223
    [19]Sweet IR, Cook DL, DeJulio E, Wallen AR, Khalil G, Callis J, Reems J. Regulation of ATP/ADP in pancreatic islets. Diabetes,2004,53:401-409
    [20]Erecinska M, Wilson DF. Regulation of cellular energy metabolism. Journal of Membrane Biology,1982,70:1-14
    [21]Kodama S, Saito K, Yachi Yetal. Association between Serum uric acid and development of type 2 diabetes. Diabetes Care,2009,32:1737-1742
    [22]Kim EJ, Kim E, Kwon EY, Jang HS, Hur CG, Choi MS. Network analysis of hepatic genes responded to high-fat diet in C57BL/6J mice:nutrigenomics data mining from recent research findings. Journal of Medicinal Food,2010,13:743-756
    [23]Islam MS, Loots du T. Experimental rodent models of type 2 diabetes:a review. Methods and Findings in Experimental and Clinical Pharmacology,2009,31:249-261
    [24]Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C Jr, Jones P, Bradley A, Caskey CT. Proceedings of the National Academy of Sciences of the USA,1994,91: 742-746.
    [25]Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase:primary structure and evolutionary implications. Proceedings of the National Academy of Sciences of the USA, 1989,86:9412-9416
    [26]Tipton PA. Urate to allantoin, specifically (S)-allantoin. Nature Chemical Biology,2006, 2:124-125
    [27]So A, Thorens B. Uric acid transport and disease. Journal of Clinical Investigation,2010, 120:1791-1799
    [28]Chilappa CS, Aronow WS, Shapiro D, Sperber K, Patel U, Ash JY. Gout and hyperuricemia. Comprehensive Therapy,2010,36:3-13
    [29]Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedebergs Archives of Pharmacology,2000,362:299-309
    [30]Kwong FY, Davies A, Tse CM, Young JD, Henderson PJ, Baldwin SA. Purification of the human erythrocyte nucleoside transporter by immunoaffinity chromatography. Biochemical Journal,1988,255:243-249
    [1]Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. Journal of Neurochemistry,1987,49: 227-231
    [2]Knudsen T, Winters R, Otey S, Blackburn M, Airhart M, Church J, Skalko R. Effects of (R)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology,1992,45:91-103
    [3]Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes,2002,51:2796-2803
    [4]Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics,2001,107:E55
    [5]Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. New England Journal of Medicine,2004,350:664-671
    [6]Krall LP, Chabot VA. Oral hypoglycemic agent update. Medical clinics of North America, 1978,62:681-694
    [7]Osborn O, Sanchez-Alavez M, Brownell SE, Ross B, Klaus J, Dubins J, Beutler B, Conti B, Bartfai T. Metabolic characterization of a mouse deficient in all known leptin receptor isoforms. Cellular and Molecular Neurobiology,2010,30:23-33
    [8]Hill RW. Determination of oxygen consumption by use of the paramagnetic oxygen analyzer. Journal of Applied Physiology,1972,33:261-263
    [9]Kadish AH, Litle RL, Sternberg JC. A new and rapid method for the determination of glucose by measurement of rate of oxygen consumption. Clinical Chemistry,1968,14: 116-131
    [10]Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 2001,414:821-827
    [11]Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes,2000,49:2063-2069
    [12]Seubert W, Huth W. On the mechanism of gluconeogenesis and its regulation. Ⅱ. The mechanism of gluconeogenesis from pyruvate and fumarate. Biochemische Zeitschrift, 1965,343:176-191
    [13]Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. Medical management of hyperglycemia in type 2 diabetes:a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care,2009,32:193-203
    [14]Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, Zinman B. Management of hyperglycemia in type 2 diabetes:a consensus algorithm for the initiation and adjustment of therapy. Diabetes Care,2006,29:1963-1972
    [15]Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn-Schmiedeberg's Archives of Pharmacology,2000,362:299-309
    [16]Zimmermann H. Extracellular purine metabolism. Drug Development Research,1996, 39:337-352
    [1]Lin HV, Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metabolism,2011,14:9-19
    [2]Fink R, Wallace P, Brechtel G, Olefsky J. Evidence that glucose transport is rate-limiting for in vivo glucose uptake. Metabolism,1992,41:897-902
    [3]Ruige J, Dekker J, Nijpels G, Popp-Snijders C, Stehouwer C, Kostense P, Bouter L, Heine R. Hyperproinsulinaemia in impaired glucose tolerance is associated with a delayed insulin response to glucose. Diabetologia,1999,42:177-180
    [4]Lecavalier L, Bolli G, Cryer P, Gerich J. Contributions of gluconeogenesis and glycogenolysis during glucose counterregulation in normal humans. American Journal of Physiology-Endocrinology and Metabolism,1989,256:E844-851
    [5]Giaccari A, Morviducci L, Pastore L, Zorretta D, Sbraccia P, Maroccia E, Buongiorno A, Tamburrano G. Relative contribution of glycogenolysis and gluconeogenesis to hepatic glucose production in control and diabetic rats. A re-examination in the presence of euglycaemia. Diabetologia,1998,41:307-314
    [6]Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, Fukumoto H, Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care,1990,13:198-208
    [7]Gould GW, Holman G. The glucose transporter family:structure, function and tissue-specific expression. Biochemical Journal,1993,295:329-341
    [8]Ishiki M, Klip A. Minireview:recent developments in the regulation of glucose transporter-4 traffic:new signals, locations, and partners. Endocrinology,2005,146: 5071-5078
    [9]Rencurel F, Waeber G, Antoine B, Rocchiccioli F, Maulard P, Girard J, Leturque A. Requirement of glucose metabolism for regulation of glucose transporter type 2 (GLUT2) gene expression in liver. Biochemical Journal,1996,314:903-909
    [10]Kido Y, Burks DJ, Withers D, Bruning JC, Kahn CR, White MF, Accili D. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. Journal of Clinical Investigation,2000,105:199-205
    [11]Knudsen T, Winters R, Otey S, Blackburn M, Airhart M, Church J, Skalko R. Effects of (R)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology,1992,45:91-103
    [12]She QB, Nagao I, Hayakawa T, Tsuge H. A simple HPLC method for the determination of S-adenosylmethionine and S-adenosylhomocysteine in rat tissues:the effect of vitamin B6 deficiency on these concentrations in rat liver. Biochemical and biophysical research communications,1994,205:1748-1754
    [13]Zhu P, Chen G, You T, Yao J, Jiang Q, Lin X, Shen X, Qiao Y, Lin L. High FFA-induced proliferation and apoptosis in human umbilical vein endothelial cell partly through Wnt/β-catenin signal pathway. Molecular and Cellular Biochemistry,2010,338:123-131
    [14]Minassian C, Daniele N, Bordet JC, Zitoun C, Mithieux G. Liver glucose-6 phosphatase activity is inhibited by refeeding in rats. Journal of Nutrition,1995,125:2727-2732
    [15]Seoane J, Trinh K, O'doherty RM, Gomez-Foix AM, Lange AJ, Newgard CB, Guinovart JJ. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. Journal of Biological Chemistry,1997,272:26972-26977
    [16]Rouser G, Fleischer S, Yamamoto A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids,1970,5:494-496
    [17]Braunstein M, Rose A, Holmes S, Allis C, Broach J. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes & Development,1993,7:592-604
    [18]Spencer VA, Sun JM, Li L, Davie JR. Chromatin immunoprecipitation:a tool for studying histone acetylation and transcription factor binding. Methods,2003,31:67-75
    [19]Liu MINL, Gibbs EM, Mccoid SC, Milici A, Stukenbrok HA, Mcpherson RK, Treadway JL, Pessin JE. Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proceedings of the National Academy of Sciences of the USA,1993,90:11346-11350
    [20]Payne-Robinson HM, Brown R. The effect of malnutrition on insulin binding to rat erythrocytes. British Journal of Nutrition,1992,67:279-286
    [21]Bours M, Swennen E, Di Virgilio F, Cronstein B, Dagnelie P. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology & therapeutics,2006,112:358-404
    [22]Gordon JL. Extracellular ATP:effects, sources and fate. Biochemical Journal,1986,233: 309-319
    [23]Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA. International Union of Pharmacology LVIII:update on the P2Y G protein-coupled nucleotide receptors:from molecular mechanisms and pathophysiology to therapy. Pharmacological Reviews,2006,58: 281-341
    [24]Piro S, Spampinato D, Spadaro L, Oliveri CE, Purrello F, Rabuazzo AM. Direct apoptotic effects of free fatty acids on human endothelial cells. Nutrition Metabolism and Cardiovascular Diseases,2008,18:96-104
    [25]Dewanjee S, Maiti A, Sahu R, Dua TK, Mandal V. Effective control of type 2 diabetes through antioxidant defense by edible fruits of Diospyros peregrine. Evidence-Based Complementary and Alternative Medicine,2009.
    [26]Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature,2001,413:179-183
    [27]Sun MS, Pan CJ, Shieh JJ, Ghosh A, Chen LY, Mansfield BC, Ward JM, Byrne BJ, Chou JY. Sustained hepatic and renal glucose-6-phosphatase expression corrects glycogen storage disease type la in mice. Human Molecular Genetics,2002,11:2155-2164
    [28]Aoki K, Saito T, Satoh S, Mukasa K, Kaneshiro M, Kawasaki S, Okamura A, Sekihara H. Dehydroepiandrosterone suppresses the elevated hepatic glucose-6-phosphatase and fructose-1,6-bisphosphatase activities in C57BL/Ksj-db/db mice:comparison with troglitazone. Diabetes,1999,48:1579-1585
    [29]Sekine K, Chen YR, Kojima N, Ogata K, Fukamizu A, Miyajima A. Foxol links insulin signaling to C/EBPa and regulates gluconeogenesis during liver development. EMBO Journal,2007,26:3607-3615
    [30]Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene,2005,24:7410-7425
    [31]Southgate RJ, Bruce CR, Carey AL, Steinberg GR, Walder K, Monks R, Watt MJ, Hawley JA, Birnbaum MJ, Febbraio MA. PGC-1 alpha gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. FASEB journal,2005,19:2072-2074
    [32]Atkinson B, Dwyer K, Enjyoji K, Robson SC. Ecto-nucleotidases of the CD39/NTPDase family modulate platelet activation and thrombus formation:Potential as therapeutic targets. Blood Cells Molecules and Diseases,2006,36:217-222
    [33]Christofi FL, Zhang H, Yu JG, Guzman J, Xue J, Kim M, Wang YZ, Cooke HJ. Differential gene expression of adenosine Al, A2a, A2b, and A3 receptors in the human enteric nervous system. The Journal of Comparative Neurology,2001,439:46-64
    [34]Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D. Both adenosine Al-and A2-receptors are required to stimulate microglial proliferation. Neurochemistry International,1996,29:37-42
    [35]Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase--development of the energy sensor concept. Journal of Physiology,2006,574:7-15
    [36]Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature,2007,449:496-500
    [37]Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Molecular Cancer,2008,7:37
    [38]Carling D. The AMP-activated protein kinase cascade-a unifying system for energy control. Trends in Biochemical Sciences,2004,29:18-24
    [39]Ueland P, Helland S. Binding of adenosine to intracellular S-adenosylhomocysteine hydrolase in isolated rat hepatocytes. Journal of Biological Chemistry,1983,258:747-752
    [40]Hershfield MS, Krodich N. S-adenosylhomocysteine hydrolase is an adenosine-binding protein:a target for adenosine toxicity. Science,1978,202:757-760
    [41]Kloor D, Osswald H. S-Adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends in Pharmacological Sciences,2004,25:294-297
    [42]Kim JM, Hong K, Lee JH, Lee S, Chang N. Effect of folate deficiency on placental DNA methylation in hyperhomocysteinemic rats. Journal of Nutritional Biochemistry,2009,20: 172-176
    [43]Fournier C, Goto Y, Ballestar E, Delaval K, Hever AM, Esteller M, Feil R. Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO Journal,2002,21:6560-6570
    [44]Hoffman D, Marion D, Cornatzer W, Duerre J. S-Adenosylmethionine and S-adenosylhomocystein metabolism in isolated rat liver. Effects of L-methionine, L-homocystein, and adenosine. Journal of Biological Chemistry,1980,255:10822-10827
    [45]Kredich NM, Martin DW. Role of S-adenosylhomocysteine in adenosine-mediated toxicity in cultured mouse T lymphoma cells. Cell,1977,12:931-938
    [46]Snowden AW, Gregory PD, Case CC, Pabo CO. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Current Biology,2002,12: 2159-2166
    [47]Miura T, Suzuki W, Ishihara E, Arai I, Ishida H, Seino Y, Tanigawa K. Impairment of insulin-stimulated GLUT4 translocation in skeletal muscle and adipose tissue in the Tsumura Suzuki obese diabetic mouse:a new genetic animal model of type 2 diabetes. European Journal of Endocrinology,2001,145:785-790
    [48]Cusin I, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Assimacopoulos-Jeannet F, Jeanrenaud B. Hyperinsulinemia increases the amount of GLUT4 mRNA in white adipose tissue and decreases that of muscles:a clue for increased fat depot and insulin resistance. Endocrinology,1990,127:3246-3248
    [49]Altomonte J, Richter A, Harbaran S, Suriawinata J, Nakae J, Thung SN, Meseck M, Accili D, Dong H. Inhibition of Foxol function is associated with improved fasting glycemia in diabetic mice. American Journal of Physiology-Endocrinology and Metabolism,2003,285:E718-728
    [50]Friedman JE, Sun Y, Ishizuka T, Farrell CJ, Mccormack SE, Herron LM, Hakimi P, Lechner P, Yun JS. Phosphoenolpyruvate Carboxykinase (GTP) Gene Transcription and Hyperglycemia Are Regulated by Glucocorticoids in Genetically Obesedb/db Transgenic Mice. Journal of Biological Chemistry,1997,272:31475-31481
    [51]Epstein FH, Shepherd PR, Kahn BB. Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. New England Journal of Medicine,1999,341:248-257
    [1]Fujita H, Fujishima H, Morii T, Koshimura J, Narita T, Kakei M, Ito S. Effect of metformin on adipose tissue resistin expression in db/db mice. Biochemical and Biophysical Research Communications,2002,298:345-349
    [2]Hundal RS, Inzucchi SE. Metformin: new understandings, new uses. Drugs,2003,63: 1879-1894
    [3]Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circulation Research,2007,100:328-341
    [4]Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochemical Journal,2000,348:607-614
    [5]Reyna-Villasmil N, Bermudez-Pirela V, Mengual-Moreno E, Arias N, Cano-Ponce C, Leal-Gonzalez E, Souki A, Inglett GE, Israili ZH, Hernandez-Hernandez R. Oat-derived beta-glucan significantly improves HDLC and diminishes LDLC and non-HDL cholesterol in overweight individuals with mild hypercholesterolemia. American Journal of Therapeutics,2007,14:203-212
    [6]Abumweis S, Jew S, Ames N. β-glucan from barley and its lipid-lowering capacity:a meta-analysis of randomized, controlled trials. European Journal of Clinical Nutrition, 2010,64:1472-1480
    [7]Carr TP, Gallaher DD, Yang CH, Hassel CA. Increased intestinal contents viscosity reduces cholesterol absorption efficiency in hamsters fed hydroxypropyl methylcellulose. Journal of Nutrition,1996,126:1463-1469
    [8]Xiu A, Kong Y, Zhou M, Zhu B, Wang S, Zhang J. The chemical and digestive properties of a soluble glucan from Agrobacterium sp. ZX09. Carbohydrate Polymers,2010,82: 623-628
    [9]Xiu A, Zhou M, Zhu B, Wang S, Zhang J. Rheological properties of Salecan as a new source of thickening agent. Food Hydrocolloids,2011,25:1719-1725
    [10]Xiu A, Zhan Y, Zhou M, Zhu B, Wang S, Jia A, Dong W, Cai C, Zhang J. Results of a 90-day safety assessment study in mice fed a glucan produced by Agrobacterium sp. ZX09. Food and Chemical Toxicology,2011,49:2377-2384
    [11]Knudsen T, Winters R, Otey S, Blackburn M, Airhart M, Church J, Skalko R. Effects of (R)-deoxycoformycin (pentostatin) on intrauterine nucleoside catabolism and embryo viability in the pregnant mouse. Teratology,1992,45:91-103
    [12]Bae IY, Lee S, Kim SM, Lee HG. Effect of partially hydrolyzed oat [beta]-glucan on the weight gain and lipid profile of mice. Food Hydrocolloids,2009,23:2016-2021
    [13]Haug A, H(?)stmark AT. Lipoprotein lipases, lipoproteins and tissue lipids in rats fed fish oil or coconut oil. Journal of Nutrition,1987,117:1011-1017
    [14]Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry,1957,226:497-509
    [15]Pasquier B, Armand M, Guillon F, Castelain C, Borel P, Barry JL, Pleroni G, Lairon D. Viscous soluble dietary fibers alter emulsification and lipolysis of triacylglycerols in duodenal medium in vitro. Journal of Nutritional Biochemistry,1996,7:293-302
    [16]Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. New England Journal of Medicine,1995,333: 550-554
    [17]Li C, Pan C, Lu J, Zhu Y, Wang J, Deng X, Xia F, Wang H, Wang H. Effect of metformin on patients with impaired glucose tolerance. Diabetic Medicine,1999,16:477-481
    [18]Nozaki Y, Fujita K, Yoneda M, Wada K, Shinohara Y, Takahashi H, Kirikoshi H, Inamori M, Kubota K, Saito S. Long-term combination therapy of ezetimibe and acarbose for non-alcoholic fatty liver disease. Journal of Hepatology,2009,51:548-556
    [19]Madsen L, Guerre-Millo M, Flindt EN, Berge K, Tronstad KJ, Bergene E, Sebokova E, Rustan AC, Jensen J, Mandrup S. Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance. Journal of Lipid Research,2002,43:742-750
    [20]Asai A, Miyazawa T. Dietary curcuminoids prevent high-fat diet-induced lipid accumulation in rat liver and epididymal adipose tissue. Journal of Nutrition,2001,131: 2932-2935
    [21]Winzell MS, Ahren B. The high-fat diet-fed mouse:a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes,2004,53: S215-219
    [22]Kraegen E, Clark P, Jenkins A, Daley E, Chisholm D, Storlien L. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes,1991,40: 1397-1403
    [23]Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N. Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation,2001,108:1167-1174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700