人参皂苷Rh1改善糖皮质激素抵抗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:糖皮质激素(Glucocorticoids,GC)是目前临床应用较多的一类药物,广泛用于炎症及免疫相关疾病的治疗,但是临床上有相当一部分病人的激素疗效并不理想。由于GC的药理作用主要是通过糖皮质激素受体(glococorticoid receptors,GR)介导发挥的,因此有研究认为GR的表达及其结和力是GC疗效的决定因素之一。如果GR表达或结合力处于一种较低的状态,即使体内GC水平很高,实际能与GR结合形成配体受体复合物的GC数量却有限,故激素的生物效应仍然较低。我课题组研究发现,出现激素抵抗的系统性红斑狼疮病人外周血单个核细胞GR的表达及结合力就明显低于激素敏感的病人。对于这部分病人,通常采用补充大剂量糖皮质激素,或者给予免疫抑制剂联合治疗的方法提高其疗效。然而,大剂量GC和免疫抑制剂的使用可以引起各种副作用的发生。而且长期大剂量应用激素又会进一步导致GR表达减少和结合力降低,从而加大后续治疗的难度。因此,寻找一种有效调节GR的药物一直是近年来研究的热点。
     近年来,中药在临床治疗中的地位越来越受到重视,我科室在前期研究中发现人参中主要有效成分人参总皂苷(ginsenosides,GSS)在体内外具有上调GR,并增强激素效应的作用。随后的临床研究也证实,GSS可以增强系统性红斑狼疮的糖皮质激素疗效,在不影响疗效的前提下有助于GC的减量。但是总皂苷成份复杂,包含了Rb1、Rb2、Rb3、Rc、Rd、Re、Ro、Rf、Rg1、Rg2、Rg3、Rh1、20(S)-Rh2、20(R)-Rh2、F1、F2等40余种单体皂苷,不利于临床推广和机制研究。因此,本研究将从总皂苷中筛选出一种或几种具有上调GR作用的单体,观察其在体内外对糖皮质激素抵抗的改善作用,并做初步机制探讨。
     本科题研究目的:1、从成分复杂的GSS中筛选能够上调GR表达和结合力的一种或几种单体,并筛选出上调效果最强的单体;2、以地塞米松(dexamethasone,Dex)作为阳性对照,观察该单体在体内外对糖皮质激素抵抗的炎症模型的作用,并对其机制做初步探讨。
     本课题采用的方法:
     1.采用Western-Blot、定量RT-PCR法筛选具有上调GR表达的单体,并运用放射性配基结合实验检测其对GR结合力的上调作用。
     2.体外观察Dex联合人参皂苷单体的抗炎作用,并初步探讨其分子机制。
     (1)我们先用Dex(1uM)联合人参皂苷单体(10uM)及单用Dex(1uM)预处理细胞2h(短期作用组,非激素抵抗模型)或者24h (长期作用组,激素抵模型),再用TNF-α干预8h,然后运用定量RT-PCR技术检测炎症因子IL-6、IL-17、MMP-1、TNF-α mRNA的表达,对比Dex联合人参皂苷单体与单用Dex在不同条件下的抗炎效果。
     (2)为了探讨Dex联合人参皂苷单体优于单用Dex的抗炎机制是否与NF-κB通路有关,我们设立短期作用组(2h)及长期作用组(24h),TNF-α干预,相同条件下,采用Western-Blot技术观察其抗炎作用是否通过影响P65通路发挥。
     (3)因为人参皂苷单体能够抑制GR蛋白表达及结合力的下调,我们运用双荧光素酶报告基因法观察其是否增强GRE的转录激活。同时用Dex联合人参皂苷单体及单用Dex处理肝原代细胞,观察GR的数量及结合力的提高是否会激活与高血糖相关的酶,因此我们运用定量RT-PCR法检测糖异生相关基因G-6-P、PEPCK,观察其是否处于高表达状态。
     3.DBA-1关节炎症模型小鼠验证所选单体的体内抗炎效果。
     牛Ⅱ型胶原与完全弗氏佐剂混合物诱导关节炎模型,将模型小鼠随机分组分成生理盐水(Nerative)组、Dex(1.5mg/kg·d)组、Dex(1.5mg/kg·d)+Rh1(25mg/kg·d)组,连续给药14天。每天观察小鼠关节炎症反应情况,并给予评分,治疗结束后观察血糖,定量RT-PCR法检测GR、G-6-P、PEPCK的表达。
     结果表明:1.人参总皂苷中三个单体Rh1,Rb1,Rb3具有抑制GR表达和结合力下调的作用,其中Rh1作用最为明显;
     2.体外研究显示,人参皂苷Rh1与Dex联合应用对TNF-α诱导生成的炎症因子IL-6、IL-17、MMP-1、TNF-α mRNA表达具有明显的抑制作用(P<0.01),即使对Dex处理24h后的细胞(激素抵抗模型),该联合方案也具有明显的抑制作用,而单独使用Dex则抑制炎症作用减弱。进一步研究发现,无论是在激素抵抗还是非激素抵抗模型中,人参皂苷Rh1联合Dex均可以抑制P65核转位,抑制IkB磷酸化,而单独使用Dex对激素抵抗的P65通路则无抑制作用。以上作用与Rh1抑制GR表达和结合力下调密切相关。由于Rh1具有抑制GR的下调作用,双荧光素酶报告基因结果也显示与Dex组相比,Rh1联合Dex可以轻微增强GRE的转录激活,但有趣的是,对GRE激活的糖异生相关基因G-6-P、PEPCK,Rh1联合Dex却没有激活作用。体内研究采用DBA-1关节炎模型小鼠,研究证实,与单独给予Dex比较,Rh1联合Dex能够更有效地抑制小鼠关节炎症反应(P<0.01),且不会引起GR下调,同时也不会产生血糖升高的副作用。
     结论:人参皂苷单体Rh1通过抑制GR下调明显改善激素抵抗,同时抑制高血糖的发生,因此可以作为激素辅助用药增强疗效,减轻副作用,值得临床进一步验证。
BackGRound:Glucocorticoids (GCs) are widely used in treating inflammatoryand immune related diseases. However, although the first impressions were positive, itsoon became clear that the frequent and prolonged administration of GCs influence adiverse set of key biological functions and cause severe, sometimes irreversible,side-effects. The physiological and pharmacologic effects of GC are mainly mediated byglucocorticoid receptors (GRs). It is reported that the quantity and binding capacity of GRsare important in determinanting the curative effects of GCs. Even if the level of GCs arehigh in vivo, the effects of GCs are still poor for few quantities and binding of GR, whichcould binding with ligand are very small. In our prior studies, the GRs expression andbinding capacity in peripheral blood mononuclear cells (PBMC) from systemic lupuserythematosus patients with GRs resistance are lower than those in GCs sensitive patiens.For good curative effects, we often treat the patients with high-dose GCs, or combinedwith immunosuppressive agents, whih give rise to various of side effects. Moreover,high-dose GCs used in a long time is account for further reduced expresson and bindingcapacity of GRs, which will make the subsequent therapy more difficult. As a result, a newmedicine which can regulate GCs effectively is still the hot ports.
     In recent years, Chinese herbs exert an increasingly effect in clinical treatment. Inour previous research, we found Ginsenosides (GSS) could induce a homologousupregulation of GRs and enhance the effects of GCs. In the subsequent clinical studies, it isrevealed that GSS could enhance the effects of GCs in treating systemic lupuserythematosus patients, and reduce the dose of GCs without reduced the clinical effects.The GSS includes about40Ginsenosides,such as Rb1、Rb2、Rb3、Rc、Rd、Re、Ro、Rf、Rg1、Rg2、Rg3、Rh1、20(S)-Rh2、20(R)-Rh2、F1、F2,ect.Because of its complicatedcompositions,GSS can not be used in clinical treatment widely,and it is difficult to clarifyits possible mechanism in clinic.
     OBJECTIVE:1.Pick out one or several Ginsenoside(s),which can upregulate thelevel of the expression and binding capacity of GRs. Then find out the most effectivecomponent on GRs from them.2.Study the selected-Ginsenoside’s effects on inflammationmodels on GCs resistance in vivo and in vitro, and exlpore its possible mechanism.
     METHODS:1.We first pick out the Ginsenoside(s) which can upregulate the GRsprotein levels by Western-Blot and quantity RT-PCR methods. Radioligand binding analysis is used for GR binding capacity.
     2.Observe the anti-inflammatory effects of Dex combined with the selected-Ginsenoside in vitro and vivo and explore its possible mechanism.
     (1)We compared the therapeutic potential of Dex combined with the selected-Ginsenoside&Dex alone treatment protocols in two different experimental settings. FirstRAW264.7cells were pretreated with solvent, Dex (1μM) or the selected-Ginsenoside (10μM) combined with Dex (1μM) for2h (short-term treatment protocol) or24h (prolongedtreatment protocol).Then we use quantity RT-PCR method to test the pro-inflammatorymediators IL-6, IL-17, MMP-1and TNFα.
     (2)We tested whether the enhancement of the inhibition of Dex combined with theselected-Ginsenoside on pro-infalmmatroy cytokines is in a NF-κB dependent way. Theshort-term and the long-time treatment protocol was performed as above described.First,weuse Western-Blot method to test whether Dex combined with the selected-Ginsenosideinhibit the translocation of P65more efficiently compared with Dex alone in both theshort-term and the long-time treatment protocols.And in order to investigate the molecularbasis of the altered subcellular localization of P65, we detect phospho-IκBα and total IκBαprotein still by Western-Blot method.
     (3)Because the selected Ginsenoside can upregulate GRs in quantity and bindingcapacity, we tset whether this upregulation would result in enhancement of GRE promotoractivity by dual-luciferase reporter gene assay. We use RAW264.7cells,which werepretreated with solvent, Dex (1μM) or Dex (1μM) combined with the selected-Ginsenoside (10μM) for12h. Meanwhile we use primary hepatocytes which were treatedwith solvent, Dex alone or Dex combined with the selected-Ginsenoside for12h toobserve whether the upregulation of GRs would cause a hyperglycemic side effect.
     (4)We also use bovine type II collagen-induced arthritis (CIA) mouse model ofDBA-1mouse to anti-inflammation properties in vivo.The arthritis (CIA) mice wererandomly divided into3groups according to the scores of inflammation as follows: normalsaline (NS) group,Dex (1.5mg/kg·d) group, Dex(1.5mg/kg·d)+Rh1(25mg/kg·d)group.They were given treatment one time every day,in continuous10days.We observedtheir inflammatory symptoms and scored them everyday.The arthritis mice weresacrificed after10days treatment.Then we detect glycemic levels,and tested the level ofGR、G-6-P、PEPCK by quantity RT-PCR method.
     RESULTS:1. Ginsenoside Rb1、Rb3、Rh1can upregulate the level of GR in quantity and binding capacity. Ginsenoside Rh1is the most effective in upregulating GR amongthem in the future study.
     2. In vitro study, Dex and Dex combined with Rh1both can repress the mRNAexpression of IL-6, IL-17, MMP-1and TNFα efficiently, which induced by TNF-αin theshort-term treatment protocol (P<0.01). However, Dex combined with Rh1could represspro-inflammatory cytokine mRNA expression efficiently even in the long-time treatmentprotocol, while Dex couldn’t. The parallel western blot experiment and radioligand bindinganalysis confirmed that, in the prolonged treatment protocol, the effect of Dex on GRexpression and binding capacity became more pronounced than in the short-term treatmentprotocol, thereby explaining the abolishment of its anti-inflammatory effect. The sameresults were also found in P65pathway.
     3. For up-regulating GRs expression and binding of Rh1, GRE promotor activity wasdetermined. Interstingly, the results of the dual-luciferase reporter gene assay showedthat compared to Dex alone,Dex combined with Rh1enhance the Dex-induced GREpromotor activity slightly in RAW264.7cells, but could not improve the expression ofPEPCK or G6P like Dex alone.
     4. In vivo investigations in the arthritis (CIA) mouse model of DBA-1mouse showedthat Dex combined with Rh1could inhibit the inflammatory symptoms of arthritis moreefficiently, compared to Dex alone(P<0.01). However it did not affect blood glucose leveland downregulated the express of GRs, while Dex group had a significant increase inblood glucose levels and lower GRs expression(P<0.01).
     CONCLUSIONS: Ginsenoside Rh1could ameliorate GCs resistance in vivo and invitro without inducing side effects, such as hyperglycemia.
引文
1. Hillier S. Diamonds are forever: the cortisone legacy. J Endocrinol2007;195:1–6.
    2. Rosen J, Miner JN. The search for safer glucocorticoid receptor ligands. Endocr Rev2005;26:452–64.
    3. Scha¨ckeH, BergerM, Hansson TG, et al. Dissociated non-steroidal glucocorticoid receptormodulators: an update on new compounds. Expert Opin Ther Patents2008;18:339–52.
    4. Gossye V, Haegeman G, De Bosscher K. Therapeutic implications of the nuclear factor-kappaB/nuclear receptor cross-talk. Frontiers Biosci2008;13:4122–43.
    5. De Bosscher K, Vanden Berghe W, Haegeman G. Nuclear receptors and NF-kappaB Oncogene2006;51:6868–86.
    6. Reichardt, H. M., Tuckermann, J. P., Bauer, A.&Schutz, G. Z. Molecular genetic dissection ofglucocorticoid receptor function in vivo. Rheumatol.2000,59:1–5.
    7. De Bosscher, K., Vanden Berghe, W.&Haegeman, G. The interplay between the glucocorticoidreceptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for generepression. Endocr. Rev.2003,24:488–522.
    8. Schaucke, H., H. Rehwinkel, and K. Asadullah. Dissociated glucocorticoid receptor ligands:compounds with an improved therapeutic index. Curr. Opin.Investig. Drugs.2005,6:503–507.
    9. Reichardt, H. M., J. P. Tuckermann, A. Bauer, and G. Schutz. Molecular genetic dissection ofglucocorticoid receptor function in vivo. Z. Rheumatol.2000,59(Suppl.2):1–5.
    10. Coghlan, M. J., P. B. Jacobson, B. Lane, M. Nakane, C. W. Lin, S. W. Elmore, P. R. Kym, J. R.Luly, G. W. Carter, R. Turner, et al. A novel antiinflammatory maintains glucocorticoid efficacywith reduced side effects. Mol. Endocrinol.2003,17:860–869.
    11. De Bosscher, K., W. Vanden Berghe, I. M. Beck, W. Van Molle, N. Hennuyer, J. Hapgood, C.Libert, B. Staels, A. Louw, and G. Haegeman. A fully dissociated compound of plant origin forinflammatory gene repression. Proc. Natl. Acad. Sci. USA.2005,102:15827–15832.
    12. Schacke, H., A. Schottelius, W. D. Docke, P. Strehlke, S. Jaroch, N. Schmees, H. Rehwinkel, H.Hennekes, and K. Asadullah. Dissociation of transactivation from transrepression by a selectiveglucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc.Natl. Acad. Sci. USA.2004,101:227–232.
    13. Miner, J. N., M. H. Hong, and A. Negro-Vilar. New and improved glucocorticoid receptor ligands.Expert Opin. Investig. Drugs,2005,14:1527–1545.
    14. Barker, M., M. Clackers, R. Copley, D. A. Demaine, D. Humphreys, G. G. Inglis, M. J. Johnston, H.T. Jones, M. V. Haase, D. House, et al. Dissociated nonsteroidal glucocorticoid receptor modulators;discovery of the agonist trigger in a tetrahydronaphthalene-benzoxazine series. J. Med. Chem.2006,49:4216–4231.
    15. Miner, J. N., B. Ardecky, K. Benbatoul, K. Griffiths, C. J. Larson, D. E. Mais, K. Marschke, J.Rosen, E. Vajda, L. Zhi, and A. Negro-Vilar. Antiinflammatory glucocorticoid receptor ligand withreduced side effects exhibits an altered protein-protein interaction profile. Proc. Natl. Acad. Sci.USA.2007,104:19244–19249.
    16. Sliwinska-Stanczyk P, Pazdur J, Ziolkowska M, et al. The effect of methylprednisolone onproliferation of PBMCs obtained from steroid-sensitive and steroid-resistant rheumatoid arthritispatients. Scand J Rheumatol2007;36:167–71.
    17. Kirwan JR. Glucocorticoid resistance in patients with rheumatoid arthritis. Scand J Rheumatol2007;36:165–6.
    18. Kirwan J, Power L. Glucocorticoids: action and new therapeutic insights in rheumatoid arthritis.Curr Opin Rheumatol2007;19:233–7.
    19. Oakley RH, Cidlowski JA. Homologous down regulation of the glucocorticoid receptor: themolecular machinery. Crit Rev Eukaryot Gene Expr1993;3:63–88.
    20. Schaaf MJ, Cidlowski JA. Molecular mechanisms of glucocorticoid action and resistance. J SteroidBiochem Mol Biol2002;83:37–48.
    21. Buttgereit F, Saag KG, Cutolo M, et al. The molecular basis for the effectiveness, toxicity, andresistance to glucocorticoids: focus on the treatment of rheumatoid arthritis. Scand J Rheumatol2005;34:14–21.
    22. Meyer AS, Schmidt TJ. Differential effects of agonist and antagonists on autoregulation ofglucocorticoid receptors in a rat colonic adenocarcinoma cell line. J Steroid Biochem Mol Biol1997;62:97–105.
    23. Dong Y, Poellinger L, Gustafsson JA, Okret S. Regulation of glucocorticoid receptor expression:evidence for transcriptional and posttranslational mechanisms. Mol Endocrinol1988;2:1256–64.
    24. Bellingham DL, Sar M, Cidlowski JA. Ligand-dependent down-regulation of stably transfectedhuman glucocorticoid receptors is associated with the loss of functional glucocorticoidresponsiveness. Mol Endocrinol1992;6:2090–102.
    25. Chikanza IC, Kozaci DL. Corticosteroid resistance in rheumatoid arthritis: molecular and cellularperspectives. Rheumatology (Oxford)2004;43:1337–45.
    26.周太光,邓正华,黄善文.雷公藤总苷对肾病型紫癜性肾炎患儿糖皮质激素受体的影响及其临床意义[J].实用儿科临床杂志,2007,22(17):1315-1316.
    27.刘保国,李志英,杜明.金匮肾气丸配合激素治疗大疱性类天疱疮疗效观察及对糖皮质激素受体表达的影响[J].中国中西医结合杂志,2006,26(10:881-884.
    28.冯文明,鲍鹰,朱鸣,等.雷公藤多甙对重症急性胰腺炎大鼠糖皮质激素受体的上调影响[J].中国中西医结合外科杂志,2008,14(2):l35-137.
    29.凌昌全,李勇.糖皮质激素受体—虚证的相关蛋白之一[J].上海中医药杂志,2003,37(5):8.
    30.凌昌全,李敏,朱德增,等.阴阳虚证与糖皮质激素受体关系的临床与实验研究[J].浙江中西医结合杂志,2001,11(9):532.
    31.凌昌全,李敏,谭金星,等.中药对糖皮质激素受体保护作用的实验研究[J].中国中西医结合杂志,1999,19(5):302.
    32. Differential effects of ginsenosides on NO and TNF-αlpha production by LPS-activated N9microglia.Wu CF, Bi XL, Yang JY, Zhan JY, Dong YX, Wang JH, Wang JM, Zhang R, Li X.IntImmunopharmacol.2007Mar;7:313-320.
    33. Wang W, Rayburn ER, Hao M, Zhao Y, Hill DL, Zhang R, Wang H.Experimental therapy ofprostate cancer with novel natural product anti-cancer ginsenosides.Prostate.2008Jun1;68:809-819.
    34. Rausch WD, Liu S, Gille G, Radad K.Neuroprotective effects of ginsenosides.Acta Neurobiol Exp(Wars).2006;66:369-375. Review.
    35. Ling CQ, Li Y, Zhu XY, et al. Ginsenosides may reverse the Dexamethasone-induceddown-regulation of glucocorticoid receptor. General and Comparative Endocrinology,2005,140:203-209.
    36.尤艳利,凌昌全,等.参皂苷联合泼尼松治疗系统性红斑狼疮的随机双盲对照研究.中国中西医结合杂志2009,29(9):776-779.
    37. Chung E, Lee KY, Lee YJ, Lee YH, Lee SK. Ginsenoside Rg1down-regulates glucocorticoidreceptor and displays synergistic effects with cAMP. Steroids.1998Jul-Aug;63:421-424.
    1. Chen T, Guo J, Yang M, Han C, Zhang M, Che n W, Liu Q, Wang J, Cao X. Cyclosporin A impairsdendritic cell miGRation by regulating chemokine receptor expression and inhibitingcyclooxygenase-2expression. Blood,2004,103(2):413-21.
    2. Vanderbiit JN, Miesfeld R, Maler BA, et a1. Intracellular receptor concentration1imitsg1ucocorticoid-dependent enhancer activity. Mol Endocrinol,1987,1(1):68-74.
    3. Miner, J.N., Ardecky, B., Benbatoul, K., et al. Antiinflammatory glucocorticoid receptor ligandwith reduced side effects exhibits an altered protein-protein interaction profile. ProcNatl Acad SciU S A.2007;104(49):19244-19249.
    4. Williams, R.O. Rodent models of arthritis: relevance for human disease. Clin Exp Immunol.1998;114(3):330-332.
    5. Anthony, D.D., Haqqi, T.M. Collagen-induced arthritis in mice: an animal model to study thepathogenesis of rheumatoid arthritis. Clin Exp Rheumatol.1999;17(2):240-244.
    6. Barnes, P.J. How corticosteroids control inflammation: Quintiles Prize Lecture2005. Br JPharmacol.2006;148(3):245-254.
    7. Rhen, T., Cidlowski, J.A. Antiinflammatory action of glucocorticoids--new mechanisms for olddrugs. N Engl J Med.2005;353(16):1711-1723.
    8. Schacke, H., Docke, W.D., Asadullah, K. Mechanisms involved in the side effects ofglucocorticoids. Pharmacol Ther.2002;96(1):23-43.
    9. Schacke, H., Rehwinkel, H., Asadullah, K. Dissociated glucocorticoid receptor ligands: compoundswith an improved therapeutic inDex. Curr Opin Investig Drugs.2005;6(5):503-507.
    10. Belvisi, M.G., Brown, T.J., Wicks, S., et al. New Glucocorticosteroids with an improvedtherapeutic ratio? Pulm Pharmacol Ther.2001;14(3):221-227.
    11. McMaster, A., Ray, D.W. Modelling the glucocorticoid receptor and producing therapeutic agentswith anti-inflammatory effects but reduced side-effects. Exp Physiol.2007;92(2):299-309.
    12. Ling CQ, Li Y, Zhu XY, et al. Ginsenosides may reverse the Dexamethasone-induceddown-regulation of glucocorticoid receptor. General and Comparative Endocrinology,2005,140:203-209.
    13.尤艳利,凌昌全,等.参皂苷联合泼尼松治疗系统性红斑狼疮的随机双盲对照研究.中国中西医结合杂志2009,29(9):776-779.
    14. Ortka Z Glucocorticoid resistance. Biochenmistry-Mosoow,2006,71(10):1073-1081.
    15. Stolte EH, van Kemenade BM, Savelkoul HF, et al. Evolution of glucocorticoid receptors withdifferent glucocorticoid sensitivity. J Endocrinol.2006;190(1):17-28.
    16. Juan Du, Min Li, Denghai Zhang, Xiaoyan Zhu, Weiwei Zhang, Wei Gu, Yinglu Feng, XiaofengZhai and Changquan Ling. Flow cytometry analysis of glucocorticoid receptor expression andbinding in steroid-sensitive and steroid-resistant patients with systemic lupus erythematosus.Arthritis Research&Therapy2009,11:R108.
    17. Vilcek, J., Lee, T.H. Tumor necrosis factor. New insights into the molecular mechanisms of itsmultiple actions. J Biol Chem.1991;266(12):7313-7316.
    18. Sekut, L., Menius, J.A., Jr., Brackeen, M.F., et al. Evaluation of the significance of elevated levelsof systemic and localized tumor necrosis factor in different animal models of inflammation. J LabClin Med.1994;124(6):813-820.
    19. Fye, K.H. New treatments for rheumatoid arthritis. Available and upcoming slow-actingantirheumatic drugs. PostGRad Med.1999;106(4):82-85,88-90,92.
    20. Rajan M,Anne C,John W,et al.The significance of determination of tumor necrosis factor inpatients with chronic infection[J].Ann Rheum Dis,1993,52:232.
    21. Chabaud M,Garnero P,Dayer JM,et al.Cont ribution of interleukin-17to synovium mat rix destruction in rheumatoid arthritis[J].Cytokine,2000,12(7):1092-1099.
    22. Granet C,Miossec P.Combination of the proinflammatory cytokines IL-1,TNF-αlpha and IL-17leads to enhanced expression and additional recruitment of AP-1family members,Egr-1andNF-kappaB in osteoblast-like cells[J].Cytokine,2004,26(4):169-177.
    23. Bush KA,Farmer KM,Walker JS,et al.Reduction of joint inflammation and bone erosion in ratadjuvant arthritis by treatment with interleukin-17receptor IgG1Fc fusion protein[J].ArthritisRheum,2002,46(3):802-805.
    24. Kim, H.A., Kim, S., Chang, S.H., et al. Anti-arthritic effect of ginsenoside Rb1on collageninduced arthritis in mice. Int Immunopharmacol.2007;7(10):1286-1291.
    25. de Dios, A., Shih, C., Lopez de Uralde, B., et al. Design of potent and selective2-aminobenzimidazole-based p38alpha MAP kinase inhibitors with excellent in vivo efficacy. JMed Chem.2005;48(7):2270-2273.
    26. Schacke, H., Docke, W.D., Asadullah, K. Mechanisms involved in the side effects ofglucocorticoids. Pharmacol Ther.2002;96(1):23-43.
    27. Newton, R., Holden, N.S. Separating transrepression and transactivation: a distressing divorce forthe glucocorticoid receptor. Mol Pharmacol.2007;72(4):799-809.
    28. Davies TH, Ning YM, Sánchez ER. A new first step in activation of steroid receptors:hormone-induced switching of FKBP51and FKBP52immunophilins. J Biol Chem,2002,277:4597-4600.
    29. Schneikert, J., Hubner, S., Martin, E., et al. A nuclear action of the eukaryotic cochaperone RAP46in downregulation of glucocorticoid receptor activity. J Cell Biol.1999;146(5):929-940.
    30. Meier, C.A. Regulation of gene expression by nuclear hormone receptors. J Recept SignalTransduct Res.1997;17(1-3):319-335.
    31. De Bosscher, K., Vanden Berghe, W., Haegeman, G. The interplay between the glucocorticoidreceptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for generepression. Endocr Rev.2003;24(4):488-522.
    32. De Bosscher, K., Vanden Berghe, W., Haegeman, G. Cross-talk between nuclear receptors andnuclear factor kappaB. Oncogene.2006;25(51):6868-6886.
    33. Celec, P. Nuclear factor kappa B--molecular biomedicine: the next generation. BiomedPharmacother.2004;58(6-7):365-371.
    34. Baeuerle, P.A., Baltimore, D. NF-kappa B: ten years after. Cell.1996;87(1):13-20.
    35. Baldwin, A.S., Jr. The NF-kappa B andI kappa B proteins: new discoveries and insights. Annu RevImmunol.1996;14:649-683.
    36. May, M.J.,Ghosh, S. IkappaB kinases: kinsmen with different crafts. Science.1999;284(5412):271-273.
    37. Broom, O.J., Widjaya, B., Troelsen, J., et al. Mitogen activated protein kinases: a role ininflammatory bowel disease Clin Exp Immunol.2009;158(3):272-280.
    38. Webster JC, Oakley RH, Jewell CM, et a1. Proinflammatory cytokines regulate humanglucocorticoid receptor gene expression and lead to the accumulationof the dominant negativebeta isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad SciUSA,2001,98:6865-6870.
    1. Kuperman H, Damiani D, Chrousos GP, Dichtchekenian V, Manna TD, Filho VO, Setian N:Evaluation of the hypothalamic-pituitar y-adrenal axis in children with leukemia before and after6weeks of high-dose glucocorticoid therapy. The Journal of clinical endocrinology and metabolism2001,86(7):2993-2996.
    2.Kino T, Chrousos GP: Glucocorticoid and mineralocorticoid receptors and associated diseases.Essays in biochemistry2004,40:137-155.
    3. Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ,Stewart EL, Willson TM et al: Crystal structure of the glucocorticoid receptor ligand bindingdomain reveals a novel mode of receptor dimerization and coactivator recognition. Cell2002,110(1):93-105.
    4.Giguere V, Hollenberg SM, Rosenfeld MG, Evans RM: Functional domains of the humanglucocorticoid receptor. Cell1986,46(5):645-652.
    5. Rabes HM: Gene rearrangements in radiation-induced thyroid carcinogenesis. Medical andpediatric oncology2001,36(5):574-582.
    6. Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, Gass P, Schmid W,Herrlich P, Angel P et al: DNA binding of the glucocorticoid receptor is not essential for survival.Cell1998,93(4):531-541.
    7.De Bosscher K, Haegeman G: Minireview: latest perspectives on antiinflammatory actions ofglucocorticoids. Mol Endocrinol2009,23(3):281-291.
    8. Webster JC, Oakley RH, Jewell CM, Cidlowski JA: Proinflammatory cytokines regulate humanglucocorticoid receptor gene expression and lead to the accumulation of the dominant negativebeta isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci U SA2001,98(12):6865-6870.
    9.Lee SH, Lee HY, Kim SY, Lee IK, Song DK: Enhancing effect of taurine on glucose response inUCP2-overexpressing beta cells. Diabetes research and clinical practice2004,66Suppl1:S69-74.
    10. Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG,Evans RM: Primary structure and expression of a functional human glucocorticoid receptor cDNA.Nature1985,318(6047):635-641.
    11.Oakley RH, Sar M, Cidlowski JA: The human glucocorticoid receptor beta isoform. Expression,biochemical properties, and putative function. J Biol Chem1996,271(16):9550-9559.
    12. Atger V, de la Llera Moya M, Bamberger M, Francone O, Cosgrove P, Tall A, Walsh A, Moatti N,Rothblat G: Cholesterol efflux potential of sera from mice expressing human cholesteryl estertransfer protein and/or human apolipoprotein AI. The Journal of clinical investigation1995,96(6):2613-2622.
    13.Shahidi H, Vottero A, Stratakis CA, Taymans SE, Karl M, Longui CA, Chrousos GP, DaughadayWH, Gregory SA, Plate JM: Imbalanced expression of the glucocorticoid receptor isoforms incultured lymphocytes from a patient with systemic glucocorticoid resistance and chroniclymphocytic leukemia. Biochemical and biophysical research communications1999,254(3):559-565.
    14.Leung DY, Hamid Q, Vottero A, Szefler SJ, Surs W, Minshall E, Chrousos GP, Klemm DJ:Association of glucocorticoid insensitivity with increased expression of glucocorticoid receptorbeta. J Exp Med1997,186(9):1567-1574.
    15.Ghaffar O, Hamid Q, Renzi PM, Allakhverdi Z, Molet S, Hogg JC, Shore SA, Luster AD,Lamkhioued B: Constitutive and cytokine-stimulated expression of eotaxin by human airwaysmooth muscle cells. American journal of respiratory and critical care medicine1999,159(6):1933-1942.
    16.Sousa AR, Lane SJ, Cidlowski JA, Staynov DZ, Lee TH: Glucocorticoid resistance in asthma isassociated with elevated in vivo expression of the glucocorticoid receptor beta-isoform. J AllergyClin Immunol2000,105(5):943-950.
    17.Goecke A, Guerrero J: Glucocorticoid receptor beta in acute and chronic inflammatory conditions:clinical implications. Immunobiology2006,211(1-2):85-96.
    18. Orii F, Ashida T, Nomura M, Maemoto A, Fujiki T, Ayabe T, Imai S, Saitoh Y, Kohgo Y:Quantitative analysis for human glucocorticoid receptor alpha/beta mRNA in IBD. Biochemicaland biophysical research communications2002,296(5):1286-1294.
    19.Schaaf MJ, Champagne D, van Laanen IH, van Wijk DC, Meijer AH, Meijer OC, Spaink HP,Richardson MK: Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish.Endocrinology2008,149(4):1591-1599.
    20.Hinds TD, Jr., Ramakrishnan S, Cash HA, Stechschulte LA, Heinrich G, Najjar SM, Sanchez ER:Discovery of glucocorticoid receptor-betain mice with a role in metabolism. Mol Endocrinol2010,24(9):1715-1727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700