Myosin Va在中华绒螯蟹精子发生过程中的空间分布与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用免疫荧光、免疫电镜和RT-PCR的方法,对肌球蛋白Myosin Va在中华绒螯蟹精子发生过程中的空间分布与表达进行研究。精子发生是一个复杂的细胞改变的过程,从干细胞、精母细胞转化成成熟的精子,包括精子形成阶段有丝分裂和减数分裂中的纺锤体的形成,细胞骨架的改变,膜区域的形成和重组。这些改变和细胞的重组是理解马达分子蛋白在细胞改变中机制的理想模型。哺乳动物的精子发生一直是近年来国内外研究的热点问题,但较低等动物如甲壳动物(Crustacea)中,精子结构、形态及精子发生调控的分子机制都跟哺乳动物的精子存在显著差别,它们的精子不具有微管套和精子尾部。而这恰恰是研究的薄弱环节。目前,学术界对肌球蛋白在十足类甲壳动物精子形成过程中作用的分子机制研究尚属空白。因此研究肌球蛋白Myosin Va在中华绒螯蟹精子发生过程中的空间分布与表达具有重要意义。肌动蛋白是马达分子蛋白之一。其在精子发生过程中改变精细胞形状,运输线粒体,参与顶体发生过程。许多肌动蛋白微丝的末端结合蛋白(包括myosin蛋白)在肌动蛋白的聚合和解聚方面起到重要的作用。肌动蛋白在精子细胞中存在多种结构,肌动蛋白和它相关的蛋白家族myosin的关系及它们在精子发生过程中的作用越来越引起人们的重视。所有的肌动蛋白的马达蛋白都属于肌球蛋白(myosin)家族。Myosin Va是在脊椎动物中表达的三种肌球蛋白V(myosins V)之一,是最具典型特征的myosins V。Myosin-Va参与小泡的运输,参与在肌动蛋白-微管的交叉处的从肌动蛋白(actin)到微管(microtubule)上的转换,以及在微管上短距离运输。本研究首次确定myosin Va在中华绒螯蟹精巢中表达,且其与哺乳动物精子中的acroplaxome结构类似,并首次观察到该物种的精子形成过程及肌球蛋白Va在精子发生过程中的空间分布。将对其进一步研究提供有价值参考,并对未来进一步研究myosin Va在其它较低等动物的精子发生中的机制奠定了基础。
     本研究的实验结果是myosin Va在中华绒螯蟹的精子发生过程中表达,并且存在着规律的空间分布模式:(1)Myosin Va在精原细胞和精母细胞时期主要分布在细胞核周围的细胞质中;(2)Myosin Va在精细胞早期时分布在细胞核的前极性端;(3)Myosin Va在精细胞分化过程的分布:只在成熟精子中表达;(4)Myosin Va分布在成熟精子的细胞核内和顶体与细胞核中间的核内膜处。我们还利用免疫电镜的方法,发现了中华绒螯蟹精子形成的过程及该过程中myosin Va的表达情况。
The paper used the methods of Immunofluorescence, Immunogold electron microscopy and RT-PCR to study myosin Va in Chinese mitten crab, Eriocheir sinensis, and variational distribution during spermatogenesis.Spermatogenesis involves intricate cellular change in order to transform the precursor germ cell, the spermatogonium, into a mature spermatozoon. Including formation of mitotic and meiotic spindles, changes in the cytoskeleton, formation and redistribution of membrane domains occur during spermiogenesis. The nature of these changes and cellular rearrangements makes an ideal model to spermatogenesis for the understanding the role of molecular motor proteins in cellular change. It has been a hot research about spermatogenesis in mammals in recent years, but there was a significant difference between the sperm structure, morphology and the molecular regulation mechanism in lower animals such as crustaceans (Crustacea)and that in mammalian sperm.It is known too little about spermatogenesis in lower animals.So it has great significance to study myosin Va in Chinese mitten crab, Eriocheir sinensis, and variational distribution during spermatogenesis.Actins provide diverse structures in sperm cells, and actins have been shown to play major roles during spermatogenesis, changing cell shapes, transporting mitochondria, participating in acrosomal biogenesis. Many actin filament end-binding proteins play essential roles in polymerization and depolymerization of actin which occur only at the filament ends. Meanwhile, actin-based motor proteins, myosin, have implicated diverse functions during spermatogenesis. The molecular relationships between actin and its related myosin, as well as their functions during spermatogenesis attract much attention in recent years.All actin filament motor proteins belong to the myosin family. Myosin Va, one of three myosins V expressed in vertebrates, is the best characterized of the Class V myosins. all actin filament motor proteins belong to the myosin family.Myosin Va has been shown to be involved in transporting cargo to the cell periphery and can switch from actin to microtubules at an actin–microtubule intersection and diffuses along the microtubule for a short distance.The study will provide valuable references for the further studies.
     The results of this study is myosin Va is expressed, localized and regulated during spermatogenesis of Chinese mitten crab: (1) The predominant localization of myosin Va around the nucleus in the cytoplasm of in early spermatogenesis;(2) Myosin Va mainly localizes on one side of early spermatid nuclei;(3) Myosin Va only expressed in the mature sperms after the early spermatid differentiation. (4) Myosin Va is expressed in inner side of nuclei and within nuclei of spermatozoa。Also, we used Immunogold electron microscopy to find the process of spermiogenesis and localisation of myosin Va in spermiogenesis.
引文
[1] Gilbert, S.F. Developmental Biology (6th Edition) (Sinauer Associates, Inc, Sunderland, Massachusetts. 2000
    [2] Abou-Haila, A. and Tulsiani, D.R., Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys, 2000. 379(2): p. 173-82.
    [3] Yao, R., Ito, C., Natsume, Y., et al., Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11211-6.
    [4] Russell, L.D., Russell, J.A., MacGregor, G.R., et al., Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am J Anat, 1991, 192(2): p. 97-120.
    [5] Irons, M.J. and Clermont, Y., Kinetics of fibrous sheath formation in the rat spermatid. Am J Anat, 1982, 165(2): p. 121-30.
    [6] Olson, G.E., Hamilton, D.W., and Fawcett, D.W., Isolation and characterization of the fibrous sheath of rat epididymal spermatozoa. Biol Reprod, 1976, 14(5): p. 517-30.
    [7] Oko, R. and Clermont, Y., Light microscopic immunocytochemical study of fibrous sheath and outer dense fiber formation in the rat spermatid. Anat Rec, 1989. 225(1): p. 46-55.
    [8] Narita, A., Takeda, S., Yamashita, A., Maèda, Y., 2006. Structural basis of actin f ilament capping at the barbed-end: a cryo-electron microscopy study. EMBO J., 25(23): 5626-5633.
    [9] Hehnly, H. and Stamnes, M., Regulating cytoskeleton-based vesicle motility. FEBS Lett, 2007, 581(11): p. 2112-8.
    [10] Schwartzman, J.D., Krug, E.C., Binder, L.I., et al., Detection of the microtubule cytoskeleton of the coccidian Toxoplasma gondii and the hemoflagellate Leishmania donovani by monoclonal antibodies specific for beta-tubulin. J Protozool, 1985, 32(4): p. 747-9.
    [11] Goley, E.D., Welch, M.D., 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol., 7(10):713-26.
    [12] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.,. Molecular Biology of the Cell-3rd ed. New York & London: Garland Publishing., 1994, Inc: 837-838
    [13] Ross, J.L., Ali, M.Y., and Warshaw, D.M., Cargo transport: molecular motors navigatea complex cytoskeleton. Curr Opin Cell Biol, 2008. 20(1): p. 41-7.
    [14] Roychowdhury, S. and Rasenick, M.M., Submembraneous microtubule cytoskeleton: regulation of microtubule assembly by heterotrimeric Gproteins. FEBS J, 2008. 275(19): p. 4654-63.
    [15] Arce, C.A., Casale, C.H., and Barra, H.S., Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. FEBS J, 2008. 275(19): p. 4664-74.
    [16] Sharp, D.J., Rogers, G.C., and Scholey, J.M., Microtubule motors in mitosis. Nature, 2000, 407(6800): p. 41-7.
    [17] Sperry, A.O. and Zhao, L.P., Kinesin-related proteins in the mammalian testes: candidate motors for meiosis and morphogenesis. Mol Biol Cell, 1996. 7(2): p. 289-305.
    [18] Hirokawa, N., Organelle transport along microtubules - the role of KIFs. Trends Cell Biol, 1996, 6(4): p. 135-41.
    [19] Hirokawa, N., Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 1998, 279(5350): p. 519-26.
    [20] Hirokawa, N., Noda, Y., and Okada, Y., Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol, 1998, 10(1): p. 60-73.
    [21] Marziale, F., Pucciarelli, S., Ballarini, P., et al., Different roles of two gamma-tubulin isotypes in the cytoskeleton of the Antarctic ciliate Euplotes focardii: remodelling of interaction surfaces may enhance microtubule nucleation at low temperature. FEBS J, 2008. 275(21): p. 5367-82.
    [22] Nitta, R., Okada, Y., and Hirokawa, N., Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nat Struct Mol Biol, 2008, 15(10): p. 1067-75.
    [23] Bloom, G.S. and Endow, S.A., Motor proteins 1: kinesins. Protein Profile, 1995, 2(10): p. 1105-71.
    [24] Leopold, P.L., McDowall, A.W., Pfister, K.K., et al., Association of kinesin with characterized membrane-bounded organelles. Cell Motil Cytoskeleton, 1992. 23(1): p. 19-33.
    [25] Hirokawa, N. and Noda, Y., Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev, 2008, 88(3): p. 1089-118.
    [26] Roux, A., Cuvelier, D., Bassereau, P., et al., Intracellular transport: from physics to ... biology. Ann N Y Acad Sci, 2008, 1123: p. 119-25.
    [27] Hirokawa, N. and Takemura, R., Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci, 2005, 6(3): p. 201-14.
    [28] Hogarth, C., Itman, C., Jans, D.A., et al., Regulated nucleocytoplasmic transport in spermatogenesis: a driver of cellular differentiation? Bioessays, 2005, 27(10): p. 1011-25.
    [29] Miki, H., Okada, Y., and Hirokawa, N., Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol, 2005, 15(9): p. 467-76.
    [30] Hogeveen, K.N. and Sassone-Corsi, P., Regulation of gene expression in post-meiotic male germ cells: CREM-signalling pathways and male fertility. Hum Fertil (Camb), 2006, 9(2): p. 73-9.
    [31] Blendy, J.A., Kaestner, K.H., Weinbauer, G.F., et al., Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature, 1996, 380(6570): p. 162-5.
    [32] Nantel, F., Monaco, L., Foulkes, N.S., et al., Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature, 1996, 380(6570): p. 159-62.
    [33] Gandhi, R., Bonaccorsi, S., Wentworth, D., et al., The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly. Mol Biol Cell, 2004, 15(1): p. 121-31.
    [34] Savoian, M.S., Gatt, M.K., Riparbelli, M.G., et al., Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J Cell Sci, 2004. 117(Pt 16): p. 3669-77.
    [35] Wilson, P.G., Simmons, R., and Saighal, S., Novel nuclear defects in KLP61F-deficient mutants in Drosophila are partially suppressed by loss of Ncd function. J Cell Sci, 2004, 117(Pt 21): p. 4921-33.
    [36] Sharp, D.J., McDonald, K.L., Brown, H.M., et al., The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J Cell Biol, 1999, 144(1): p. 125-38.
    [37] Saito, N., Okada, Y., Noda, Y., et al., KIFC2 is a novel neuron-specific C-terminal type kinesin superfamily motor for dendritic transport of multivesicular body-like organelles. Neuron, 1997, 18(3): p. 425-38.
    [38] Lawrence, C.J., Dawe, R.K., Christie, K.R., et al., A standardized kinesin nomenclature. J Cell Biol, 2004, 167(1): p. 19-22.
    [39] Yang, WX., Jefferson, H., Sperry, A.O., 2006. The molecular motor KIFC1associates with a complex containing nucleoporin NUP62 that is regulated during development and by the Small GTPase RAN. Biol Reprod., 74(4): 684-690.
    [40] Yang WX, Sperry AO. C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 2003; 69:1719-1729.
    [41] Zhang, Y. and Sperry, A.O., Comparative analysis of two C-terminal kinesin motor proteins: KIFC1 and KIFC5A. Cell Motil Cytoskeleton, 2004. 58(4): p. 213-30.
    [42] Navolanic, P.M. and Sperry, A.O., Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biol Reprod, 2000, 62(5): p. 1360-9.
    [43] Zhao, C., Takita, J., Tanaka, Y., et al., Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell, 2001, 105(5): p. 587-97.
    [44] Waters, S.H., Distel, R.J., Hecht, N.B., 1985. Mouse testes contain two size classes of actin mRNA that are differentially expressed during spermatogenesis. Mol Cell Biol., 5(7):1649-1654.
    [45] Cheng, Y.M., Shi, X.Q., Yu, H.M., Wu, Y.W., Jia, M.C.. Specific expression ofβ-actin during spermatogenesis in rats. Natl J Androl., 2005, 11(10):755-60.
    [46] Scheer, U., Hinssen, H., Franke, W.W.. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell., 1984, 39(1):111-122.
    [47] Kadam, K., D`souza, S., Natraj, U., 2007. Spatial distribution of actin and tubulin in human sperm nuclear matrix-intermediate filament whole mounts - a new paradigm. Microsc Res Tech., 70(7):589-98.
    [48] Waters, S.H., Distel, R.J., Hecht, N.B., 1985. Mouse testes contain two size classes of actin mRNA that are differentially expressed during spermatogenesis. Mol Cell Biol., 5(7):1649-1654.
    [49] Yan, H.H., Mruk, D.D., Lee, W.M., Cheng, C.Y., 2006. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays., 29(1):36-48.
    [50] Xiao, X., Yang, W.X.. Actin-based dynamics during spermatogenesis and its significance. Zhejiang Univ Sci B., 2007, 8(7): 498-506.
    [51] Zhang, J., Mruk, D.D., Cheng, C.Y.. Myotubularin phosphoinositide phosphatases, protein phosphatases, and kinases: their roles in junction dynamics and spermatogenesis. J Cell Physiol., 2005, 204(2): 470-483.
    [52] Anahara, R., Toyama, Y., Maekawa, M., Kai, M., Ishino, F., Toshimori, K., Mori, C.. Flutamide depressed expression of cortactin in the ectoplasmic specialization between the Sertoli cells and spermatids in the mouse testis. Food and Chemical Toxicology., 2006, 44(7): 1050-1056.
    [53] Wong, C.H., Cheng, C.Y.. The blood-testis barrier: Its biology, regulation, andphysiological role in spermatogenesis. Curr Topics Dev Biol., 2005, 71: 263–296.
    [54] Kierszenbaum, A.L.. Tyrosine protein kinases and spermatogenesis: truncation matters. Mol Reprod Dev., 2006, 73(4): 399-403.
    [55] Kierszenbaum, A.L., Tres LL. The acrosome-acroplaxome-manchette complex, and the shaping of the spermatid head. Arch Histol Cytol., 2004, 67(4): 271-284.
    [56] Kierszenbaum, A.L., Tres LL, Rivkin E, Kang-Decker N, van Deursen JMA. The acroplaxome is the docking site of Golgi-Derived Myosin Va/Rab27a/b-Containing proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. Biol Reprod., 2004, 70(5): 1400-1410.
    [57] Tuxworth, R.I., Titus, M.A.. Unconventional myosins: anchors in the membrane traffic relay. Traffic., 2000, 1(1):11-18.
    [58] Baker, J.P., Titus, M.A.. Myosins: matching motors with functions. Curr Opin Cell Biol., 1998, 10(1):80-86.
    [59] Mermall, V., Post, P.L., Mooseker, M.S.. Unconventionalmyosins in cell movement, membrane traffic. Science., 1998, 279(5350): 527-533.
    [60] Olivares AO, Chang W, Mooseker MS, Hackney DD, De La Cruz EM. The Tail Domain of Myosin Va Modulates Actin Binding to One Head. J Biol Chem 2006, 281:31326-36.
    [61] Bridgman PC. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J Cell Biol 1999, 146:1045-60.
    [62] Kierszenbaum AL, Rivkin E, Tres LL. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 2003, 14:4628-40.
    [63] Kelleher, J.F., Mandell, M.A., Moulder, G., Hill, K.L., L'Hernault, S.W., Barstead R, Titus MA. Myosin VI is required for asymmetric segregation of cellular components during C. elegans spermatogenesis. Curr Biol., 2000, 10(23):1489-96.
    [64] Kierszenbaum, A.L., Rivkin E, Tres LL. The actin-based motor myosin Va is a component of the acroplaxome, an acrosome-nuclear envelope junctional plate, and of manchette associated vesicles. Cytogenetic Genome Res., 2003, 103(3-4):337-44.
    [65] Huber, R., R?misch, J., Paques, E.P.. The crystal and molecular structure of human annexin V, an anticoagulant calcium, membrane binding protein. EMBO J., 1990, 9(12):3867–3874.
    [66] Isenberg, G., Aebi, U., Pollard, T.D.. An actin-binding protein from Acanthamoeba regulates actin filament polymerization and interactions. Nature., 1980, 288(5790):455–459.
    [67] Machesky, L.M., Atkinson, S.J., Ampe, C., Vandekerckhove, J. and Pollard, T.D.. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol., 1994, 127(1): 107–115.
    [68] Mizuno, K., Okano, I., Ohashi, K., Nunoue, K., Kuma, K., Miyata, T., Nakamura, T.,. Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene., 1994, 9(6):1605–1612.
    [69] Kellerman, K.A., Miller, K.G.,. An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol., 1992,119(4):823-834.
    [70] Jung, G., Schmidt, C.J., Hammer, J.A.,.Myosin I heavy-chain genes of Acanthamoeba castellanii: cloning of a second gene and evidence for the existence of a third isoform. Gene., 1989, 82(2):269-280.
    [71] Mercer, J.A., Seperack, P.K., Strobel, M.C., Copeland, N.G., Jenkins, N.A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature., 1991, 349(6311):709–713.
    [72] Du NS, Xue LZ and Lai W. Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacean, Decapoda) II. Spermatogenesis. Oceanology and Limnology 1988;
    [73] Du NS, Lai W and Xue LZ. Studies on the sperm of Chinese mitten-handed crab, Eriocheir sinensis (Crustacean, Decapoda) I. the morphology and ultras structure of mature sperm. Oceanology and Limnology 1987;
    [74]萨母布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南.第2版. [M],北京:科学出版社, 1996
    [75] Reger JF. Studies on the fine structure of spermatides and spermatozoa of the crab, pinnixia sp. J Morphol 1970, 132:89-99.
    [76] Benetti, A.S., Santos, D.C., Negreiros-Fransozo, M.L., et al., Spermatozoal ultrastructure in three species of the genus Uca Leach, 1814 (Crustacea, Brachyura, Ocypodidae). Micron, 2008, 39(3): p. 337-43.
    [77] Larson RE, Pitta DE, Ferro JA. A novel 190 kDa calmodulin-binding protein associated with brain actomyosin. Braz J Med Biol Res 1988, 21:213-7.
    [78] Cheney RE, O'Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 1993, 75:13-23.
    [79] Geething NC, Spudich JA. Identification of a minimal myosin Va binding site within an intrinsically unstructured domain of melanophilin. J Biol Chem 2007; 20:21518-28.
    [80] Sloane JA, Vartanian TK. Myosin Va controls oligodendrocyte morphogenesis and myelination. J Neurosci 2007, 27:11366-75.
    [81] Bridgman PC. Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J Cell Biol 1999, 146:1045-60.
    [82] Nagashima K, Torii S, Yi Z, Igarashi M, Okamoto K, Takeuchi T, Izumi T. Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett 2002, 517:233-8.
    [83] Pranchevicius MC, Baqui MM, Ishikawa-Ankerhold HC, Louren?o EV, Le?o RM, Banzi SR, dos Santos CT, Barreira MC, Espreafico EM, Larson RE. Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil Cytoskeleton 2008, 65:441-56
    [84] Salerno VP, Calliari A, Provance DW Jr, Sotelo-Silveira JR, Sotelo JR, Mercer JA. Myosin-Va mediates RNA distribution in primary fibroblasts from multiple organs. Cell Motil Cytoskeleton 2008, 65:422-33.
    [85] Kierszenbaum AL, Rivkin E, Tres LL. Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 2003, 14:4628-40.
    [86] Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex, and the shaping of the spermatid head. Arch Histol Cytol 2004, 67:271-284.
    [87] Ross JL, Ali MY, Warshaw DM. Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 2008, 20:41-7.
    [88] Ali MY, Krementsova EB., Kennedy GG, Mahaffy R, Pollard TD, Trybus KM, Warshaw DM. Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 2007; 104:4332-4336.
    [89] Merrill V K L, Turner F R,Kaufman T C. A genetic and developmental analysis of mutations in the Deformed locus in Drosophila melanogaster. Dev. Biol. 1987,122:379-395
    [90] Gibson G, Schier A, LeMotte P,Gehring W J. The specificities of sex combs reduced and Antennapedia are defined by a distinct portion of each protein that includes the homeodomain. Cell,1990,62:1087-1103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700