干扰素诱导的DAI蛋白抑制乙型肝炎病毒复制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素诱导蛋白DAI抑制乙型肝炎病毒复制的初步研究硕士学位论文中文摘要
     乙型肝炎病毒(HBV)是危害人类健康的主要病原体之一,在全球范围内,有近四亿感染者,由此引发的肝炎肝硬化以及肝癌每年导致近百万人的死亡。干扰素是一类具有广谱抗病毒作用的细胞因子,自其1957年被发现以来已经受到大量的关注并被广泛应用到病毒感染的临床治疗中,但是其抑制HBV复制的机理还不甚明了。先前的研究表明干扰素可以通过诱导抗病毒蛋白(MxA,APOBE3,MyD88)的表达来发挥其抑制HBV复制的作用,但是这些蛋白并不能揭示干扰素抑制HBV复制的全部机理,提示还有其他抗乙型肝炎病毒的干扰素诱生蛋白的存在,值得进一步寻找新的受干扰素诱导的抑制HBV复制的蛋白并揭示其抑制HBV复制的机理。
     基因微点阵芯片技术(Micro array)的发展和应用使得有可能从新的角度研究干扰素抗病毒的机制及寻找新的抗病毒蛋白,已经有不少利用cDNA基因芯片技术检测经干扰素处理后的人类肝细胞或者试验动物的肝细胞的基因表达谱的变化,Chisari,F.V等发现,对有HBV复制的小鼠肝细胞(HBVMet4)用干扰素处理六小时后,IFN-γ和IFN-β可以使DAI (DNA-dependent activator of IFN-regulatory factor,也叫Z-DNA binding protein (ZBP1)或者DLM-1)的表达量分别升高426和577倍。DAI最初作为一种RNA结合蛋白被发现,其可以与β-actin mRNA的zipcode结构高特异性结合来决定β-actin mRNA的细胞内定位从而来维持细胞的极性。而后Yineng Fu等发现在巨噬细胞DAI可以被IFN-γ或者LPS刺激后上调,被称为肿瘤基质和激活巨噬细胞蛋白(Tumor stroma and activated macrophage protein),提示在宿主天然防御中发挥重要的作用。2007年Tadatsugu Taniguchi等证明DAI作为DNA识别蛋白可以与IRF3和TBK1相互作用并能强烈地诱导Ⅰ干扰素的产生。由此可以推测DAI可能在干扰素介导的抗HBV复制中发挥着重要的作用。
     本研究首先证实了IFN-α可以在肝癌来源的Huh7细胞内诱导DAI的mRNA水平的上调。随即将DAI蛋白的表达质粒与HBV的复制型质粒HBV1.3共转Huh7细胞后,发现DAI可以明显地下调乙肝表面抗原(HBsAg)以及e抗原(HBeAg),细胞内HBV RNA及HBV核心颗粒DNA的水平。鉴于poly(dA-dT).poly(dT-dA) (B-DNA)是一种可以强烈诱导DAI表达的人工合成DNA,在HBV的复制的Huh7细胞中加入B-DNA可以诱导DAI的表达并抑制HBV的复制。由此提示外源性及内源性的DAI都可以抑制HBV的复制。
     DAI作为一种诱导干扰素产生的重要分子,其对HBV的抑制作用是否与诱导干扰素的产生相关?研究表明DAI可以与TBK1相互作用后通过招募干扰素调节因子3(IRF-3)进而诱导干扰素的产生,其抑制HBV的作用是否与此相关,为此我们首先在Huh7细胞内过表达TBK1,结果发现其并不能增强DAI对HBV的抑制作用。进而我们将DAI与IRF-3共转细胞,检测IRF-3的活化程度,结果显示IRF-3的入核和磷酸化都无明显变化,我们将DAI与IRF-3的永久失活体质粒(失去N端的DNA结合区域的截短体(IRF-3△N))共转细胞,发现IRF-3△N并不影响DAI对HBV的抑制作用,由此提示Huh7细胞内DAI不能激活IRF-3,DAI抑制HBV复制不依赖于TBK1/IRF-3介导的干扰素产生。
     NF-κB是固有抗病毒免疫中的一个重要的转录因子,研究发现B-DNA诱导的NF-κB的DNA结合活性中DAI有重要的作用,本研究的实验也证明DAI能以剂量依赖的方式激活NF-kB转录启动活性。我们进一步应用NF-κB的超抑制剂I kBα-SR(superrepressor)发现可以回复DAI对HBV的抑制作用,这提示DAI抑制HBV的活性可能与其激活NF-KB的相关。
     NF-κB活化后可以启动包括干扰素在内的抗病毒细胞因子的转录,为探索DAI抑制HBV是否依赖于其对干扰素的诱生,我们首先在RNA和蛋白水平检测DAI在Huh7细胞内能否诱导干扰素产生,结果发现DAI不能诱导干扰素的产生。为了进一步排除干扰素或者其他分泌到细胞外的细胞因子是DAI发挥抑制HBV的效应因子,我们做了上清置换试验,将转染了DAI的细胞上清加入到HBV复制的细胞中,结果并未发现DAI表达的细胞上清具有抑制HBV的复制的效应。
     综上所述,本文的结果证明DAI (ZBP1/DLM-1)是一种具有抗乙型肝炎病毒活性的干扰素诱生蛋白,过表达DAI可以下调HBV RNA,复制中间体DNA以及e、s抗原水平,这种下调可能与激活NF-κB的活性相关但不依赖于它对干扰素产生的诱导。以上发现丰富了对干扰素抗病毒作用机制的认识,为HBV感染的治疗提供了新的思路和实验基础。
Interferon-inducible DAI protein inhibits Hepatitis B virus replication
     Hepatitis B virus infection is a global public health problem, with over 300 million people worldwide being chronic HBV carriers and millions of deaths annually attributable to HBV related liver failure (cirrhosis or hepatocellular carcinoma). As a secreted cytokine that elicits distinct antiviral effect, interferon (IFN) has been used for treatment of chronic HBV infection for more than two decades, yet the mechanism of action of this antiviral remains poorly understood. Previous studies have proved that anti-virus action of interferon is mediated by the induction of anti-virus protein, plenty of genes are regulated by IFN, for example,2',5'-oligoadenylate synthetase, protein kinase R, and MxA and these products are the key mediators of IFN's antiviral response. Although previous studies have been demonstrated that a few of IFN-inducible proteins could exert anti-HBV effect in vitro or in vivo, such as APOBEC3, MxA and MyD88, they still could not fully account for IFN's effect on HBV replication. Hence, other IFN induced protein(s) might also be involved in the inhibition of HBV replication by IFN.
     DAI (DLM-1/ZBP1) was initially identified as a highly conserved RNA-binding protein, which could bind to the zipcode motif ofβ-actin mRNA and therefore be responsible for its intracellular localization and cell polarity. Francis V. Chisari et al have reported that the expression level of DAI's mRNA could be up-regulated after IFN-α/βand IFN-γstimulation in the highly differentiated hepatocyte HBVMet-4 harboring HBV replication. In 2007, Tadadsugu Taniguchi et al have demonstrated that DAI could significantly induce the expression of typeⅠIFN through binding to IRF3 and TBK1 as a DNA sensor. Therefore, it is quite possible that DAI might role in the inhibition of HBV replication exerted by typeⅠandⅡIFN.
     To verify DAI can induced by interferon in Human Hepatoma Cell Line(Huh7), we treat Huh7 cells with different dose of interferon-α. We found that IFN-a treatment can greatly activate DAI transcription.
     To determine the anti-HBV effect of DAI protein, we co-transfected Huh7 human hepatoma cells with an HBV-producing plasmid HBV 1.3 and either a control vector or vectors encoding HA tagged forms of DAI protein. Transfect ion rates were controlled by the inclusion of a GFP-expressing plasmid. To examine the effect of DAI on the synthesis of HBV proteins,48h after transfection, supernatants were collected and assayed for HBV surface antigen (HBsAg) and e antigen (HBeAg) by ELASA (Enzyme-Linked ImmunoSorbent Assay). Compare with the vector, the secretion of both HBsAg and HBeAg was significantly reduced in DAI transfect cell. To investigate whether the reduction of HBV protein synthesis was associated with the reduction of viral RNA transcripts, Northern blot analysis and real-time PCR was used to examine the cytoplasmic HBV RNAs in Huh7 cell after transfection with pHBV1.3 for 48h. The results show that DAI can reduce the HBV RNA in a dose-dependent manner. To investigate whether the HBV DNA replication was inhibited by DAI protein, viral replicative intermediates DNA extracted from core particles 48h after DAI transfection and then quantified by real-time PCR and Southern blot. We found that DAI can significantly reduce the HBV DNA replication.
     Poly(dA-dT).poly(dT-dA) (B-DNA) was identified as a DAI stimulator, I want to known is if B-DNA can induce endogenous DAI transcription and inhibit HBV replication? We add B-DNA to cell culture supernatant after HBV plasmid was transfect to Huh7 cell. Our result shows that B-DNA can induce DAI transcription and inhibit HBV replication in Huh7, although not as significantly as DAI over-expression.
     We future tudy the mechanism of DAI inhibit HBV repliacation.DAI have been implicated as a DNA sensor and interferon stimulator. So we determine whether the anti-HBV effect of DAI protein is interferon dependent. Taniguchi et al have shown that DAI can interact with TBK1 then recruit and activate IRF-3 result in producing interferon. So we want to know whether over-expression TBK1 can improve the anti-HBV effect of DAI. The results show that TBK1 can not affect the anti-HBV effect of DAI. IRF-3 was downstream of TBK1 and Taniguchi et al have shown that DAI (DLM-1/ZBP1) is critical for B-DNA-mediated IRF3 activation.So we speculate that IRF3 maybe play a role in DAI mediated anti-HBV effect. To test this idea, we block the IRF-3 with an IRF-3 domain negative plasmid. The result shows that the anti-HBV effect of DAI was not affected by this IRF-3 inhibitor.
     NF-κB is the key transcription factor in innate inmmune system. It is report that that DAI is necessary in B-DNA-mediated NF-κB binding activity.We first detects if NF-κB activity can be activated by DAI. As expected, DAI showed increased activation of NF-κB in dose dependent manner. Then we block the NF-κB activation with a NF-κB inhibitory plasmid IκBα-SR.When the activity of NF-κB was block, the anti-HBV effect of DAI is completely disappearing. So we speculate that the anti-HBV effect of DAI is related to activation of NF-κB.
     NF-κB activation can produce many kinds of cytokines inclucing interferon. To test whether anti-viral effect of DAI is associated with producing interferon or other cytokines, we first detect the interferon secret in supernatants by ELISA. The result shows that DAI can not triggers the secretion of interferon. To confirm that DAI inhibit HBV replication is not dependent on producing interferon or other cytokines, supernatant transfer experiment was performed in which cultured media were harvested from Huh7 cells transfected with plasmids expressing DAI and applied onto pHBV1.3 transfected Huh7 cells. It is show that the viral RNA levels were not affected in Huh7 cells treated with this conditioned medium. This result suggesting that inhibition of HBV replication by DAI is an intracellular event and independent of secreted cytokines.
     In summary, our studies demonstrated that the interferon inducible protein DAI can inhibit HBV replication. We also document that the DAI inhibit HBV replication is associated with the activation of NF-κB signaling pathway which may contributes to a better understanding of the mechanisms of interferon-induced inhibition of HBV replication and provide a new approach in the control of HBV infection.
引文
1. Ganem, D, and A. M. Prince.2004. Hepatitis B infection: natural history and clinical consequences. New England Journal of Medicine 350:1118-29.
    2. Hoofnagle, J. H., and A. M. di Bisceglie.1997. The treatment of chronic viral hepatitis.New England Journal of Medicine 336:347-56.
    3. McMahon, B. J.2005. Epidemiology and natural history of hepatitis B. Semin. Liver Dis.25(Suppl. 1):3-8.
    4. Pichlmair, A., and C. Reis e Sousa.2007. Innate recognition of viruses. Immunity 27:370-383.
    5. Jules L. Dienstag, M.D.Hepatitis B Virus Infection. N Engl J Med.2008 Oct 2;359(14):1486-500.
    6. Wei Xiong, Xun Wang, Interferon-inducible MyD88 protein inhibits hepatitis B virus replication. Virology 319 (2004) 306-314
    7. Emmanuel Gordien, Inhibition of Hepatitis B Virus Replication by the Interferon-Inducible MxA Protein. J Virol..75(6):2684-2691.
    8. Marianne Bonvin, Francis Achermann. Interferon-Inducible Expression of APOBEC3 EditingEnzymes in Human Hepatocytes and Inhibition of Hepatitis B Virus Replication. HEPATOLOGY, Vol.43, No.6,2006 1364-1374.
    9. Priscilla Turelli, APOBEC3-independent IFN-induced viral clearance in Hepatitis B virus transgenic mice. J Virol.2008 Jul;82(13):6585-90.
    10. Proto S, APOBEC and iNOS are not the main intracellular effectors of IFN-gamma-mediated inactivation of Hepatitis B virus replication. Antiviral Res. 2008 Jun;78(3):260-7.
    11. Stefan F. Wieland Searching for Interferon-Induced Genes That Inhibit Hepatitis B Virus Replication in Transgenic Mouse Hepatocytes. J Virol.2003 77.2.1227-1236.
    12. Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH. Characterization of a beta-actin mRNA zipcode-binding protein.Mol Cell Biol.1997 Apr;17(4):2158-65
    13. Deshler JO, Highett MI, Abramson T, Schnapp BJ. A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates.Curr Biol. 1998 Apr23;8(9):489-96
    14. Zhang JY, Chan EK, Peng XX, Tan EM. A novel cytoplasmic protein with RNA-binding motifs is an autoantigen in human hepatocellular carcinoma.J Exp Med.1999 Apr 5;189(7):1101-10.
    15. Stohr N, Lederer M, Reinke C, Meyer S, Hatzfeld M, Singer RH, Huttelmaier S.ZBP1 regulates mRNA stability during cellular stress. J Cell Biol.2006 Nov 20;175(4):527-34. Epub 2006 Nov 13
    16. Fu Y, Comella N, Tognazzi K, Brown LF, Dvorak HF, Kocher O. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene.1999 Nov 15;240(1):157-63.
    17. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, Lu Y, Miyagishi M, Kodama T, Honda K, Ohba Y, Taniguchi T. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007 Jul 26;448(7152):501-5.
    18. Deigendesch N, Koch-Nolte F, Rothenburg S. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res.2006;34(18):5007-20. Epub 2006 Sep 20.
    19. Takaoka A, Shinohara S. DNA sensors in innate immune system.Uirusu.2008 Jun;58(1):37-46. Review.
    20. Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, Tamura T, Takaoka A, Nishikura K, Taniguchi T. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules.Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5477-82
    21. Ganem, D., and A. M. Prince.2004. Hepatitis B virus infection—natural history and clinical consequences. N. Engl. J. Med.350:1118-1129
    22. RONGTUAN LIN, Virus-Dependent Phosphorylation of the IRF-3 TranscriptionFactor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation. MOLECULAR AND CELLULAR BIOLOGY, May 1998, p.2986-2996
    23. E.B. Traenckner, H.L. Pahl, T. Henkel, K.N. Schmidt, S. Wilk, P.A. Baeuerle, Phosphorylation of human Ⅰ kappa B-alpha on serines 32 and 36 controls Ⅰ kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli, Embo J 14 (1995) 2876-2883.
    24. Anthony J. Sadler and Bryan R. G. Williams Interferon-inducible antiviral effectors Nat Rev Immunol.2008 July; 8(7):559-568.
    25. Andrew G. Bowie and Leonie Unterholzner Viral evasion and subversion of Pattern-recognition receptor signalling, Nature Immunol.8,911-922 (2008).
    26. Shohei Koyama a,b, Ken J. Ishii a,c, Cevayir Coban a,b, Shizuo Akira Innate immune response to viral infection. Cytokine 43 (2008) 336-341
    27. Wang YX, Xu X, Luo C, Ma ZM, Jiang HL, Ding JP, and Wen YM, (2007) Mutational analysis revealed that conservation of hepatitis B virus reverse transcriptase residue 306 (rtP306) is crucial for encapsidation of pregenomic RNA. FEBS Lett 581:558-564
    28. Haitao Guo, Dong Jiang, Activation of Pattern Recognition Receptor-mediated Innate Immunity Inhibits the Replication of Hepatitis B Virus in Human Hepatocyte-derived Cells, J Virol, Jan.2009, p.847-858
    29. Gavan Holloway, Thanhmai T. Truong, Rotavirus antagonizes cellular antiviral responses by inhibiting 1 the nuclear accumulation of STAT1, STAT2 and NF-κB. J. Virol. doi:10.1128/JVI.01
    30. A. Takaoka and H. Yanai, interferon signaling.Cellular Microbiology 2006: 1462-5822
    31. Teresa Fernandes-Alnemri, AIM2 activates the inflammasome and cell death in
    response to cytoplasmic DNA. Nature, Vol 458:26 March 2009
    1. JulesL.Dienstag, M.D. Hepatitis B Virus Infection. N Engl J Med 2008;359:1486-500
    2. Lewin S, Walters T, Locarnini S. Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies. Antiviral Res 2002;55:381-396.
    3.闻玉梅主编,现代医学微生物学,上海医科大学出版社。
    4. Summers, J., and W. S. Mason.1982. Replication of the genome of ahepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 29:403-415.
    5. Wang, G. H., and C. Seeger.1993. Novel mechanism for reverse transcriptionin hepatitis B viruses. J. Virol.67:6507-6512.
    6. Summers, J., A. O'Connell, and I. Millman.1975. Genome of hepatitis B virus: restriction enzyme cleavage and structure of DNA extracted from Dane particles. Proc. Natl. Acad. Sci. USA 72:4597-4601.
    7. Lee, W. M.1997. Hepatitis B virus infection. N. Engl. J. Med.337:1733-1745. McMahon, B. J.2005. Epidemiology and natural history of hepatitis B.Semin. Liver Dis.25(Suppl. 1):3-8.
    8. Moraleda, G., J. Saputelli, C. E. Aldrich, D. Averett, L. Condreay, and W. S.Mason. 1997. Lack of effect of antiviral therapy in nondividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus. J. Virol.71:9392-9399.
    9. Tuttleman, J. S., C. Pourcel, and J. Summers.1986. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47:451-460.
    10. Wu, T. T., L. Coates, C. E.11, Aldrich, J. Summers, and W. S. Mason.1990. In hepatocytes infected with duck hepatitis B virus, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 175:255-261.
    11. Zhang, Y. Y., B. H. Zhang, D. Theele, S. Litwin, E. Toll, and J. Summers.2003. Single-cell analysis of covalently closed circular DNA copy numbers in a hepadnavirus-infected liver. Proc. Natl. Acad. Sci. USA 100:12372-12377.
    12. Kann, M., A. Schmitz, and B. Rabe.2007. Intracellular transport of hepatitis B virus. World J. Gastroenterol.13:39-47.
    13. Gerlich, W. H., and W. S. Robinson.1980. Hepatitis B virus contains protein attached to the 5_terminus of its complete DNA strand. Cell 21:801-809.
    14. Wang, G. H., and C. Seeger.1992. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell 71:663-670.
    15. Molnar-Kimber, K. L., J. Summers, J. M. Taylor, and W. S. Mason.1983. Protein covalently bound to minus-strand DNA intermediates of duck hepatitis B virus. J. Virol.45:165-172.
    16. Haitao Guo, Dong Jiang, Ju-Tao Guo; Characterization of the Intracellular Deproteinized Relaxed Circular DNA of Hepatitis B Virus: an Intermediate of Covalently Closed Circular DNA Formation JOURNAL OF VIROLOGY, Nov.2007, p.12472-12484
    17. Weifan Gao and Jianming Hu, Formation of Hepatitis B Virus Covalently Closed Circular DNA:Removal of Genome-Linked Protein. JOURNAL OF VIROLOGY, June 2007, p.6164-6174.
    18. Tuttleman JS,Christine P, Summers J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cell. Cell 1986; 47:451-460
    19. Wu TT, Coates L, Aldrich CE,et al. In hepatocytes-infected with duck, the template for viral RNA synthesis is amplified by an intracellular pathway. Virology 1990;175:255-261.
    20. Abe, A., Inoue, K., Tanaka, T., Kato, J., Kajiyama, N., Kawaguchi, R.,Tanaka, S., Yoshiba, M., Kohara, M.,1999. Quantification of hepatitis B virus genomic DNA by real-time detection PCR. J. Clin. Microbiol.37,2899-2903.
    21. Addison, W.R., Wong, W.W.S., Fischer, K.P., Tyrell, D.L.J.,2000. A quantitative competitive PCR assay for the covalently closed circular form of the duck hepatitis B virus. Antivir. Res.48,27-37.
    22. Brechtbuehl, K., Whalley, S.A., Dusheiko, G.M., Saunders, N.A.,2001.A rapid real-time quantitative polymerase chain reaction for hepatitis B virus. J. Virol. Meth. 93,105-113.
    24. Chen, R.W., Piiparinen, H., Seppanen, M., Koskela, P., Sarna, S., Lappalainen, M., 2001. Real-time PCR for detection and quantification of hepatitis B virus DNA. J. Med. Virol.65,250-256.
    25. Ganem, D.,1996. Hepadnaviridae and their replication. Fields Virology,3rd ed.Lippincott-Raven, Philadelphia, pp.2703-2737.
    26. Gibson, U.E., Heid, C.A., Williams, P.M.,1996. A novel method for real time quantitative RT-PCR. Genome Res.6,995-1001.
    27. Hagelstein, J., Fathinejad, F., Stremmel, W., Galle, P.R.,1997. pH-independent uptake of hepatitis B virus in primary human hepatocytes. Virology 229,292-294.
    28. He, M.-L., Wu, J., Chen, Y., Lin, C.M., Lau, G.K.K., Kung, H.-F.,2002. A new and sensitive method for the quantification of HBV cccDNA by real-time PCR. Biochem. Biophys. Res. Commun.295,1102-1107.
    29. Heid, C.A., Stevens, J., Livak, K.J., Williams, P.M.,1996. Real timequantitative PCR. Genome Res.6,986-994.
    30. Ho, S.K., Yam, W.C., Leung, E.T., Wong, L.P., Leung, J.K., Lai, K.N., Chan, T.M.,2003. Rapid quantification of hepatitis B virus DNA by real-time PCR using fluorescent hybridization probes. J. Med. Microbiol.52,397-402.
    31. Hollinger, F.,1996. Hepatitis B virus. Fields Virology,3rd ed. Lippincott-Raven, Philadelphia, pp.2739-2807.
    32. Jardi, R., Rodriguez, F., Buti, M., Costa, X., Cotrina, M., Valdes, A., Galimany, R., Esteban, R., Guardia, J.,2001. Quantitative detection of hepatitis B virus DNA in serum by a new rapid real-time fluorescence PCR assay. J. Viral Hepatitis 8, 465-471.
    33. Jun-Bin, S., Zhi, C., Wei-Qin, N., Jun, F.,2003. A quantitative method to detect HBV cccDNA by chimeric primer and real-time polymerase chain reaction. J. Virol. Meth.112,45-52.
    34. Jun-Bin S, Zhi C, Wei-Qin N, Jun F. A quantitative method to detect HBV cccDNA by chimeric primer and real-time polymerase chain reaction. J Virol Methods.2003 Sep;112(1-2):45-52.
    35. Hirt, B.1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol.26:365-369.
    36. Zhou, T., H. Guo, J. T. Guo, A. Cuconati, A. Mehta, and T. M. Block.2006. Hepatitis B virus e antigen production is dependent upon covalently closed circular (ccc) DNA in HepAD38 cell cultures and may serve as a cccDNA surrogate in antiviral screening assays. Antiviral Res.72:116-124.
    37. Guo, J. T., M. Pryce, X. Wang, M. I. Barrasa, J. Hu, and C. Seeger.2003. Conditional replication of duck hepatitis B virus in hepatoma cells. J. Virol. 77:1885-1893.
    38. Hu, J., D. Flores, D. Toft, X. Wang, and D. Nguyen.2004. Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J. Virol.78:13122-13131.
    39. Perlman, D., and J. Hu.2003. Duck hepatitis B virus virion secretion requires a double-stranded DNA genome. J. Virol.77:2287-2294
    40. Wang, X., N. Grammatikakis, and J. Hu.2002. Role of p50/CDC37 in hepadnavirus assembly and replication. J. Biol. Chem.277:24361-24367.
    41. Moraleda G, Saputelli J, Aldrich CE, Averett D, Condreay L, Mason WS. Lack of effect of antiviral therapy in nondividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus.J Virol 1997;71:9392-9399.
    42. Mason WS, Cullen J, Moraleda G, Saputelli J, Aldrich CE, Miller DS, Tennant B, Frick L, Averett D, Condreay LD, Jilbert AR. Lamivudine therapy of WHV-infected woodchucks. Virology 1998;245:18-32.
    43. Fourel I, Cullen JM, Saputelli J, Aldrich CE, Schaffer P, Averett DR, Pugh J, Mason WS. Evidence that hepatocyte turnover is required for rapid clearance of Duck Hepatitis B Virus during antiviral therapy of chronically infected ducks. J Virol 1994;68:8321-8330.
    44. Guo JT, Zhou H, Liu C, Aldrich C, Saputelli J, Whitaker T, Barrasa MI, Mason WS, Seeger C. Apoptosis regeneration of hepatocytes during recovery from transient hepadnavirus infections. J Virol2000;74:1495-1505.
    45. Thimme R, Wiel S, Steiger C, Ghrayeb J, Reimann KA, Purcell RH,Chisari FV. CD8(_) T cells mediate viral clearance disease pathogenesis during acute hepatitis B virus infection. J Virol 2003;77:68-76.
    46. Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999;284:825-829.
    47. Fourel I, Cullen JM, Saputelli J, Aldrich CE, Schaffer P, Averett DR,Pugh J, Mason WS. Evidence that hepatocyte turnover is required for rapid clearance of Duck Hepatitis B Virus during antiviral therapy of chronically infected ducks. J Virol 1994;68:8321-8330.
    48. Dandri M, Burda MR, Will H, Petersen J. Increased hepatocyte turnover inhibition of woodchuck hepatitis B virus replication by adefovir in vitro does not lead to reduction of the closed circular DNA. Hepatology 2000; 32:139-146.
    49. Kock J, Schlicht HG. Analysis of the earliest steps of hepadnavirus replication: genome repair after infectious entry into hepatocytes does not depend on viral polymerase activity. J Virol 1993; 67:4867-4874.
    50. BETTINA WERLE-LAPOSTOLLE, Persistence of cccDNA During the Natural History of Chronic Hepatitis B and Decline During Adefovir Dipivoxil Therapy GASTROENTEROLOGY2004;126:1750-1758
    51. Karsten Wursthorn, Marc Lutgehetmann, Peginterferon Alpha-2b Plus Adefovir Induce Strong cccDNA Decline and HBsAg Reduction in Patients With Chronic Hepatitis B, HEPATOLOGY 2006;44:675-684
    52. JOSEPH J. Y. SUNG, MAY-LING WONG, Intrahepatic Hepatitis B Virus Covalently Closed Circular DNA Can Be a Predictor of Sustained Response to Therapy. GASTROENTEROLOGY 2005:128:1890-1897

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700