应用文库构建法和生物信息学方法鉴定绵羊microRNA
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNAs (miRNAs)是一类长约22 nt的非编码单链RNA分子,广泛存在于人类及其它各种真核生物中,它通过与靶mRNA特异性的碱基互补配对,引起靶mRNA降解或者抑制其翻译,从而调节基因的转录后表达水平。研究表明,miRNA在生物体内发挥着重要作用,其主要功能是调节生物体胚胎形成、组织器官形成、细胞分化和凋亡及调控疾病发生等相关基因的表达。截止到2010年4月,已经鉴定出分布于植物、动物、单细胞藻类等130多个物种中14197个miRNA。绵羊是重要的家畜动物之一,为人类提供生活必需的肉、毛、奶等,在农业生产和人民生活中占有极其重要的地位。然而,目前已知的绵羊miRNA的数量很少,对其功能的研究则更为匮乏。所以对绵羊miRNA的研究有着非常重要的现实和理论意义。
     本研究通过构建小分子RNA cDNA文库和生物信息学方法两种途径鉴定绵羊miRNA ,分析它们在不同组织中的表达情况,寻找肌肉特异miRNA,并利用在线生物信息学软件预测绵羊miRNA的靶基因,对靶基因的功能进行分析。结果小结如下:
     1.通过构建绵羊背最长肌、大脑、肝脏、脾脏4个组织的小分子RNA cDNA文库,克隆得到17个绵羊miRNA。得到的miRNA中,12个克隆自背最长肌,6个克隆自大脑,其余2个克隆自肝脏和脾脏。
     2.通过生物信息学方法,在绵羊表达序列标签(EST)数据库中鉴定出14个绵羊miRNA ,其中包括4对miRNA/miRNA*和1对miRNA-3p/miRNA-5p。同时鉴定出一个miRNA基因簇,由oar-miR-374b、oar-miR-374b*和oar-miR-421组成。
     3.序列分析表明,鉴定出的31个绵羊miRNA属于24个miRNA家族,在绵羊中均为首次发现。其中2个miRNA (oar-NEW-1和oar-NEW-2)在其他物种中均未见报道,为新的miRNA。其余29个miRNA为其它物种中已知miRNA的绵羊同源基因。
     4. Northern blot结果表明,oar-miR-1仅在心肌和背最长肌中表达,oar-miR-122仅在肝脏中表达,oar-NEW-1仅在脾脏中表达。
     5. Real-time PCR结果表明,除oar-miR-425-5p没有在心肌中检测到之外,检测的其余miRNA在绵羊的6个组织中均有表达。并且,oar-miR-24在心肌和背最长肌中的表达量显著高于在其他组织中的表达量;oar-miR-24-1*在心肌中的表达量显著高于在其他组织中的表达量;oar-miR-425-3p在背最长肌中的表达量显著高于在其他组织中的表达量;oar-miR-425-5p在大脑中的表达量显著高于在其他组织中的表达量。
     6.利用鉴定出的31个绵羊miRNA序列,我们在绵羊基因组中的保守3’UTR区域预测得到120个靶基因,包括230个靶位点。GO分类结果表明,这些靶基因几乎参与了全部的生物学过程,参与功能最多的是结合活性。
MicroRNAs (miRNAs), about 22nt in length, are a class of non-coding small RNA distribute extensively in human genome and other eukaryote genome. They regulate gene expression through sequence specific interactions with target mRNAs resulting in translational repression or mRNA degradation. Recent findings showed that miRNAs play an important role in embryo formation, organogenesis, cell death, cell proliferation, and cancer development, and so on. By April 2010, the number of known miRNAs has grown rapidly to 14,197 in more than 130 species. O.aries (Ovis aries) is one of the most important agricultural livestock for meat, milk, and wool production. But there is limited information about O.aries miRNAs. Thus, to research on O.aries miRNAs is very important and necessary.
     In this study, we combined a computational method based on expressed sequence tag (EST) analysis with experimental identification based on small RNA cDNA library to identify O.aries miRNAs. Then, we analized their expression level in different sheep tissues to find out muscle specific miRNAs, predicted their target genes and conducted the function analysis for them. The results are as follows:
     1. First, by constructing four cDNA libraries for small RNAs in the size range of 18–26nt from the tissues of longissimus muscle, brain, liver and spleen, we cloned 17 O.aries miRNAs. Among these miRNAs, 12 were isolated from longissimus muscle, 6 were cloned from brain, and 2 others were cloned from liver and spleen.
     2. Second, we used a computational approach to exploit O.aries miRNAs in sheep EST database. Following a set of strict filtering criteria, we finally identified 14 O.aries miRNAs, which included 4 pairs of miRNA/miRNA*, and 1 pair of miRNA-3p/miRNA-5p. A miRNA cluster was also identified, including oar-miR-374b, oar-miR-374b* and oar-miR-421.
     3. Altogether, we identified 31 oar-miRNAs belong to 24 families, all of which were first identified in sheep. 2 of them were novel miRNAs that had never been annotated in miRBase database, named oar-NEW-1 and oar-NEW-2. The remaining 29 miRNAs were sheep orthologs of known mammalian miRNAs.
     4. Northern blot showed that 3 miRNAs appeared to be extremely tissue specific. oar-miR-1 could be only detected in heart muscle and longissimus muscle, oar-miR-122 could be only detected in liver, and oar-NEW-1 could be only detected in spleen.
     5. We chose 4 miRNAs (the pair of oar-miR-24/oar-miR-24-1* and the pair of oar-miR-425-3p/oar- miR-425-5p) identified by computational method for expression analysis by Real-time PCR. All of these four miRNAs could be detected in total tissues, except that oar-miR-425-5p could not be detected in heart muscle. The results also showed that oar-miR-24 had a significant higher expression level in longissimus muscle and heart muscle than which in the other tissues, as same as oar-miR-24-1* in heart muscle, oar-miR-425-3p in longissimus muscle, and oar-miR-425-5p in brain.
     6. Further, we predicted 120 potential target genes, included 230 target sites, for 31 oar-miRNAs in O.aries mRNAs. Gene ontology analysis showed that these target genes nearly took part in all kinds of biological process, and the molecular function which involved most is binding activity.
引文
1. Altuvia, Y., P. Landgraf, G. Lithwick, et al. Clustering and conservation patterns of human microRNAs[J].Nucleic Acids Res, 2005, 33(8):2697-706.
    2. Ambros, V., B. Bartel, D. P. Bartel, et al. A uniform system for microRNA annotation[J].Rna, 2003, 9(3):277-9.
    3. Anton, I., A. Zsolnai, I. Komlosi, et al. Effect of MYOG genotypes on growth rate and production traits in Hungarian large white pigs[J].Acta Vet Hung, 2006, 54(3):393-7.
    4. Aukerman, M. J. and H. Sakai. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J].Plant Cell, 2003, 15(11):2730-41.
    5. Baek, D., J. Villen, C. Shin, et al. The impact of microRNAs on protein output[J].Nature, 2008, 455(7209):64-71.
    6. Bandres, E., E. Cubedo, X. Agirre, et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues[J].Mol Cancer, 2006, 5:29.
    7. Bartel, B. and D. P. Bartel. MicroRNAs: at the root of plant development?[J].Plant Physiol, 2003, 132(2):709-17.
    8. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function[J].Cell, 2004, 116(2):281-97.
    9. Baskerville, S. and D. P. Bartel. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes[J].Rna, 2005, 11(3):241-7.
    10. Baulcombe, D. RNA silencing in plants[J].Nature, 2004, 431(7006):356-63.
    11. Beitzinger, M., L. Peters, J. Y. Zhu, et al. Identification of human microRNA targets from isolated argonaute protein complexes[J].RNA Biol, 2007, 4(2):76-84.
    12. Bentwich, I., A. Avniel, Y. Karov, et al. Identification of hundreds of conserved and nonconserved human microRNAs[J].Nat Genet, 2005, 37(7):766-70.
    13. Berezikov, E., W. J. Chung, J. Willis, et al. Mammalian mirtron genes[J].Mol Cell, 2007, 28(2):328-36.
    14. Berezikov, E., E. Cuppen and R. H. Plasterk. Approaches to microRNA discovery[J].Nat Genet, 2006, 38 Suppl:S2-7.
    15. Bernstein, E., A. A. Caudy, S. M. Hammond, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J].Nature, 2001, 409(6818):363-6.
    16. Bhattacharyya, S. N., R. Habermacher, U. Martine, et al. Relief of microRNA-mediated translational repression in human cells subjected to stress[J].Cell, 2006, 125(6):1111-24.
    17. Bonnet, E., J. Wuyts, P. Rouze, et al. Detection of 91 potential conserved plantmicroRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes[J].Proc Natl Acad Sci U S A, 2004, 101(31):11511-6.
    18. Bonnet, E., J. Wuyts, P. Rouze, et al. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences[J].Bioinformatics, 2004, 20(17):2911-7.
    19. Borchert, G. M., W. Lanier and B. L. Davidson. RNA polymerase III transcribes human microRNAs[J].Nat Struct Mol Biol, 2006, 13(12):1097-101.
    20. Brameier, M. and C. Wiuf. Ab initio identification of human microRNAs based on structure motifs[J].BMC Bioinformatics, 2007, 8:478.
    21. Brennecke, J., D. R. Hipfner, A. Stark, et al. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J].Cell, 2003, 113(1):25-36.
    22. Brueckner, B., C. Stresemann, R. Kuner, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function[J].Cancer Res, 2007, 67(4):1419-23.
    23. Bruneau, B. G. Developmental biology: tiny brakes for a growing heart[J].Nature, 2005, 436(7048):181-2.
    24. Cai, X., C. H. Hagedorn and B. R. Cullen. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J].Rna, 2004, 10(12):1957-66.
    25. Chapman, E. J., A. I. Prokhnevsky, K. Gopinath, et al. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step[J].Genes Dev, 2004, 18(10):1179-86.
    26. Chen, C., D. A. Ridzon, A. J. Broomer, et al. Real-time quantification of microRNAs by stem-loop RT-PCR[J].Nucleic Acids Res, 2005, 33(20):e179.
    27. Chen, J. F., E. M. Mandel, J. M. Thomson, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J].Nat Genet, 2006, 38(2):228-33.
    28. Chenna, R., H. Sugawara, T. Koike, et al. Multiple sequence alignment with the Clustal series of programs[J].Nucleic Acids Res, 2003, 31(13):3497-500.
    29. Clop, A., F. Marcq, H. Takeda, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J].Nat Genet, 2006, 38(7):813-8.
    30. Coleman, M. E., F. DeMayo, K. C. Yin, et al. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice[J].J Biol Chem, 1995, 270(20):12109-16.
    31. Coutinho, L. L., L. K. Matukumalli, T. S. Sonstegard, et al. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues[J].Physiol Genomics,2007, 29(1):35-43.
    32. Didiano, D. and O. Hobert. Molecular architecture of a miRNA-regulated 3' UTR[J].Rna, 2008, 14(7):1297-317.
    33. Ding, J., S. Huang, S. Wu, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA[J].Nat Cell Biol, 2010, 12(4):390-9.
    34. Doench, J. G., C. P. Petersen and P. A. Sharp. siRNAs can function as miRNAs[J].Genes Dev, 2003, 17(4):438-42.
    35. Dostie, J., Z. Mourelatos, M. Yang, et al. Numerous microRNPs in neuronal cells containing novel microRNAs[J].Rna, 2003, 9(2):180-6.
    36. Enright, A. J., B. John, U. Gaul, et al. MicroRNA targets in Drosophila[J].Genome Biol, 2003, 5(1):R1.
    37. Fire, A., S. Xu, M. K. Montgomery, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature, 1998, 391(6669):806-11.
    38. Forman, J. J., A. Legesse-Miller and H. A. Coller. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence[J].Proc Natl Acad Sci U S A, 2008, 105(39):14879-84.
    39. Friedman, L. M., A. A. Dror, E. Mor, et al. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates[J].Proc Natl Acad Sci U S A, 2009, 106(19):7915-20.
    40. Friedman, R. C., K. K. Farh, C. B. Burge, et al. Most mammalian mRNAs are conserved targets of microRNAs[J].Genome Res, 2009, 19(1):92-105.
    41. Fu, H., Y. Tie, C. Xu, et al. Identification of human fetal liver miRNAs by a novel method[J].FEBS Lett, 2005, 579(17):3849-54.
    42. Girard, M., E. Jacquemin, A. Munnich, et al. miR-122, a paradigm for the role of microRNAs in the liver[J].J Hepatol, 2008, 48(4):648-56.
    43. Goll, D. E., V. F. Thompson, H. Li, et al. The calpain system[J].Physiol Rev, 2003, 83(3):731-801.
    44. Griffiths-Jones, S. The microRNA Registry[J].Nucleic Acids Res, 2004, 32(Database issue):D109-11.
    45. Griffiths-Jones, S., R. J. Grocock, S. van Dongen, et al. miRBase: microRNA sequences, targets and gene nomenclature[J].Nucleic Acids Res, 2006, 34(Database issue):D140-4.
    46. Griffiths-Jones, S., H. K. Saini, S. van Dongen, et al. miRBase: tools for microRNA genomics[J].Nucleic Acids Res, 2008, 36(Database issue):D154-8.
    47. Grimson, A., K. K. Farh, W. K. Johnston, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing[J].Mol Cell, 2007, 27(1):91-105.
    48. Grishok, A., A. E. Pasquinelli, D. Conte, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegansdevelopmental timing[J].Cell, 2001, 106(1):23-34.
    49. Guo, H. S., Q. Xie, J. F. Fei, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development[J].Plant Cell, 2005, 17(5):1376-86.
    50. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.[J].Nucl. Acids.Symp. Ser., 1999, 41:95~98.
    51. Hamilton, A. J. and D. C. Baulcombe. A species of small antisense RNA in posttranscriptional gene silencing in plants[J].Science, 1999, 286(5441):950-2.
    52. Han, J., Y. Lee, K. H. Yeom, et al. The Drosha-DGCR8 complex in primary microRNA processing[J].Genes Dev, 2004, 18(24):3016-27.
    53. Han, J., Y. Lee, K. H. Yeom, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex[J].Cell, 2006, 125(5):887-901.
    54. Hatfield, S. D., H. R. Shcherbata, K. A. Fischer, et al. Stem cell division is regulated by the microRNA pathway[J].Nature, 2005, 435(7044):974-8.
    55. He, L., X. He, L. P. Lim, et al. A microRNA component of the p53 tumour suppressor network[J].Nature, 2007, 447(7148):1130-4.
    56. Henke, J. I., D. Goergen, J. Zheng, et al. microRNA-122 stimulates translation of hepatitis C virus RNA[J].Embo J, 2008, 27(24):3300-10.
    57. Hipfner, D. R., K. Weigmann and S. M. Cohen. The bantam gene regulates Drosophila growth[J].Genetics, 2002, 161(4):1527-37.
    58. Hunter, C. P. Genetics: a touch of elegance with RNAi[J].Curr Biol, 1999, 9(12):R440-2.
    59. Hunter, C. P. Gene silencing: shrinking the black box of RNAi[J].Curr Biol, 2000, 10(4):R137-40.
    60. Hutvagner, G., J. McLachlan, A. E. Pasquinelli, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J].Science, 2001, 293(5531):834-8.
    61. Jiang, J., E. J. Lee, Y. Gusev, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines[J].Nucleic Acids Res, 2005, 33(17):5394-403.
    62. Jiang, P., H. Wu, W. Wang, et al. MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features[J].Nucleic Acids Res, 2007, 35(Web Server issue):W339-44.
    63. Jiang, S., H. W. Zhang, M. H. Lu, et al. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene[J].Cancer Res, 2010, 70(8):3119-27.
    64. Jin, W., J. R. Grant, P. Stothard, et al. Characterization of bovine miRNAs by sequencing and bioinformatics analysis[J].BMC Mol Biol, 2009, 10:90.
    65. Jones-Rhoades, M. W. and D. P. Bartel. Computational identification of plantmicroRNAs and their targets, including a stress-induced miRNA[J].Mol Cell, 2004, 14(6):787-99.
    66. Kasschau, K. D., Z. Xie, E. Allen, et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction[J].Dev Cell, 2003, 4(2):205-17.
    67. Kato, M., A. de Lencastre, Z. Pincus, et al. Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development[J].Genome Biol, 2009, 10(5):R54.
    68. Kedde, M., M. J. Strasser, B. Boldajipour, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA[J].Cell, 2007, 131(7):1273-86.
    69. Ketting, R. F., S. E. Fischer, E. Bernstein, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans[J].Genes Dev, 2001, 15(20):2654-9.
    70. Khvorova, A., A. Reynolds and S. D. Jayasena. Functional siRNAs and miRNAs exhibit strand bias[J].Cell, 2003, 115(2):209-16.
    71. Kim, J., I. S. Cho, J. S. Hong, et al. Identification and characterization of new microRNAs from pig[J].Mamm Genome, 2008, 19(7-8):570-80.
    72. Kim, J., J. H. Jung, J. L. Reyes, et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems[J].Plant J, 2005, 42(1):84-94.
    73. Kim, J., A. Krichevsky, Y. Grad, et al. Identification of many microRNAs that copurify with polyribosomes in mammalian neurons[J].Proc Natl Acad Sci U S A, 2004, 101(1):360-5.
    74. Kiriakidou, M., P. T. Nelson, A. Kouranov, et al. A combined computational-experimental approach predicts human microRNA targets[J].Genes Dev, 2004, 18(10):1165-78.
    75. Krek, A., D. Grun, M. N. Poy, et al. Combinatorial microRNA target predictions[J].Nat Genet, 2005, 37(5):495-500.
    76. Kruger, J. and M. Rehmsmeier. RNAhybrid: microRNA target prediction easy, fast and flexible[J].Nucleic Acids Res, 2006, 34(Web Server issue):W451-4.
    77. Kwon, C., Z. Han, E. N. Olson, et al. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling[J].Proc Natl Acad Sci U S A, 2005, 102(52):18986-91.
    78. Kyriakis, J. M. and J. Avruch. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J].Physiol Rev, 2001, 81(2):807-69.
    79. Lagos-Quintana, M., R. Rauhut, W. Lendeckel, et al. Identification of novel genes coding for small expressed RNAs[J].Science, 2001, 294(5543):853-8.
    80. Lagos-Quintana, M., R. Rauhut, J. Meyer, et al. New microRNAs from mouse and human[J].Rna, 2003, 9(2):175-9.
    81. Lagos-Quintana, M., R. Rauhut, A. Yalcin, et al. Identification of tissue-specific microRNAs from mouse[J].Curr Biol, 2002, 12(9):735-9.
    82. Lai, E. C., P. Tomancak, R. W. Williams, et al. Computational identification of Drosophila microRNA genes[J].Genome Biol, 2003, 4(7):R42.
    83. Landgraf, P., M. Rusu, R. Sheridan, et al. A mammalian microRNA expression atlas based on small RNA library sequencing[J].Cell, 2007, 129(7):1401-14.
    84. Lau, N. C., L. P. Lim, E. G. Weinstein, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans[J].Science, 2001, 294(5543):858-62.
    85. Lauter, N., A. Kampani, S. Carlson, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J].Proc Natl Acad Sci U S A, 2005, 102(26):9412-7.
    86. Lee, R. C., R. L. Feinbaum and V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell, 1993, 75(5):843-54.
    87. Lee, Y., M. Kim, J. Han, et al. MicroRNA genes are transcribed by RNA polymerase II[J].Embo J, 2004, 23(20):4051-60.
    88. Lewis, B. P., C. B. Burge and D. P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J].Cell, 2005, 120(1):15-20.
    89. Lewis, B. P., I. H. Shih, M. W. Jones-Rhoades, et al. Prediction of mammalian microRNA targets[J].Cell, 2003, 115(7):787-98.
    90. Lim, L. P., M. E. Glasner, S. Yekta, et al. Vertebrate microRNA genes[J].Science, 2003, 299(5612):1540.
    91. Lim, L. P., N. C. Lau, P. Garrett-Engele, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs[J].Nature, 2005, 433(7027):769-73.
    92. Lim, L. P., N. C. Lau, E. G. Weinstein, et al. The microRNAs of Caenorhabditis elegans[J].Genes Dev, 2003, 17(8):991-1008.
    93. Long, D., R. Lee, P. Williams, et al. Potent effect of target structure on microRNA function[J].Nat Struct Mol Biol, 2007, 14(4):287-94.
    94. Lu, S., Y. H. Sun, R. Shi, et al. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis[J].Plant Cell, 2005, 17(8):2186-203.
    95. Luciano, D. J., H. Mirsky, N. J. Vendetti, et al. RNA editing of a miRNA precursor[J].Rna, 2004, 10(8):1174-7.
    96. Lui, W. O., N. Pourmand, B. K. Patterson, et al. Patterns of known and novel small RNAs in human cervical cancer[J].Cancer Res, 2007, 67(13):6031-43.
    97. Lujambio, A., G. A. Calin, A. Villanueva, et al. A microRNA DNA methylation signature for human cancer metastasis[J].Proc Natl Acad Sci U S A, 2008, 105(36):13556-61.
    98. Lund, E. and J. E. Dahlberg. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs[J].Cold Spring Harb Symp Quant Biol, 2006, 71:59-66.
    99. Ma, E., I. J. MacRae, J. F. Kirsch, et al. Autoinhibition of human dicer by its internal helicase domain[J].J Mol Biol, 2008, 380(1):237-43.
    100.Mansfield, J. H., B. D. Harfe, R. Nissen, et al. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression[J].Nat Genet, 2004, 36(10):1079-83.
    101.Martello, G., L. Zacchigna, M. Inui, et al. MicroRNA control of Nodal signalling[J].Nature, 2007, 449(7159):183-8.
    102.Mathews, D. H., J. Sabina, M. Zuker, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure[J].J Mol Biol, 1999, 288(5):911-40.
    103.Melton, C., R. L. Judson and R. Blelloch. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells[J].Nature, 2010, 463(7281):621-6.
    104.Mendes, N. D., A. T. Freitas and M. F. Sagot. Current tools for the identification of miRNA genes and their targets[J].Nucleic Acids Res, 2009, 37(8):2419-33.
    105.Metzler, M., M. Wilda, K. Busch, et al. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma[J].Genes Chromosomes Cancer, 2004, 39(2):167-9.
    106.Millar, A. A. and P. M. Waterhouse. Plant and animal microRNAs: similarities and differences[J].Funct Integr Genomics, 2005, 5(3):129-35.
    107.Miranda, K. C., T. Huynh, Y. Tay, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes[J].Cell, 2006, 126(6):1203-17.
    108.Molnar, A., F. Schwach, D. J. Studholme, et al. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii[J].Nature, 2007, 447(7148):1126-9.
    109.Montgomery, M. K. and A. Fire. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression[J].Trends Genet, 1998, 14(7):255-8.
    110.Naguibneva, I., M. Ameyar-Zazoua, A. Polesskaya, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation[J].Nat Cell Biol, 2006, 8(3):278-84.
    111.Norden-Krichmar, T. M., J. Holtz, A. E. Pasquinelli, et al. Computational prediction and experimental validation of Ciona intestinalis microRNA genes[J].BMC Genomics, 2007, 8:445.
    112.O'Donnell, K. A., E. A. Wentzel, K. I. Zeller, et al. c-Myc-regulated microRNAs modulate E2F1 expression[J].Nature, 2005, 435(7043):839-43.
    113.Okamura, K., J. W. Hagen, H. Duan, et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila[J].Cell, 2007, 130(1):89-100.
    114.Okamura, K., M. D. Phillips, D. M. Tyler, et al. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution[J].Nat Struct Mol Biol, 2008, 15(4):354-63.
    115.Orom, U. A., F. C. Nielsen and A. H. Lund. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation[J].Mol Cell, 2008, 30(4):460-71.
    116.Palatnik, J. F., E. Allen, X. Wu, et al. Control of leaf morphogenesis by microRNAs[J].Nature, 2003, 425(6955):257-63.
    117.Perry, R. L. and M. A. Rudnick. Molecular mechanisms regulating myogenic determination and differentiation[J].Front Biosci, 2000, 5:D750-67.
    118.Pillai, R. S. MicroRNA function: multiple mechanisms for a tiny RNA?[J].Rna, 2005, 11(12):1753-61.
    119.Qiu, C. X., F. L. Xie, Y. Y. Zhu, et al. Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags[J].Gene, 2007, 395(1-2):49-61.
    120.Ramachandran, V. and X. Chen. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis[J].Science, 2008, 321(5895):1490-2.
    121.Rehmsmeier, M., P. Steffen, M. Hochsmann, et al. Fast and effective prediction of microRNA/target duplexes[J].Rna, 2004, 10(10):1507-17.
    122.Reinhart, B. J., F. J. Slack, M. Basson, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J].Nature, 2000, 403(6772):901-6.
    123.Reinhart, B. J., E. G. Weinstein, M. W. Rhoades, et al. MicroRNAs in plants[J].Genes Dev, 2002, 16(13):1616-26.
    124.Rhoades, M. W., B. J. Reinhart, L. P. Lim, et al. Prediction of plant microRNA targets[J].Cell, 2002, 110(4):513-20.
    125.Rodriguez, A., S. Griffiths-Jones, J. L. Ashurst, et al. Identification of mammalian microRNA host genes and transcription units[J].Genome Res, 2004, 14(10A):1902-10.
    126.Ru, P., L. Xu, H. Ma, et al. Plant fertility defects induced by the enhanced expression of microRNA167[J].Cell Res, 2006, 16(5):457-65.
    127.Ruby, J. G., C. Jan, C. Player, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans[J].Cell, 2006, 127(6):1193-207.
    128.Ruby, J. G., C. H. Jan and D. P. Bartel. Intronic microRNA precursors that bypass Drosha processing[J].Nature, 2007, 448(7149):83-6.
    129.Ruby, J. G., A. Stark, W. K. Johnston, et al. Evolution, biogenesis, expression, andtarget predictions of a substantially expanded set of Drosophila microRNAs[J].Genome Res, 2007, 17(12):1850-64.
    130.Saitou, N. and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J].Mol Biol Evol, 1987, 4(4):406-25.
    131.Schmittgen, T. D., J. Jiang, Q. Liu, et al. A high-throughput method to monitor the expression of microRNA precursors[J].Nucleic Acids Res, 2004, 32(4):e43.
    132.Schwarz, D. S., G. Hutvagner, T. Du, et al. Asymmetry in the assembly of the RNAi enzyme complex[J].Cell, 2003, 115(2):199-208.
    133.Selbach, M., B. Schwanhausser, N. Thierfelder, et al. Widespread changes in protein synthesis induced by microRNAs[J].Nature, 2008, 455(7209):58-63.
    134.Sharp, P. A. RNAi and double-strand RNA[J].Genes Dev, 1999, 13(2):139-41.
    135.Smalheiser, N. R. and V. I. Torvik. Mammalian microRNAs derived from genomic repeats[J].Trends Genet, 2005, 21(6):322-6.
    136.Sun, Q., Y. Zhang, G. Yang, et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation[J].Nucleic Acids Res, 2008, 36(8):2690-9.
    137.Sun, Y., S. Koo, N. White, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs[J].Nucleic Acids Res, 2004, 32(22):e188.
    138.Sunkar, R., T. Girke, P. K. Jain, et al. Cloning and characterization of microRNAs from rice[J].Plant Cell, 2005, 17(5):1397-411.
    139.Sunkar, R. and G. Jagadeeswaran. In silico identification of conserved microRNAs in large number of diverse plant species[J].BMC Plant Biol, 2008, 8:37.
    140.Sunkar, R. and J. K. Zhu. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J].Plant Cell, 2004, 16(8):2001-19.
    141.Takamizawa, J., H. Konishi, K. Yanagisawa, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival[J].Cancer Res, 2004, 64(11):3753-6.
    142.Tay, Y., J. Zhang, A. M. Thomson, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation[J].Nature, 2008, 455(7216):1124-8.
    143.Tay, Y. M., W. L. Tam, Y. S. Ang, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1[J].Stem Cells, 2008, 26(1):17-29.
    144.Thompson, J. D., D. G. Higgins and T. J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J].Nucleic Acids Res, 1994, 22(22):4673-80.
    145.Van Laere, A. S., M. Nguyen, M. Braunschweig, et al. A regulatory mutation in IGF2causes a major QTL effect on muscle growth in the pig[J].Nature, 2003, 425(6960):832-6.
    146.Vasudevan, S. and J. A. Steitz. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2[J].Cell, 2007, 128(6):1105-18.
    147.Vasudevan, S., Y. Tong and J. A. Steitz. Switching from repression to activation: microRNAs can up-regulate translation[J].Science, 2007, 318(5858):1931-4.
    148.Vasudevan, S., Y. Tong and J. A. Steitz. Cell-cycle control of microRNA-mediated translation regulation[J].Cell Cycle, 2008, 7(11):1545-9.
    149.Volinia, S., G. A. Calin, C. G. Liu, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J].Proc Natl Acad Sci U S A, 2006, 103(7):2257-61.
    150.Wang, J. F., H. Zhou, Y. Q. Chen, et al. Identification of 20 microRNAs from Oryza sativa[J].Nucleic Acids Res, 2004, 32(5):1688-95.
    151.Wang, J. W., L. J. Wang, Y. B. Mao, et al. Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis[J].Plant Cell, 2005, 17(8):2204-16.
    152.Wang, X., J. Zhang, F. Li, et al. MicroRNA identification based on sequence and structure alignment[J].Bioinformatics, 2005, 21(18):3610-4.
    153.Washietl, S., I. L. Hofacker, M. Lukasser, et al. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome[J].Nat Biotechnol, 2005, 23(11):1383-90.
    154.Washietl, S., I. L. Hofacker and P. F. Stadler. Fast and reliable prediction of noncoding RNAs[J].Proc Natl Acad Sci U S A, 2005, 102(7):2454-9.
    155.Weaver, D. B., J. M. Anzola, J. D. Evans, et al. Computational and transcriptional evidence for microRNAs in the honey bee genome[J].Genome Biol, 2007, 8(6):R97.
    156.Weber, M. J. New human and mouse microRNA genes found by homology search[J].Febs J, 2005, 272(1):59-73.
    157.Welch, C., Y. Chen and R. L. Stallings. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells[J].Oncogene, 2007, 26(34):5017-22.
    158.Wendt, A., V. F. Thompson and D. E. Goll. Interaction of calpastatin with calpain: a review[J].Biol Chem, 2004, 385(6):465-72.
    159.Wienholds, E., W. P. Kloosterman, E. Miska, et al. MicroRNA expression in zebrafish embryonic development[J].Science, 2005, 309(5732):310-1.
    160.Wightman, B., I. Ha and G. Ruvkun. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J].Cell, 1993, 75(5):855-62.
    161.Wu, L., J. Fan and J. G. Belasco. MicroRNAs direct rapid deadenylation of mRNA[J].ProcNatl Acad Sci U S A, 2006, 103(11):4034-9.
    162.Xie, X., J. Lu, E. J. Kulbokas, et al. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals[J].Nature, 2005, 434(7031):338-45.
    163.Xu, P., S. Y. Vernooy, M. Guo, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism[J].Curr Biol, 2003, 13(9):790-5.
    164.Xue, C., F. Li, T. He, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine[J].BMC Bioinformatics, 2005, 6:310.
    165.Yang, W., T. P. Chendrimada, Q. Wang, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases[J].Nat Struct Mol Biol, 2006, 13(1):13-21.
    166.Yao, Y., G. Guo, Z. Ni, et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.)[J].Genome Biol, 2007, 8(6):R96.
    167.Ye, W., Q. Lv, C. K. Wong, et al. The effect of central loops in miRNA:MRE duplexes on the efficiency of miRNA-mediated gene regulation[J].PLoS One, 2008, 3(3):e1719.
    168.Yekta, S., I. H. Shih and D. P. Bartel. MicroRNA-directed cleavage of HOXB8 mRNA[J].Science, 2004, 304(5670):594-6.
    169.Yi, R., Y. Qin, I. G. Macara, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J].Genes Dev, 2003, 17(24):3011-6.
    170.Yin, Z., C. Li, X. Han, et al. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum)[J].Gene, 2008, 414(1-2):60-6.
    171.Yousef, M., M. Nebozhyn, H. Shatkay, et al. Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier[J].Bioinformatics, 2006, 22(11):1325-34.
    172.Zamore, P. D., T. Tuschl, P. A. Sharp, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J].Cell, 2000, 101(1):25-33.
    173.Zeng, Y. and B. R. Cullen. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5[J].Nucleic Acids Res, 2004, 32(16):4776-85.
    174.Zhang, B., X. Pan and T. A. Anderson. Identification of 188 conserved maize microRNAs and their targets[J].FEBS Lett, 2006, 580(15):3753-62.
    175.Zhang, B., X. Pan, G. P. Cobb, et al. Plant microRNA: a small regulatory molecule with big impact[J].Dev Biol, 2006, 289(1):3-16.
    176.Zhang, B., X. Pan, G. P. Cobb, et al. microRNAs as oncogenes and tumor suppressors[J].Dev Biol, 2007, 302(1):1-12.
    177.Zhang, B. H., X. P. Pan, S. B. Cox, et al. Evidence that miRNAs are different from other RNAs[J].Cell Mol Life Sci, 2006, 63(2):246-54.
    178.Zhang, B. H., X. P. Pan, Q. L. Wang, et al. Identification and characterization of new plant microRNAs using EST analysis[J].Cell Res, 2005, 15(5):336-60.
    179.Zhang, H. and E. Stavnezer. Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3[J].J Biol Chem, 2009, 284(5):2867-79.
    180.Zhang, Y. miRU: an automated plant miRNA target prediction server[J].Nucleic Acids Res, 2005, 33(Web Server issue):W701-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700