辣椒Me3基因介导抗根结线虫WRKY基因CaRKNIF1的分离及其功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
WRKY转录因子广泛参与植物生长发育及对外界生物和非生物的胁迫应答,在植物抗病防卫反应中起着重要的调控作用。近来的研究表明,WRKY转录因子参与了植物与线虫互作应答反应,CaRKNIF1是Me3基因介导辣椒与根结线虫不亲和互作中表达的WRKY转录因子,深入研究CaRKNIF1基因的功能对于揭示Me3基因介导辣椒抗根结线虫的分子机理具有重要意义。本研究以含Me3基因的辣椒HDA149为材料分离得到了CaRKNIF1基因,并通过TRV载体诱导的基因沉默和农杆菌介导的异源超表达,对该基因的生物学功能进行了深入研究。主要结果如下:
     1.根据GenBank中已经公布的CaRKNIF1基因(DQ180384)序列信息,分离得到CaRKNIF1基因的全长。CaRKNIF1基因gDNA全长为2387 bp,由3个外显子和2个内含子组成;包含1,473 bp开放阅读框,编码490个氨基酸的蛋白,含有2个保守的WRKY结构域和2个C2H2型锌指结构,属于第Ⅰ组WRKY转录因子。CaRKNIF1基因能够表达出带有His-tag 58 kDa的融合蛋白;洋葱表皮瞬时表达证实CaRKNIF1基因的编码产物是作为核蛋白起转录调控作用的。
     2.CaRKNIF1基因的表达具有组织特异性,并且可被多种生物胁迫诱导。RT-qPCR分析发现,CaRKNIF1基因在辣椒HDA149中的表达具有组织特异性,根和叶中表达量较高,花和果中次之,茎中表达量最低;该基因可被根结线虫、青枯病菌、疫霉病菌和烟草花叶病毒等生物胁迫诱导,但表达模式存在差异,疫霉病菌和青枯病菌诱导表达峰出现较早(分别为3 h和6 h),其次是根结线虫(12 h),烟草花叶病毒诱导表达峰出现较晚(48 h)。该基因可能参与辣椒对病原线虫、细菌、真菌和病毒等的胁迫应答反应。
     3.构建了CaRKNIF1基因基于TRV的沉默载体,获得了CaRKNIF1基因沉默的辣椒HDA149植株。在CaRKNIF1基因的保守区和特异区设计了3个靶标片段,分别构建了该基因的TRV载体对CaRKNIF1基因进行表达沉默,结果发现TRV载体能够成功侵染辣椒植株并有效引起CaRKNIF1基因沉默,但该基因沉默并没有引起辣椒HDA149对南方根结线虫的抗性发生变化,推测该基因可能与WRKY转录因子家族的其他成员存在功能冗余或者VIGS不彻底而该基因极低转录本即能维持正常的功能。
     4.构建了CaRKNIF1基因的植物表达载体,通过农杆菌介导的植物转化方法获得了转基因番茄植株,抗性鉴定结果表明转基因植株对南方根结线虫的抗性和耐盐能力增强。利用pBI121和pCHF3两套载体系统分别构建了CaRKNIF1基因的植物表达载体,通过农杆菌介导的转化方法将CaRKNIF1基因导入番茄Moneymaker、Micro-tom和丽春的基因组中。PCR和Southern杂交结果表明,CaRKNIF1基因已成功整合到番茄基因组中;RT-qPCR分析发现CaRKNIF1基因在转基因植株中高量表达。抗性鉴定结果显示:超表达CaRKNIF1基因的番茄植株对南方根结线虫的抗性提高,且耐盐能力增强,表明该基因作为正调控因子参与植物对生物和非生物胁迫的应答。CaRKNIF1基因的超表达能够引起下游PR(PR1/PR2/PR5/NP24)基因的高量表达,推测转基因番茄植株的抗性提高可能与PR基因的组成型表达有关。
     5.构建了辣椒HDA149的BAC文库,PCR筛选得到了含有CaRKNIF1和CaMe基因的阳性BAC克隆。辣椒HDA149的BAC文库包含200,000个BAC克隆,平均插入片段大小为95 kb,覆盖辣椒基因组约7倍,预计从文库中筛选到单拷贝基因的机率为99.9%;利用特异引物PCR的方法,从文库中筛选得到了含CaRKNIF1和CaMe基因的阳性BAC克隆,为研究目标基因的结构与互作调控关系奠定了基础。
     综合上述研究结果,WRKY转录因子CaRKNIF1可能作为正调控因子参与了辣椒对生物和非生物胁迫应答反应,利用CaRKNIF1基因来改良辣椒的综合抗病性将是一种颇具潜力的分子育种途径;研究中构建的高质量的辣椒HDA149 BAC文库为辣椒重要基因的克隆和功能分析提供了技术平台,同时也为深入开展辣椒分子标记开发和物理图谱构建工作奠定了基础。
WRKY transcription factors involved in many plants processes including plant development, responses to biotic/abiotic stresses and play important roles in plant defense responses. Recently evidences indicated that WRKY transcription factors also involved in the plant responses to nematode. CaRKNIF1 was the specific expression WRKY transcription factor in the Me3-mediated incompatible interaction between root-knot nematode and pepper. So study the function of CaRKNIF1 gene may be important to reveal the molecular mechanism of Me3-mediated root-knot nematode resistance. In this paper, we isolated the CaRKNIF1 gene from pepper HDA149 which contains root-knot nematode resistant gene Me3 and studied its function by using TRV-based gene silencing and Agrobacterium- mediated heterologous overexpression. The main results were as follows:
     1. CaRKNIF1 gene was isolated based on the published sequence(DQ180384). The full length of CaRKNIF1 gDNA is 2387 bp with three exons and two introns. CaRKNIF1 contained an open reading frame of 1,473 bp encoding 490 amino acids. Its amino acids sequence contained two conserved WRKY domains and two C2H2 zinc-finger motifs, and belongs to the group I WRKY gene family. The recombinant CaRKNIF1 can expression a 58 kDa fusion protein with His-tag, and the CaRKNIF1 protein was localized in the nucleus of epidermal cells which confirmed by Agrobacterium-mediated transient expression.
     2. The RT-qPCR results showed that the expression of CaRKNIF1 gene was tissue-specific, with relative higher in roots and young leaves, next in flowers and fruits, and lower in stems. The CaRKNIF1 gene can be induced by M.incognita, R.solanacearum, P.capsici and TMV, but the expression patterns were different. P.capsici and R.solanacearum induced the CaRKNIF1 gene expression earlier (3 h and 6 h, respectively), followed by M.incognita (12 h), TMV induced expression peak appeared later (48 h). The results suggested that CaRKNIF1 gene involved in plant defense responses to different pathgens including nematodes, bacteria, fungi and viruses.
     3. The CaRKNIF1 gene silenced HDA149 plants were obtained by TRV-based gene silencing. The TRV vectors were constructed by using three target segments from conseved and specific regions of CaRKNIF1 gene respectively. The RT-PCR results showed that TRV vectors were successfully infected pepper plants and caused CaRKNIF1 gene silence effectively, but the resistance of pepper HDA149 to M.incognita did not change. These results indicated that functional redundancy may be existed between CaRKNIF1 gene and other WRKY transcription factors or VIGS were not thorough and the pepper HDA149 was able to maintain its resistance to M.incognita with low transcription of CaRKNIF1 gene.
     4. Plant expression vector of CaRKNIF1 gene were successfully constructed using pBI121 and pCHF3, and Kanamycin resistant tomato plants of Moneymaker, Micro-tom and Li Chun were obtained by Agrobacterium-mediated transformation. PCR and Southern blot analysis proved that CaRKNIF1 gene were successfully integrated into the genomes of the tomato plants. RT-qPCR results showed that the target gene was expressed in tomato plants. The transgenic tomato plants that overexpressing CaRKNIF1 gene displayed enhanced resistance to M.incognita and tolerance against salt. The results indicating that CaRKNIF1 gene may act as a positive regulator of plant responses to biotic and abiotic stresses. Overexpression of CaRKNIF1 gene activated the expression of the under-stream PR gene under normal growth conditions, suggesting that the increased resistance of transgenic tomato plants may be related to constitutive expression of PR (PR1/PR2/PR5/NP24) gene.
     5. The BAC library of pepper HDA149 was constructed which consisted of 200,000 clones with an average insert size of 95 kb, and the positive clones of CaRKNIF1 and CaMe gene were obtained by screening the BAC library. Based on the pepper haploid genome size of 2,702 Mb, the BAC library was estimated to contain approximately 7 genome equivalents and represent at least 99.9 % of the pepper genome. The results indicated that the library was highly reliable and laid good foundation for cloning important gene of pepper and studying their regulation.
     In conclusion, WRKY transcription factor CaRKNIF1 gene may act as a positive regulator of plant responses to biotic and abiotic stresses. It is a potential way to improve plant resistance to different stresses by expression of CaRNKIF1 gene. The high-quality pepper HDA149 BAC library provides a technology platform for cloning and function analysis of important gene, and laid good foundation for developing new molecular markers and physical mapping of pepper.
引文
1.陈凡国,姜涛,张学勇.BAC文库构建中的几个技术问题探讨.生物技术,2002,12(2):28-29.
    2.仇玉萍,荆邵娟,付坚,李璐,余迪求.13个水稻WRKY基因的克隆及其表达谱分析.科学通报,2004,49(18):1860-1869.
    3.黄三文,张宝玺,郭家珍,杨桂梅,朱德蔚.辣(甜)椒根结线虫的危害防治和抗病育种.园艺学报,2000, 27 (增刊) :515-521.
    4.李淑敏.辣椒WRKY转录因子基因CaRKNIF1的克隆及表达分析[硕士学位论文].北京:中国农业科学院,2008.
    5.刘维志,段玉玺.植物病原线虫学[M].北京:中国农业出版社,2000,213-281.
    6.茆振川,谢丙炎,杨宇红,冯东昕,冯兰香,杨之为.辣椒N基因介导抗根结线虫作用早期表达基因的SSH分析.园艺学报,2007a,34(3):629-636.
    7.茆振川,谢丙炎,杨宇红,冯东昕,冯兰香,杨之为.辣椒Me3基因介导抗根结线虫相关基因的SSH分析.园艺学报,2007 b,34(6):1453-1458.
    8. Alexandrova K S and Conger B V. Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci, 2002, 162 (2): 301-307.
    9. Alkharouf N W, Klink V P, Chouikha I B, Beard H S, MacDonald M H, Meyer S, et al. Timecourse microarray analyses reveals global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode). Planta, 2006, 224:838-52.
    10. Alvarez-Venegas R, Abdallat A A, Guo M, Alfano J R, Avramova Z. Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics, 2007, 2:106-113.
    11. Ammiraju J, Veremis J, Huang X, Roberts P, Kaloshian I. The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet, 2003, 106(3):478-484.
    12. Anthony F, Topart P, Martinez A, Silva M, Nicole M. Hypersensitive-Iike reaction conferred by the Mex-1 resistance gene against Meloidogyne exigua in coffee. Plant Pathol, 2005, 54:476-482.
    13. Arumuganthan K and Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 1991, 9:208-219.
    14. Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, et al. MAP kinase signalling cascadein Arabidopsis innate immunity. Nature, 2002, 415(6875): 977-983.
    15. Ay N, Irmler K, Fischer A Uhleman R, Reuter G, Humbeck K. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J, 2009, 58: 333-346.
    16. Azevedo C, Betsuyaku S, Peart J, Takahashi A, No?l L, Sadanandom A, et al. Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J, 2006, 25: 2007-2016.
    17. Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, et al. The Arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol, 2001, 126:643-655.
    18. Bar-Or C, Kapulnik Y and Koltai H. A broad characterization of the transcriptional profile of the compatible tomato response to the plant parasitic root knot nematode Meloidogyne javanica. Eur J Plant Pathol, 2005, 111:181-192.
    19. Bartley G E and Ishida B K. Development gene regulation during tomato fruit ripening and in vitro sepal orphogenesis. BMC Plant Biology, 2003, 3:1-11.
    20. Berthou F, Palloix, Mugniery D. Characterisation of virulence in populations of Meloidogyne chitwoodi and evidence for a resistance gene in pepper Capsicum annuum L line PM217. Nematology, 2003, 5:383-390.
    21. Birnbaum K, Shasha D E, Wang J Y, Jung J W, Lambert G M, Galbraith D W, et al. A gene expression map of the Arabidopsis root. Science, 2003, 302(5652): 1956-1960.
    22. Birren B, Green E D, Klapholz S, Myers R M, Riethman H, Roskams J. Bacterial Artificial Chromosomes. In Genome Analysis: A laboratory manual. Vol. 3 Cloning Systems. Edited by: Birren et al. Cold Spring Harbor Laboratory Press, 1997, pp 242-295.
    23. Bleve-Zacheo T, Bongiovanni M, Melillo M T, Castagnone-sereno P. The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Sci, 1998, 133: 79-90.
    24. Brenner D E, Lambert K N, Kaloshian I, Williamson V M. Characterization of LeMir, a Root-Knot Nematode-Induced Gene in Tomato with an Encoded Product Secreted from the Root. Plant Physiol, 1998, 118: 237-247.
    25. Brigneti G, Martin-Hernandez A M, Jin H L, Chen J, Baulcombe D C, Baker B et al. Virus-induced gene silencing in Solanum species. Plant J, 2004, 39(2): 264-271.
    26. Burch-Smith T M, Anderson J C, Martin G B, Dinesh-Kumar S P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J, 2004, 39:734-746.
    27. Burke D T, Carle G F, Olson M. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 1987, 236: 806-812
    28. Cai D G, Kleine M, Kifle S. Positional cloning of a gene for nematode resistance in sugar beet. Science.1997, 275: 832-834.
    29. Cai M, Qiu D Y, Yuan T, Ding X H, Li H J, Duan L, et al. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell Environ, 2008, 31:86-96.
    30. Cao H, Glazebrook J, Clarke J D, Volko S, Dong X N. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell, 1997, 88: 57-63.
    31. Cao H, Li X, Dong X. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci USA, 1998, 95:6531-6536.
    32. Castagnone-sereno P, Bongiovanni M, Palloix A, Dalmasso A. Selection for Meloidogyne incognita virulence against resistance genes from tomato and pepper and specificity of the virulence/resistance determinants. Euro J of plant pathol, 1996, 102: 585-590.
    33. Chalhoub B, Belcram H, Caboche M. Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotech J, 2004, 2:181-188.
    34. Chang I F, Curran A, Woolsey R, Quilici D, Cushman J C, Mittler R, et al. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics, 2009, 9: 2967-2985.
    35. Chen R G, Li H X, Zhang L, Zhang J H, Xiao J H, Ye Z B. A root-knot nematode resistance gene from hot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant Cell Rep, 2007, 26(7): 895-905.
    36. Chen F G, Zhang X Y, Xia G M, Jia J Z. Construction and characterization of a bacterial artificial chromosome library for Triticum boeoticum. Acta Bot sinica, 2002, 44: 451-456.
    37. Chen C H and Chen Z X. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol, 2002, 129:
    706-716.
    38. Cheong Y H, Chang H S, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress and hormonal responses in Arabidopsis. Plant Physiol, 2002, 129: 661-677.
    39. Chiasson D, Ekengren S K, Martin G B, Dobney S L, Snedden W A. Calmodulin–like proteins from Arabidopsis and tomato are involved in host defense against Pseudomonas syringae pv. Tomato. Plant Mol Biol, 2005, 58(6):887-897.
    40. Chisholm S T, Coaker G, Day B, Staskawicz B J. Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 2006, 124: 803-814.
    41. Choi S, Creelman R A, Mullet J E, Wing R A. Construction and characterization of bacterial artificial chromosome library of Arabidopsis thaliana. Plant Mol Biol Rep, 1995, 13: 124-128.
    42. Cohen S N, Chang A C Y, Boyer H W, Helling R B. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA, 1973, 70:3240-3244.
    43. Collins J and Hohn B. Cosmids: a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads. Proc Natl Acad Sci USA, 1978, 75 (9): 4242-4246.
    44. Daniel G P, Jeffrey P T, David A F, Rod A W, Andrew H P. Construction of Plant Bacterial Artificial Chromosome (BAC) Libraries: An Illustrated Guide. 2nd Edition, 2002.
    45. de Pater S, Greco V, Pham K, Memelink J, Kijne J. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res, 1996, 24(23): 4625-4632.
    46. Deslandes L, Olivier J, Peeters N, Feng D X, Khounlotham M, Boucher C, et al. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100:8024-8029.
    47. Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng D X, Bittner-Eddy P, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA, 2002, 99:2404-2409.
    48. Devaiah B N, Karthikeyan A S, Raghothama K G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis. Plant Physiol, 2007, 143:1789-1801.
    49. Di Vito M, Zaccheo G, Catalano F. Effect of temperature on stability of resistance to root-knot nematode(Meloidogyne spp.) IXth EUCARPIA Meeting on Genetics and Breeding of Capsicum&Eggplant. 1995-Budapest, Hungary, 1995, 230-232
    50. Djian-Caporalino C, Fazari A, Arguel M J, Vernie T, VandeCasteele C, Faure I, et al. Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper(Capsicum annuum L.) are clustered on the P9 chromosome. Theorl Appl Genet, 2007, 114: 473-486.
    51. Djian-Caporalino C, Pijarowshi L, Januael A. Spectrum of resistance to root not nematodes and inheritance of heat-stable resistance in (Capsicum annuuum L.). Theorl Appl Genet, 1999, 99:496-502.
    52. Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’Byrne C, et al. High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theor Appl Genet, 2001, 103:592-600.
    53. Dong J X, Chen C H, Chen Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003, 51(1): 21-37.
    54. Du L Q and Chen Z X. Identification of genes encoding receptor-like protein kinases as possible targets of pathogen-and salicylic acid-induced WRKY DNA-binding proteins inArabidopsis. Plant J, 2000, 24(6):837-847.
    55. Duan M R, Nan J, Liang Y H, Mao P, Lu L, Li L F, et al. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res, 2007, 35(4): 1145-1154.
    56. Durrant W E and Dong X. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42:185-209.
    57. Edwards K J, Thompson H, Edwards D, de Saizieu A, Sparks C, Thompson J A, et al. Construction and characterization of a yeast artificial chromosome library containing three haploid maize genome equivalents. Plant Mol Biol, 1992, 19:299-308.
    58. Ekengren S K, Liu Y, Schiff M, Dinesh-Kumar S P, Martin G B. Two MAPK cascades, NPR1 and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J, 2003, 36: 905-917.
    59. Emst K, Amar Z, Doris K. The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J, 2002, 31: 127-136.
    60. Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcriptional factors. Trends Plant Sci, 2000, 5(5): 199-206.
    61. Eulgem T, Rushton P J, Schmelzer E, Hahlbrock K, Somssich I E. Early nuclear events in plant defense signalling: rapid gene activation by WRKY transcription factors. EMBO J, 1999, 18(17): 4689-4699.
    62. Eulgem T. Regulation of the Arabidopsis defense transcriptome.Trends Plant Sci, 2005, 10: 71-78.
    63. Eulgem T and Somssich I E. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007, 10: 366-371.
    64. Frijters A C J, Zhang Z, van Damme M, Wang G, Ronald P C, Michelmore R W. Construction of a bacterial artificial chromosome library containing large EcoR I and Hind III genomic fragments of lettuce. Theor Appl Genet, 1997, 94: 390-39.
    65. Gao M, Li G, Yang B, McCombie W R, Quiros C F. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome, 2004, 47: 666-679.
    66. Gheysen G and Fenoll C. Gene expression in nematode feeding sites. Annu Rev Phytopathol, 2002,
    40:191-219.
    67. Grill E and Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet, 1991, 226:484-490.
    68. Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, et al. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiology, 2008, 148:358-368.
    69. Hamilton C M. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 1997, 200: 107-116.
    70. Hamilton C M, FraryA, Lewis C, Tanksley S D. Stable transfer of intact high molecular weight DNA into plant chromosomes. PNAS, 1996, 93(18): 9975-9979.
    71. Hara K, Yagi M, Kusano T, Sano H. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor on wounding. Mol Gen Genet, 2000, 263(1): 30-37.
    72. Hare W W. Inheritance of resistance to root-knot nematodes in pepper. Phytopathology, 1957, 47:455-459.
    73. Hendy H, Pochard E, Dalmasso A. Transmission hereditaire de 1a resistance aux nematode Meloidogyne Chitwood(Tylenchida)portee par 2 lignees de Capsicum annuum1:etude de descendances homozygotes issues d’androgenese. Agronomic, 1985, 5(2):93-100.
    74. Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics, 2008, 279:303-312.
    75. Huang T and Duman J G. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol, 2002, 48(4): 339-350.
    76. Hwang E W, Kim K A, Park S C, Jeong M J, Byun M O, Kwon H B. Expression profiles of hot pepper (Capsicum annuum L.) genes under cold stress conditions. J Biosciences, 2005, 30: 657-667.
    77. Ioannou P A, Amemiya C T, Garnes J, Kroisel P M, Shizuya H, Chen C, et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet, 1994, 6: 84-89.
    78. Ishida T, Hattori S, Okada K, Wada T. Role of TTG2 in genetic network of epidermal cell differentiation in Arabidopsis. Plant Cell Physiol, 2007, 48: S82-S82.
    79. Ishiguro S and Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recongnizes SP8 sequences in the 5’-upstream regions of genes coding for sporamin andβ-amylase from sweet potato. Mol Gen Genet, 1994, 244(6): 563-571.
    80. Jammes F, Lecomte P, Almeida-Engler J, Bitton F, Martin-Magniette M , Renou J P, et al. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J, 2005, 44: 447-458.
    81. Jiang Y Q and Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91-105.
    82. Jiang Y Q and Deyholos M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 2006, doi:10.1186/1471-2229-6-25.
    83. Jo Y D, Kim Y M ,Park M N ,Yoo J H, Park M K, Kim B D, et al. Development and evaluation of broadly applicable markers for Restorer-of-fertility in pepper. Mol Breeding, 2010, 25(2):187-201.
    84. Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 2002, 14: 1359-1375.
    85. Journot-Catalino N, Somssich I E, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell, 2006, 18:3289-3302.
    86. Kalde M, Barth M, Somssich I E, Lippok B. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol Plant Microbe In, 2003, 16(4): 295-305.
    87. Kang W H, Hoang N H, Yang H B, Kwon J K, Jo S H, Seo J K, et al. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet, 2010, 120: 1587-1596.
    88. Kasschau K D, Fahlgren N, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Carrington J C. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol, 2007, 5: e57.
    89. Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet J G, et al. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant Cell Physiol, 2007, 48(1):8-18.
    90. Kim C Y, Lee S H, Park H C, Bae C G, Cheong Y H, Choi Y J, et al. Identification of rice blast fungal elicitor-responsive genes by differential display analysis. Mol Plant Microbe In, 2000, 13(4): 470-474.
    91. Kim C Y and Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco.Plant J, 2004, 38: 142-151.
    92. Kim K C, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell, 2008, 20: 2357-2371.
    93. Kim U J, Birren B W, Slepak T, Mancino V, Boysen C, Kang H L, et al. Construction and Characterization of a Human Bacterial Artificial Chromosome Library. Genomics, 1996, 34: 213-218.
    94. Kim H J, Han J H, Kwon J K, Park M, Kim B D, Choi D. Fine mapping of pepper trichome locus 1 controlling trichome formation in pepper(Capsicum annuum L.) CM334. Theor Appl Genet, 2010,
    120: 1099-1106.
    95. Kim H J, Nahm S H, Lee H R, Yoon G B, Kim K T, Kang B C, et al. BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet, 2008, 118: 15-27.
    96. Kleine M, Michalek W, Graner A, Herrmann R G, Jung C. Construction of a barley (Hordeum vulgare L.)YAC library and isolation of a Hor1-specific clone. Mol Gen Genet, 1993, 240:265-272.
    97. Klink V P, Overall C C, Alkharouf N, MacDonald M H, Matthews B F. A time-course comparative microarray analysis of an incompatible and compatible disease response by soybean (Glycine max) to soybean cyst nematode (Heterodera glycines) infection. Planta, 2007, 226:1423-1447.
    98. Knoth C, Ringler J, Dangl J L, Eulgem T. ArabidopsisWRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe In, 2007, 20:120-128.
    99. Kortekamp A. Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiol Biochem, 2006, 44:58-67.
    100. Kurata N, Umehara Y, Tanoue H, Sasaki T. Physical mapping of the rice genome with YAC clones. Plant Mol Biol, 1997, 35(1-2): 101-113
    101. Kwon J K and Kim B D. Localization of 5S and 25S rRNA genes on somatic and meiotic chromosomes in Capsicum species of chili pepper. Mol Cells, 2009, 27: 205-209.
    102. Lagace M and Matton D P. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta, 2004, 219(1): 185-189.
    103. Lagudah E S, Moullet O, Appels R. Map based cloning of a gene sequence encoding a nucleotide binding domain and leucine rich region at the Cre3 nematode resistance locus of wheat. Genome, 1997, 40:659-665.
    104. Lambert K N, Feme B J, Nombela G, Brenner E D, Williamson V M. Identification of genes whose transcripts accumulate rapidly in tomato after root-knot nematode infection. Physiol Mol Plant Pathol, 1999, 55:341-348.
    105. Lee H R, Bae I H, Park S W, Kim H J, Min W K, Han J H, et al. Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells, 2009, 27: 21-37.
    106. Li J, Brader G, Palva E T. The WRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicy-late-mediated signals in plant defense. Plant Cell, 2004, 16(2): 319~33.
    107. Li S J, Fu Q T, Huang W D, Yu D Q. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep, 2009, 28(4):683-693.
    108. Li J, Brader G, Kariola T, Palva E T. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J, 2006, 46: 477-491.
    109. Liharska T B and Williamson V M. Resistance to root-knot nematode in tomato: towards the molecular cloning of the Mi-1 locus. In: Fenoll C, Ohl S, Grundler F (eds) Cellular and molecular basis for plant-nematode interactions. Kluwer Academic Publ, Dordrecht, The Netherlands, 1997, pp 191-200.
    110. Lippok B, Birkenbihl R P, Rivory G, Brummer J, Schmelzer E, Logemann E, et al. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements. Mol Plant Microbe In, 2007, 20:420-429.
    111. Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem, 1999, 262(2):247-57.
    112. Liu Y G, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, et a1. Complementation of plant mutant with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. PNAS, 1999, 96(11):6535-6540.
    113. Liu Y, Schiff M, Marathe R, Dinesh-Kumar S P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J, 2002, 30:415-429.
    114. Liu X Q, Bai X Q, Qian Q, Wang X H, Chen M S, Chu C C. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Res, 2005, 15:593-603.
    115. Liu Y L, Schiff M, and Dinesh-Kumar S P. Involvement of MEK1 MAPKK, NTF6MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J, 2004, 38:800-809.
    116. Livak K J and Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(t)) method. Methods, 2001, 4 : 402-408.
    117. Loake G and Grant M. Salicylic acid in plant defense: The players and protagonists. Curr Opin Plant Biol, 2007, 10: 466-472.
    118. Lu C, Tej S S, Luo S, Haudenschild C D, Meyers B C, Green P J. Elucidation of the small RNA component of the transcriptome. Science, 2005, 309: 1567-1569.
    119. Lu R, Martin-Hernandez A M, Peart J R, Malcuit I, Baulcombe D C. Virus-induced gene silencing in plants. Methods, 2003, 30: 296-303.
    120. Lu Z X, Reighard G L, Nyczepir A P, Beckman T G, Ramming D W. Inheritance of resistance to root-knot nematodes (Meloidogyne spp.) in Prunus rootstocks. Hort Science, 2000, 35(7):1344-l346.
    121. Luo M, Dennis E S, Berger F, Peacock W J, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005, 102(48): 1753-1756.
    122. Mao P, Duan M, Wei C, Li Y. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol, 2007, 48: 833-842.
    123. Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca A M, Cattivelli L. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol, 2004, 55(3): 399-416.
    124. Martin G, Ganal M W, Tanksley S D. Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci. Mol Gen Genet, 1992, 233:25-32.
    125. Mejia I F and Moanco A P. Retrofitting vectors for Escherichio coli based artificial chromosomes(PACs and MACs) with markers for transfection studies. Genome Res, 1997, 7:179-186.
    126. Menke F L H, Kang H G, Chen Z, Park J M, Kumar D, Klessig D F. Tobacco transription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant Microbe In, 2005, 18: 1027-1034.
    127. Miao Y, Laun T, Smykowski A, Zentgraf U. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol, 2007, 65: 63-76.
    128. Milligan S B, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson V M. The root knot nematode resistance gene Mi from tomato is a member of the Leucine Zipper, Nucleotide Binding, Leucine-rich repeat family of plant genes. Plant Cell, 1998, 10(8):1307-1319.
    129. Mur L A J, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol, 2006, 140: 249-262.
    130. Murray N E and Murray K. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments. Nature, 1974, 251 (5475): 476-481.
    131. Nemoto T, Okada A, Okada K, Shibuya N, Toyomasu T, Nojiri H, Yamane H. Promoter analysis of the rice stemar-13-ene synthase gene OsDTC2, which is involved in the biosynthesis of the phytoalexin oryzalexin S. Bba-Gene Struct Expr, 2007, 1769:678-683.
    132. Noe J P and Sasser J N. Evaluation of Paecilomyes lilacinus as an agent for redcing yield losses due to Meloidogyne incognita.. Biocontrol, 1995, 1:57-67.
    133. Oh S K, Baek K H, Park J M, Yi S Y, Yu S H, Kamoun S, Choi D. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol, 2008, 177: 977-989.
    134. Osoegawa K, Woon P Y, Zhao B H, Frengen E, Tateno M, Catanese J J, et al. An improved approach for construction of bacterial artificial chromosome libraries. Genomics, 1998, 52:1-8.
    135. Osoegawa K, Mammoser A G, Wu C Y, Frengen E, Zeng C J, Catanese J J,et al. A Bacterial Artificial Chromosome Library for Sequencing the Complete Human Genome. Genome Res, 2001, 11 (3):483-496.
    136. Pandey S P, Shahi P, Gase K, Baldwin I T. Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci USA, 2008, 105: 4559-4564.
    137. Pandey S P and Somssich I E. The role of WRKY transcription factors in plant immunity. Plant Physiol, 2009, 150: 1648-1655.
    138. Panstruga R, Parker J E, Schulze-Lefert P. SnapShot: Plant immune response pathways. Cell, 2009, 136: 978.e1-3.
    139. Park C Y, Lee J H, Yoo J H, Moon B C, Choi M S, Kang Y H, et al. WRKY group IId transcription factors interact with calmodulin. FEBS Lett, 2005, 579:1545-1550.
    140. Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, et al. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plan J, 2002, 31(3): 319-330.
    141. Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23: 80-92.
    142. Puthoff D P, Nettleton D, Rodermel S R, Baum T J. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J, 2003, 33:911-921.
    143. Qiu F, Jin D M, Fu J M, Zhang C L, Xie W W, Yang R C, et al. Construction and characterization of a bacterial artificial chromosome library of thermo-sensitive genie male-sterile rice 5460S. Science in China (Series C: Life Sciences), 1999, 42 (6): 599-606.
    144. Qiu J L, Fiil B K, Petersen K, Nielsen H B, Botanga C J, Thorgrimsen S, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J, 2008, 27: 2214-2221.
    145. Qiu Y P and Yu D Q. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot, 2009, 65:35-47.
    146. Qiu, D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao C L, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe In, 2007, 20: 492-499.
    147. Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008, 49: 865-879.
    148. Robatzek S and Somssich I E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J, 2001, 18:123-133.
    149. Robatzek S and Somssich I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev, 2002, 16(9):1139-1149.
    150. Ruffel S, Caranta C, Palloix A V, Lefebvre M, Caboche, Bendahmane A. Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library. Gene, 2004, 338:209-216.
    151. Rushton P J, Macdonald H, Huttly A K, Lazarus C M, Hooley R. Members of a new family of DNA-binding proteins bind to a conserved cis element in the promoters ofα-Amy2 genes. Plant Mol Biol, 1995, 29(4): 691-702.
    152. Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich I E. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J, 1996, 15(20): 5690-5700.
    153. Rushton P J, Somssich I E, Ringler P, Shen Q X J. WRKY transcription factor.Trends in Plant Sci, 2010, 15(5):247-258.
    154. Ryu H S, Han M, Lee S K, Cho J I, Ryoo N, Heu S, et al. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response. Plant Cell Rep, 2006, 25: 836-847.
    155. Sanchez-Ballesta M T, Lluch Y, Gosalbes M J, Zacarias L, Granell A, Lafuente M T. A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta, 2003, 218: 65-70.
    156. Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, et al. Functional annotation of a full-length Arabidopsis cDNA collection. Science, 2002, 296:141-145.
    157. Shah N H, Khan M I, Azam M F. Studies on the individual and concomitant effect of Aspergilus niger, Rhizoctonia solani and Meloidogyne javanica on plant growth and nematode reproduction on chilli(Capsicum annuum L.). Annals of Plant Protection Sci, 1993, 1(2):75-78.
    158. Shen Q H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 2007, 315:1098-1103.
    159. Shimono M, Sugano S, Nakayama A, Jiang C J, Ono K, Toki S, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell, 2007, 19: 2064-2076.
    160. Shizuya H, Birren B, Kim U J, Mancino V, Slepak T, Tachiiri Y, Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA, 1992, 89: 8794-8797.
    161. Skibbe M, Qu N, Galis I, Baldwin I T. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell, 2008, 20: 1984-2000.
    162. Soler M, Serra O, Molinas M, Huguet G,Fluch S, Figueras M. A genomic approach to suberin biosynthesis and cork differentiation. Plant Physiol, 2007, 144(1):419-431.
    163. Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 2003, 15(9): 2076-2092.
    164. Tai T and Staskawicz B J. Construction of a yeast artificial chromosome library of pepper (Capsicum annuum L.) and identification of clones from the Bs2 resistance locus.Theor Appl Genet, 2000, 100:112-117.
    165. Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Yamaguchi-Shinozaki K, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J, 2002, 29:417-426.
    166. Tao Z, Liu H B, Qiu D Y, Zhou Y, Li X H, Xu C G, et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol, 2009, 151:936-948.
    167. Thibaud-Nissen F, Wu H, Richmond T, Redman J C, Johnson C, Green R, et al. Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J, 2006, 47: 152-162
    168. Tomita R J, Murai Y, Miura H, Ishihara S, Liu Y, Kubotera Y, et al. Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Theor Appl Genet, 2008, 117:1107-1118.
    169. Tsumoto K, Ejima D, Kumagai I, Arakawa T. Practical considerations in refolding proteins from inclusion bodies. Protein Expression Purif, 2003, 28:1-8.
    170. Turck F, Zhou A, Somssich I E. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defense-related gene PcPR1-1 in parsley. Plant Cell, 2004, 16(10): 2573-2585.
    171. Ulker B and Somssich I E. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol, 2004, 7(5): 491-498.
    172. van der Graaff E, Hooykaas P J J, Keller B. Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J, 2002, 32:819-830.
    173. Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136:669-687.
    174. Vossen E A G, Voort J, Kanyuka K. Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J, 2000, 23:567-576
    175. Wang C, Ulloa M, Roberts P A. A transgressive segregation factor(RKN2)in Gossypium barbadense for nematode resistance clusters with gene rkn1 in G. hirsutum. Mol genetics and genomics, 2008, 279(1):41-52.
    176. Wang C, Ulloa M, Roberts P A. Identification and mapping of microsatellite markers linked to a root-knot nematode resistence gene(rkn1)in AcalaNemX cotton(Gossypium hirsutum L). Theor Appl Genet, 2006, 112:770-777.
    177. Wang D, Amornsiripanitch N, Dong X . A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens, 2006, 2: e123
    178. Wang Z, Zhu Y, Wang L L , Liu X, Liu Y X, Phillips J, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta, 2009, 230, 1155-1166.
    179. Wang Z P, Yang P Z, Fan B F, Chen Z X. An oligo selection procedure for identification of sequence-specific DNA-binding activities associated with plant defense. Plant J, 1998, 16(4): 515-522.
    180. Wang H H, Hao J J, Chen X J, Hao Z N, Wang X, Lou Y G, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol, 2007, 65:799-815.
    181. Wei W, Zhang Y X, Han L, Guan Z Q, Chai T Y. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep, 2008, 27:795-803.
    182. Wiermer M, Palma K, Zhang Y L, Li X. Should I stay or should I go? Nucleocytoplasmic trafficking in plant innate immunity. Cell Microbiol, 2007: 9:1880-1890.
    183. Wildermuth M C, Dewdney J, Wu G, Ausubel F M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001, 414: 562-565.
    184. Williamson V M. Plant Nematode resistance genes. Curr opinion in Plant Biol, 1999, (2):327-331.
    185. Wu K L, Guo Z J, Wang H H, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res, 2005, 12(1): 9-26.
    186. Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28:21-30.
    187. Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol, 2005, 137(1): 176-189.
    188. Xie Z, Zhang Z L, Zou X L, Yang G X, Komatsu S, Shen Q X J. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J, 2006, 46:231-242.
    189. Xu X P, Chen C H, Fan B F, Chen Z X. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 2006, 18:1310-1326.
    190. Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol, 2004, 135:507-515.
    191. Yaghoobi J, Kaloshian I, Wen Y, Williamson V M. Mapping a new nematode resistance locus in lycopersicon peruvianum. Theor Appl Genet, 1995, 91(3):457-464.
    192. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, et al. Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell, 2005, 17(3): 944-956.
    193. Yang H B, Liu W Y, Kang W H, Jahn M, Kang B C. Development of SNP markers linked to the L locus in Capsicum spp. by a comparative genetic analysis. Mol Breeding, 2009, 24(4):433-446.
    194. Yang P, Wang Z, Fan B, Chen Z. A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of tobacco class I chitinase gene promoter. Plant J, 1999, 18(2): 141-149.
    195. Yoda H, Ogawa M, Yamaguchi Y, Koizumi N, Kusano T, Sano H. Identification of early responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol Genet Genomics, 2002, 267(2):154-161.
    196. Yoo E Y, Kim S, Kim J Y, Kim B D. Construction and characterization of a bacterial artificial chromosome library from chili pepper. Mol Cells, 2001, 12:117-120.
    197. Yoo E Y, Kim S, Kim Y H, Lee C J, Kim B D. Construction of a deep coverage BAC library from Capsicum annuum,‘CM334’.Theor Appl Genet, 2003, 107:540-543.
    198. Yu D Q, Chen C H, Chen Z X. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 2001, 13(7): 1527-1540.
    199. Zhang Y and Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol, 2005, 5(1):1-12.
    200. Zhang Y L, Tessaro M J, Lassner M, Li X. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 2003, 15:2647-2653.
    201. Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot, 2008, 102:509-519.
    202. Zhang J, Peng Y, Guo Z. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res, 2008, 18:508-521.
    203. Zhang Z L, Xie Z, Zou X L, Casaretto J, Ho T H D, Shen Q X J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134:1500-1513.
    204. Zheng Z Y, Abu Qamar S, Chen Z X, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J, 2006, 48:592-605.
    205. Zheng Z Y, Mosher S L, Fan B F, Klessig D F, Chen Z X. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol, 2007, 7:2 doi:10.1186/1471-2229-7-2
    206. Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J, 2008, 6:486-503.
    207. Zhou X, Wang G, Sutoh K, Zhu J K, Zhang W. Identification of cold inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta.(BBA)-Gene Regulatory Mechanisms, 2008, 1779: 780-788.
    208. Zou, X L, Seemann J R, Neuman D, Shen Q X J. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem, 2004, 279: 55770-55779.
    209. Zuckerman B M, Dicklow M B, Acosta N. A strain of Bacillus thuringiensis for the control of plant-parasitic nematodes.Biocontrol Sci technol, 1993, 3(1):41-46.
    210. Zuckerman B M, Matheny M, Acosta N. Control of plant-parasitic nematodes by a nematicidal strain of Aspergilus niger. J of Chem Ecology, 1994, 20:33-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700