异基因造血干细胞移植后供体嵌合率检测方法的建立以及免疫细胞供体嵌合率的动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的及意义异基因造血干细胞移植(allo-SCT)是目前能够根治多种造血系统良恶性疾病及部分实体瘤的重要及有效的手段之一。然而,移植后的并发症复发排斥及移植物抗宿主病(GVHD)都极大地影响了移植的临床治疗效果。有研究发现精确动态监测移植后患者的供者细胞嵌合率(DC)可以早期预测GVHD或排斥复发,所以移植后检测DC对于判断移植物状态及决定下一步治疗方案非常重要。嵌合率的检测经典方法有:(1)血型;(2)红细胞同工酶;(3)性染色体核型分析;(4)HLA抗原;(5)限制性长度多态性;(6)可变串联重复序列VNTR;(7)微卫星重复序列STR等。大部分病例可用上述方法得到客观的植入证明,但都存在其固有缺点。本研究的第一部分通过实时定量PCR(RQ-PCR)技术对供受者差异单核苷酸多态性(SNP)位点进行检测,建立了一种目前国内未曾报道的定量检测嵌合体的方法,以达到经济、简便、精确的目的;第二部分重点分析了移植后早期(+7d、+14d)CD4+T细胞、自然杀伤(NK)细胞以及T调节细胞(Treg cell)供者嵌合率与临床结局关系,尤其是+7d嵌合率,希望在患者达到完全嵌合(CC)或在出现临床早期事件之前找到一些预测指标,来指导预后、提前干预。
     第一部分SNP-PCR定量检测异基因移植后嵌合率方法的建立
     方法1.收集2007年4月至2009年12月长海医院65例行异基因移植的移植前供受者及移植后患者+7d、+14d、+21d、+30d、+60d、+90d、+6m、+1年、+2年等的EDTA抗凝外周血或骨髓标本共650份;2.按试剂盒盐析法或采用DNAzol或Chelex-100试剂提取基因组DNA,分光光度计测取DNA纯度,-20℃冻存备用;3.选取了9条不同染色体上共18个SNP位点作为备选差异SNP位点,通过定量PCR筛选出供受差异SNP位点;4.RQ-PCR扩增筛选出的供受差异SNP位点,基因GAPDH校正误差,5个浓度梯度GAPDH质粒建立标准曲线,最后通过公式计算出供者嵌合率(DC);5.通过对已知嵌合比例的模拟嵌合标本进行嵌合率检测,以及同时进行XY-FISH、STR-PCR及特殊融合基因检测来验证方法的准确性及敏感度;6.统计学处理:利用SPSS11.0软件进行统计学分析,数据以均数±标准差表示,相关性检验用直线回归分析,批间差及批内差采用单样本t检验,检验水准α=0.05。
     结果1.标准品扩增的17次标准曲线,平均斜率为-3.39(-3.22~3.65),平均截距为39.97(37.33~43.19),相关系数均大于0.995, RQ-PCR反应体系的扩增效率接近理想水平,实验结果可信;批间差为1.1%,批内差为0.50%,均在可控范围;2.内参GAPDH及各SNP位点所构建的质粒扩增效率基本一致,所以最后仅利用内参一条标准曲线来计算两者的拷贝数;3.95.4%移植前供受者经定量PCR反应后均能找到相互差异的位点。其中阳性率较高的位点有S2、S7b、S10b、Sgst等;4.与模拟混合嵌合相关系数在0.99以上,可重复敏感度可达0.01%,与FISH、STR-PCR结果相比,差异均没有统计学意义,并且与特定白血病融合基因结果比较,供者型100%CC标本,融合基因结果均为0%,相反MC标本,融合基因均为阳性,且同一患者供者细胞的比例越少,融合基因的表达率越高。
     第二部分异基因移植后早期(+7d、+14d)免疫细胞供者嵌合率的预后意义
     方法1.收集的标本同前,收集此65名移植患者的一般信息,包括性别、年龄、疾病种类、疾病状态、移植前化疗次数、移植物来源、HLA配型、预处理强度、血型、外周血植入速度、移植后并发症、结局、存活时间;提取基因组DNA(方法同第一部分),-20℃冻存备用;2.采用SNP-PCR方法(同第一部分)对650份标本进行嵌合率检测,分析+7d、+14d嵌合率与移植并发症及结局的关系;3.收集2008年7月至2009年9月长海医院32例异基因移植后+14d、+30d、+60d、+90d、+6m、+1年等的EDTA抗凝骨髓标本共150份,收集患者的一般信息(具体内容同上);4.免疫磁珠法分选CD3+、CD56+、CD4+CD25+细胞亚群,提取基因组DNA,-20℃冻存备用;3. SNP-PCR对标本行嵌合率检测(方法同第一部分),分析+14d各细胞亚群的嵌合率与移植并发症及结局的关系;5.采用SPSS11.0统计分析软件包进行数据的统计分析,数据以均数±标准差表示,两组计数资料用Fish精确概率法分析,计量资料采取t检验,生存分析采用Kaplan-Meier方法,检验水准α=0.05。
     结果1.无论清髓性还是减低剂量移植,患者均能很好耐受,在65例患者中,2例未植入,2例移植物被排斥,余均顺利植入;2.中性粒细胞平均恢复时间(NRT)以及血小板平均恢复时间(PRT)分别为14天及16天;NRT(PRT)>14天患者的+7d平均嵌合率要低于NRT(PRT)<14d患者,分别是69.6%vs 77.3%以及69.5%vs 78.4%,但差异没有统计学意义(P>0.05);+7天嵌合率<65%组与>65%组的平均白细胞、血红蛋白以及血小板计数均没有显著差别,分别是0.38±0.75 vs 0.33±0.65×109/L(P=0.819),83.6±11.8 vs 77.4±17.8g/l(P=0.207)以及22.9±26.9 vs 25.5±37.6x 109/L(]P=0.801),+7d嵌合率水平与外周血象的高低无直接联系;3.在65例患者中,13例复发,复发患者的+7d及+14d平均嵌合率均明显低于非复发患者,分别为51.86%vs 83.02%及82.89%vs 95.37%(P<0.01);共24例患者发生GVHD,包括14例aGVHD及13例cGVHD(10例局限型和3例广泛型),ⅡtoⅣ级aGVHD共有8例;4.随着+7d嵌合率逐渐增加,复发率逐渐降低(P=0.0001)、GVHD发生率逐渐升高(P=0.001),髓外复发差异不明显;+7d嵌合率<65%组的复发或排斥率显著高于>65%组,为68.8%vs 8.7%(P=0.0001);+7d嵌合率>85%组GVHD(包括总GVHD及cGVHD)的发生率明显高于<85%组,为46.43% vs 9.52%(P<0.01), aGVHD在两组之间的差异无统计学意义(P=0.091);5.随着+14d嵌合率水平的逐渐增加,复发率亦逐渐降低(P=0.002),而GVHD发生率上升趋势不明显(P>0.05);但进一步将嵌合率按85%及95%分组后,>85%组复发率显著降低(P<0.01),>95%组总GVHD及cGVHD的发生率明显升高(P<0.01);6.共有21名患者在随访的两年半中死亡,24个月总体生存率(OS)为56%,+7d嵌合率在65-85%的这组患者OS明显高于<65%及>85%组,分别是82.6%vs.47.0%(P=0.04),我们将其定义为+7d的“最佳生存区间”。+14d嵌合率85-95%的区间并没有得到同样的结论(P>0.05)。7.+7d嵌合率在65-85%之间与区间之外的患者相比,疾病类型、移植前化疗次数、疾病状态、移植物类型、年龄、HLA配型、血型、干细胞来源均没有显著差别(P>0.05)。8.32例患者T、NK细胞亚群均分选成功,纯度在75-95%之间;在32例拟分选CD4+CD25+细胞亚群的患者中,2例无差异位点,2例未采集标本,3例分选失败,最后成功的有25例,成功率89.3%,纯度在70-80%之间;9.+14d T细胞嵌合率<80%易于复发,40%vs 4.5%(P=0.024),但其比例与GVHD的发生尚无统计学联系;+14d NK细胞的嵌合率与复发及GVHD的发生关系并不密切(P>0.05);10.+14dCD4+CD25+嵌合率的比例与排斥复发及GVHD的关系无统计学意义(P>0.05),但其与+14d CD4+T细胞嵌合率的差值是否大于零与GVHD的发生有密切联系,如果+14dCD4+CD25+嵌合率高于CD4+T细胞,则不易发生GVHD,反之则GVHD发生明显升高GVHD发生率分别是6.7%vs 50%(P=0.014)。
     结论1.SNP-PCR方法检测嵌合率方便、准确、可靠,95.4%移植前供受者经定量PCR反应后均能找到相互差异的位点,适宜在中国人群推广应用;与模拟混合嵌合相关系数在0.99以上,可重复敏感度可达0.01%,与FISH、STR-PCR结果相比,差异均没有统计学意义,与特殊融合基因结果相符;
     2.NRT>14天患者的+7d平均嵌合率要低于NRT<14d患者,但差异没有统计学意义,PRT同样如此;+7天嵌合率<65%组与>65%组的平均白细胞、血红蛋白以及血小板计数均没有显著差别;+7d供体嵌合率水平与外周血象的高低无直接联系;
     3.在较强预处理作用下,移植后+7d平均嵌合率即达到76.36%,+14d达到CC的患者>50%,植入速度明显快于报道的非清髓移植(NST);供体T细胞植入相对缓慢,明显慢于NK细胞;
     4.随着+7d及+14d嵌合率增加,复发率逐渐降低、GVHD发生率逐渐升高;+7d嵌合率<65%组复发或排斥率显著高于>65%组;>85%组GVHD发生率明显高于<85%组;将+14d嵌合率按85%及95%分组后,>85%组复发率显著降低,>95%组总GVHD及cGVHD的发生率明显升高;+7d嵌合率<65%及+14d<85%可以作为排斥或复发的预警标志,+7d嵌合率>85%及+14d>95%可以作为GVHD发生的预警标志;
     5.+14d T细胞嵌合率<80%易于复发(P=0.024),但其比例与GVHD的发生尚无统计学联系;+14d NK细胞的嵌合率与复发及GVHD的发生关系并不密切;
     6.可以采用磁珠分选的方法分选CD4+CD25+细胞亚群,分选成功率在90%左右,+14d CD4+CD25+嵌合率高于CD4+T细胞,则不易发生GVHD,反之则GVHD发生明显升高,可以作为+14d达到高比例嵌合患者的补充预警标志;
     7.本组移植患者24个月OS为56%,+7d嵌合率在65-85%的这组患者OS明显高于<65%及>85%组,定义为+7d的“最佳生存区间”,我们认为+7d嵌合率在65-85%之间是指导长期生存的又一重要指标。
Allogeneic stem cell transplantation(allo-SCT) remains an important therapeutic modality for many patients with hematological malignancies and some benign hematological disorders and solid tumors, at the same time, it is also one of the most effective curative method. The major obstacles for achieving long term disease-free survival after allo-SCT are the severe complications graft-verse-host-disease(GVHD) and relapse. Several previous works suggest that an accurate quantitative analysis of chimerism kinetics would permit early detection of patients with a high risk of GVHD or those liable to relapse. So Detection of mixed chimerism(MC) is pre-requisite in order to assess the graft status and decide later therapeutic strategy. The classical methods of chimeric detection includes:(1) red cell phenotypes; (2) RBC isozyme;(3) karyotype; (4)HLA antigens; (5) Restriction fragment length polymorphism(RFLP); (6) variable number tandem repeats(VNTR); (7) Short tandem repeats(STR),et al. Most cases can get the proof of implantation using methods above, but they do have their own inherent drawbacks. We established a new chimerism detection method in China based on real-time quantitative PCR(RQ-PCR) detecting single nucleotide polymorphism(SNP) locis in the first part of our study, trying to make it more economical, simple and accurate and applying more useful prognosis markers; the second part we study the relationship between early chimerism(+7d、+14d) of the CD4+T cell、NK cell and Treg cell subtype and the clinical outcomes, especially the chimerism on day 7. We tried to find some new valuable prognosis markers before reaching complete chimerism(CC) and early events after SCT.
     Part One:the establish of the chimerism detection method based on RQ-PCR detecting SNP locis after allo-SCT.
     Motheds:1.650 Peripheral blood or/and bone marrow samples from 65 patients were collected from the donor and recipient before SCT and from the recipient at different intervals after SCT(+7d、+14d、+21d、+30d、+60d、+90d、+6m、+1y、+2y).2.Genomic DNA was extracted using a salting-out method or by DNAzol or Chelex-100 resin. The concentration and purity of DNA were measured by optical density at 260nm and 280nm with a spectrophotometer and preservated at -20℃; 3.18 SNP locis from 9 different chromosomes were selected, donor and recipient samples before SCT were then screened for informative SNP loci using RQ-PCR method (Taqman probe).4. Gene glyceraldehyde-3-phosphate-dehydrogenase(GAPDH) was amplified simultaneously as an internal control for normalizing input DNA. A standard amplification curve was generated from serial dilutions of the GAPDH plasmids; SNP-PCR was performed in an ABi 7500 real-time PCR device on the informative SNP loci and the chimerism were analyzed by the formula. 5. Known artificial serial dilutions (100%~0.01%) of host cells diluted in donor cells were quantified to assess the accuracy and sensitivity of the method. And conventional STR-PCR, FISH assays and special fusion genes detected by the RQ-PCR method were used to validate the SNP-PCR results.6. Statistical analysis:SPSS 11.0 package was used and a p value of 0.05 was considered significant. Results were denoted with mean±standardized deviate and linear regression analysis for the related test, single sample t test for the intra-and interassay variability.
     Results:1. The average slope of the 17 times amplification of the GAPDH plasmid was-3.39 and the average intercept was 39.97, correlation coefficients were all more than 0.995, which was close to the desired level. The intra-and interassay variability was 0.50% and 1.1 %, respectively, which were both in control; 2. The amplification efficiency of GAPDH is almost the same as that of the 18 selected SNP locis, so one standard curve is sufficient for quantification of both the SNP loci and the internal control; 3. Over 95.4% can find informative markers in 65 donor/recipient pairs; The S1b, S2, S7b and Sgst SNP loci were most informative in our cases.4. The linear correlation with artificial mixed chimerism is >0.99 and a sensitivity of 0.01%; these values have proven to be reproducible; Comparisons with STR-PCR and FISH had no statistical significance(P>0.05); the quantitative results of special fusion gene transcripts of complete chimerism samples were negative, and positive in mixed chimerism samples.
     Part Two:Prognosis values of the immune cell subsets'early chimerism(day 7 and 14) after allo-SCT.
     Motheds:1. A total of 650 peripheral blood (PB) or/and bone marrow (BM) samples were collected from donors and recipients before SCT and from recipients at different intervals after SCT(+7d、+14d、+21d、+30d、+60d、+90d、+6m、+1y、+2y, et al). General information were collected, including sex, age, disease category, the number of chemotherapy treatments before SCT, disease stage (CR1/CP1 or not) at SCT, stem cell source, HLA typing, type of regime, ABO type, implantation rate of PB cell, complication, outcome and survival time. DNA were extracted with the mothed in the first part; 2. Chimerism of the 650 samples were detected with the SNP-PCR method descriped in the first part and relationships between outcome after allo-SCT and day 7,14 chimerism level were analyzed.3. A total of 150 bone marrow (BM) samples were collected from recipients at different intervals after SCT(+14d、+30d、+60d、+90d、+6m、+1y, et al). General information was collected(which was the same as part one).4. CD3+、CD56+、CD4+CD25+ cell subsets were achieved through MACS sorting, DNA were extracted with the mothed in the first part; 5. Chimerism of the sorted samples were detected with the SNP-PCR method and relationships between outcome after allo-SCT and day 14 chimerism level were analyzed.6. Statistical analysis:SPSS 11.0 package was used and a p value of 0.05 was considered significant. Results were denoted with mean±standardized deviate; Fisher's exact analysis for count data, t test for measurement data, Kaplan-Meier method for survival analysis.
     Results:1. Both RIC and standard regimes were well tolerated. Only 2 patients failed to undergo engraftment and 2 rejected their grafts; all the others achieved engraftment successfully.2. The median periods required for recovery of absolute neutrophil(NRT) and platelet count(PRT) were 14 and 16 days, respectively. Patients whose NRT(PRT) were<14d had higher day 7 chimerism than those with NRT(PRT)>14d, but the difference is not statistically significant,77.3% vs 69.6% and 78.4% vs 69.5%(P>0.05). Counts of white blood cells, hemoglobin and platelets in PB on day 7 were similar in patients whose chimerism was less than and greater than 65%, which were 0.38±0.75 vs 0.33±0.65×109/L(P=0.819), 83.6±11.8 vs 77.4±17.8 g/l(P=0.207) and 22.9±26.9 vs 25.5±37.6×109/L (P=0.801) respectively(P>0.05), the level of chimerism on day 7 had no direct relationship with the count of peripheral blood.3. Of the 65 patients in the study,13 experienced leukemia relapse. The media chimerism level on day 7 and day 14 of relapse patients were much lower than non-relapse patients,51.86% vs 83.02% and 82.89% vs 95.37%(P<0.01); 24 developed varying degrees of GVHD,14 aGVHD and 13 cGVHD (10 localized and 3 extensive). Grades II to IV aGVHD were seen in 8 patients; 4. With increasing chimerism on day 7, the probability of developing GVHD increased(P=0.001) and repalse rate decreased (P=0.0001), the incidence of extramedullary relapse was not significantly different; Day 7 chimerism <65% was strongly associated with increased risk of relapse or rejection (68.8% vs 8.7%,P=0.0001) and>85% was distinctly associated with increased risk of both whole GVHD (aGVHD+cGVHD) and cGVHD(46.43% vs 9.52%, P<0.01), no significant difference was found in the incidence of aGVHD(P=0.091); 5. With increasing chimerism on day 14, repalse rate decreased (P=0.002), but the probability of developing GVHD not increased significantly(P>0.05); When we further devided the day 14 chimerism by 85% and 95%, relapse rate obviously increased in the<85% group(P<0.01), whole GVHD and CGVHD appeared more in the>95% patients(P<0.01).6.21 of the 65 patients in the study died during the two and a half years of follow-up, the 24-month probability of OS for the entire group was 56%. OS of the group whose day 7 chimerism were between 65-85%(which we called "optimal survival chimerism level" on day 7) was significantly higher than that of the other group, with the 24-month probabilities of OS 82.6% vs.47.0%(P=0.04). However, similar results were not reached considering the golden survival chimerism space 85-95% for day 14 samples (P>0.05).7. Disease category, the number of chemotherapy treatments before SCT, disease stage (CR1 or not) at SCT, type of donor, age, HLA typing, ABO type, and stem cell source showed no statistically significant differences between patients whose day 7 chimerism was 65-85% and those out of this region.8.32 cases all got successful T, NK cell sorting with the purity of 75-95%; There were 32 cases ready to sorting CD4+CD25+ cell.2 didn't have the informative SNP loci; we didn't acquire samples from 2 patients and 3 failed to get successful cell sorting, finally 25 cases got cell sorted with the purity 70-80%; 9. Day 14 T cell chimerism<80% had the tendency to relapse(40% vs 4.5%, P=0.024), but had no significant relationship with developing GVHD(P>0.05), neither for the NK cell.10. Day 14 chimerism of the CD4+CD25+ cell subset had no significant relationship with relapse and GVHD, but the margin between CD4+T and CD4+CD25+ cell do have close relationship, which means if the chimerism of day 14 CD4+CD25+ is higher than CD4+ T cell, the incidence of GVHD reduced, or reverse, the incidence of GVHD was 6.7% vs 50%(P=0.014).
     Conclusion:
     1. SNP-PCR method detecting chimerism after SCT is easy, accurate and reliable; Over 95.4% can find informative markers in 65 donor/recipient pairs, this system is suitable for popularization and application in Chinese people; the linear correlation with artificial mixed chimerism is>0.99 and a sensitivity of 0.01% and proved to be reproducible; Comparisons with STR-PCR and FISH had no statistical significance(P>0.05); and the results were consistent with the quantitative results of special fusion gene transcripts in AL patients.
     2. Patients whose NRT(PRT) were<14d had higher day 7 chimerism than those with NRT(PRT)>14d, but the difference was not statistically significant (P>0.05). Counts of white blood cells, hemoglobin and platelets in PB on day 7 were similar in patients whose chimerism was less than and greater than 65%, respectively(P>0.05), the level of chimerism on day 7 had no direct relationship with the count of peripheral blood;
     3. Under strong conditioning regimen, the median chimerism level on day 7 could reach 76.36%, and over 50% patients acquired CC on day 14, the implant rate was significant faster than the non-myeloablative stem cell transplantation(NST) reported; the implantation rate of donor T cells was significantly slower than NK cells;
     4. With increased chimerism on day 7, the probability of developing GVHD increased and repalse rate decreased; Day 7 chimerism<65% was strongly associated with increased risk of relapse or rejection and>85% was distinctly associated with increased risk of both whole GVHD(aGVHD+cGVHD) and cGVHD; When we devided day 14 chimerism by 85% and 95%, relapse rate obviously increased in the<85% group, whole GVHD and cGVHD appeared more in the>95% patients;
     Day 7 chimerism<65% and day 14 chimerism<85% can be used as rejection or recurrence early-warning markers; Day 7 chimerism>85% and day 14 chimerism>95% can be applied as GVHD early-warning markers;
     5. Day 14 T cell chimerism<80% had the tendency to relapse(P=0.024), but had no significant relationship with GVHD, neither for the NK cell;
     6. We can use magnetic beads to sort CD4+CD25+ cell subsets, about 90% achieved successful cell sorting; if the chimerism level of day 14 CD4+CD25+ cell is higher than CD4+ T cell, the incidence of GVHD reduced, or reverse. It can be used as an additional prognostic marker for patients who achieved high level chimerism on day 14;
     7.24-month probability of OS of patients in our study was 56%. OS of the group whose day 7 chimerism were between 65-85%(which we called "optimal survival chimerism leve"on day 7) was significantly higher than those out of the region. We believe that day 7 chimerism between 65% and 85% is an important indicator for the long-term survival.
引文
[1]Thomas ED. Bone marrow transplantation:a review. Semin Hematol,1999,36(4 Suppl 7):95-103.
    [2]Michallet AS, Furst S, Le QH, Dubois V, Praire A, Nicolini F, Thomas X, Rafii H, Gebuhrer L, Michallet M. Impact of chimerism analysis and kinetics on allogenenic haematopoietic stem cell transplantation outcome after conventional and reduced-intensity conditioning regimens. Br J Haematol,2005,128(5):676-89.
    [3]汪宇春,刘霆。造血干细胞移植后植入证据检测方法的研究现状。中国输血杂志,2003,16(1):54-57。
    [4]王建增,王健民.可变数串联重复序列检测异基因外周血造血干细胞移植后植活证据的研究.中华医学杂志,2000,80(11):823-825.
    [5]Dubovsky J,Daxberger H,Fritsch G, Printz D, Peters C, Matthes S, Gadner, H & Lion, T. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematol ogic disorders:implications for timely detection of engraftment,graft failure and rejection. Leukemia,1999,13(12):2060-2069.
    [6]Lee KH, Lee JH, Choi SJ, Lee JH, Kim S, Seol M, Lee YS, Kim WK, Kwon MR, Choi SJ, Park CJ, Chi HS, Lee JS. Monthly prospective analysis of hematopoietic chimerism after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant,2003,32(4):423-431.
    [7]F Baron and BM Sandmaier. Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Leukemia,2006,20(10),1690-1700.
    [8]Femandez-Aviles F, Urbano-Ispizua A, Aymerich M, Colomer D, Rovira M, Martinez C, Nadal E, Talarn C, Carreras E and Montserrat E et al. Serial quantification of lymphoid and myeloid mixed chimerism using multiplex PCR amplification of short tandem repeat-markers perdicts graft rejection and relapse, respectively, after allogeneic transplantation of CD34+ selected cells from peripheral blood. Leukemia, 2003;17(3):613-620.
    [9]Gyger M, Baron C, Forest L, Lussier P, Lagace F, Bissonnette I, Belanger R, Bonny Y, Busque L, Roy DC, Perreault C. Quantitative assessment of hematopoietic chimerism after allogeneic bone marrow transplantation has predictive value for the occurrence of irreversible graft failure and graft-vs-host disease. Exp Hematol,1998,26(5):426-434.
    [10]李大启,王椿,秦尤文,张帆,谢匡成等,异基因外周血干细胞移植后淋巴细胞和粒细胞嵌合体的动态改变。临床血液学杂志,2005,18(2):67-70.
    [11]R Childs, E Clave, N Contentin, D Jayasekera, N Hensel, S Leitman, EJ Read, C Carter, E Bahceci, NS Young, and AJ Barrett. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation:full donor T-cell Chimerism precedes alloimmune response. Blood,1999,94(9):3234-3241.
    [12]Ramirez M, Diaz MA, Garcia-Sanchez F, Velasco M, Casado F, Villa M, Vicario JL, Madero L. Chimerism after allogeneic hematopoietic cell transplantation in childhood acute lymphoblastic leukemia. Bone Marrow Transplant,1996,18(6):1161-1165.
    [13]Bader P, Beck J, Frey A, Schlegel PG, Hebarth H, Handgretinger R, Einsele H, Niemeyer C, Benda N, Faul C, Kanz L, Niethammer D, Klingebiel T. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR inpatient with acute leukemias allow sthep rediction of relapse after allogeneic BMT. Bone Marrow Transplant,1998,21(5):487-495.
    [14]Bader P, Holle W, Klingebiel T, Handgretinger R, Benda N, Schlegelp G, Niethammer D, Beck J. Mixed hematopoietic chimerism after allogeneic bone marrow transplantation:the impact of quantitative PCR analysis for prediction relapse and graft rejection in children. Bone Marrow Transplant,1997,19(7): 697-702.
    [15]Baron F, Baker JE, Storb R, Gooley TA, Sandmaier B, Maris M, Maloney DG, Heimfeld S, Oparin D, Zellmer E, Radich JP, Grumet FC, Blume KG, Chauncey TR, and Little MT. Kinetics of engraftment in patients with hematological malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood,2004,104(8):2254-62.
    [1]Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant,2004,34(1):1-12.
    [2]Michallet AS, Furst S, Le QH, Dubois V, Praire A, Nicolini F, Thomas X, Rafii H, Gebuhrer L, Michallet M. Impact of chimaerism analysis and kinetics on allogenenic haematopoietic stem cell transplantation outcome after conventional and reduced-intensity conditioning regimens. Br J Haematol, 2005,128(5):676-689.
    [3]Chakraborty R, Stivers DN, Su B, Zhong YX, Budowle B. The utility of short tandem repeat loci beyond human identification:Implications for development of new DNA typing systems. Electrophoresis,1999,20(8):1682-2696.
    [4]Wiegand P, Meyer E, Brinkmann B. Microsatellite structures in the context of human evolution. Electrophoresis,2000,21(5):889-9.
    [5]Aerssens J, Armstrong M, Gilissen R, Cohen N. The human genome:an introduction. The Oncologist, 2001,6(1):100-109.
    [6]Jameskent W, Hdusselr D. Assembly of the working draft of the human genome with gigassembler. Genome Research,2001,11(10):1541-1458.
    [7]Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany Q Cazzaniga G, Cayuela JM, Cave H, Pane F, Aert JL, Micheli DD, Thirion X, Pradel V, Gonzalez M, Viehmann S, Malec M, Saglio G and van Dongen JJ. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-A Europe Against Cancer Program. Leukemia,2003,17(12):2318-2357.
    [8]Martinelli QTrabetti E,Zaccaria A, Farabegoli P, Buzzi M, Testoni N, Calori E, Bandini G, Rosti G, Belardinelli A, Pignatti PF. In vitro amplification of Hypervariable DNA regions for the evaluation of chimerism after allogenetic BMT. Bone Marrow Transplant,1993,12(2):115-120.
    [9]Bader P, Holle W, Klingebiel T, Handgretinger R, Benda N, Schlegelp G, Niethammer D, Beck J. Mixed hematopoietic chimerism after allogeneic bone marrow transplantation:the impact of quantitative PCR analysis for prediction relapse and graft rejection in children. Bone Marrow Transplant, 1997,19(7):697-702.
    [10]汪宇春,刘霆.造血干细胞移植后植入证据检测方法的研究现状.中国输血杂志,2003,16:54-57.
    [11]F Baron and BM Sandmaier. Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Leukemia,2006,20(10),1690-1700.
    [12]Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, Lamy T, Le Prise PY, Beauplet A, Bories D, Semana G, Quelvennec E.Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood,2002,99(12): 4618-4625.
    [13]Koldehoff M, Steckel NK, Hlinka M, Beelen DW, Elmaagacli AH.Quantitative analysis of chimerism after allogeneic stem cell transplantation by real-time polymerase chain reaction with single nucleotide poly-morphisms,standard tandem repeats,and Y-chromosome-specific sequences. American Journal of Hematology,2006,81(10):735-746.
    [14]Bai L, Deng YM, Dodds AJ, Milliken S, Moore J, Ma DD. A SYBR green-based real-time PCR method for detection of haemopoietic chimerism in allogeneic haemopoietic stem cell transplant recipients. Eur J Haematol,2006,77(5):425-431.
    [15]Masmas TN, Madsen HO, Petersen SL, Ryder LP, Svejgaard A, Alizadeh M, Vindetφv LL. Evaluation and automation of hematopoietic chimerism analysis based on real-time quantitative polymerase chain reaction. Biol Blood Marrow Transplant,2005,11(7):558-66.
    [16]Olivier M, Chuang LM, Chang MS, Chen YT, Pei D, Ranade K, de Witte A, Allen J, Tran N, Curb D, Pratt R, Neefs H, de Arruda Indig M, Law S, Neri B, Wang L and Cox DR. High throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Res,2002,30(12):53.
    [17]Maas F, Schaap N, Kolen S, Zoetbrood A, Buno I, Dolstra, H, de Witte T, Schattenberg A and van de Wiel-van Kemenade E. Quantification of donor and recipient hemopoietic cells by real-time PCR of single nucleotide polymorphisms. Leukemia,2003,17(3):630-633.
    [18]Gineikiene E, Stoskus M, Griskevicius L.Single nucleotide polymorphism-based system improves the applicability of quantitative PCR for chimerism monitoring. J Mol Diagn,2009,11(1):66-74.
    [1]Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant,2004,34(1):1-12.
    [2]Slavin S, Nagler A, Naparstek E, Kapelushnik Y, Aker M, Cividalli G, Varadi G, Kirschbaum M, Ackerstein A, Samuel S, Amar A, Brautbar C, Ben-Tal O, Eldor A, Or R. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood,1998, 91(3):756-768.
    [3]Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, Ruggeri L, Barbabietola G, Aristei C, Latini P, Reisner Y, Martelli ME, Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med,1998,339(17): 1186-1193.
    [4]Locatelli F, Rocha V, Chastang C, Arcese W, Michel G, Abecasis M, Messina C, Ortega J, Badell-Serra I, Plouvier E, Souillet G, Jouet JP, Pasquini R, Ferreira E, Gamier F, Gluckman E. Factors associated with outcome after cord blood transplantation in children with acute leukemia. Eurocord-Cord Blood transplant Group. Blood,1999,93(11):3662-3671.
    [5]Marmont AM, Horowitz MM, Gale RP, Sobocinski K, Ash RC, van Bekkum DW, Champlin RE, Dicke KA, Goldman JM, Good RA, Herzig RH, Hong R, Masaoka T, Rimm AA, Ringdh O, Speck B, Weiner RS, and Bortin MM. T cell depletion of HLA-identical transplants in leukemia. Blood,1991, 78(8):2120-2130.
    [6]Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S, Read EJ, Carter C, Bahceci E, Young NS, Barrett AJ. Engraftment kinetics after nonmyeloablative allo-geneic peripheral blood stem cell transplantation:full donor T cell chimerism precedes allo-inunune responses. Blood,1999,94(9): 3234-3241.
    [7]Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S, Gadner H, Lion T, Muller-Berat N. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders:implications for timely detection of engraftment, graft failure and rejection.Leukemia,1999,13(12):2060-2069.
    [8]Lee KH, Lee JH, Choi SJ, Lee JH, Kim S, Seol M, Lee YS, Kim WK, Kwon MR, Choi SJ, Park CJ, Chi HS, Lee JS. Monthly prospective analysis of hematopoietic chimerism after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant,2003,32(4):423-431.
    [9]Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S, Gadner H, Lion T, Muller-Berat N. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders:implications for timely detection of engrafinent, graft failure and rejection. Leukemia,1999,13(12):2059-2069.
    [10]Baron F, Baker JE, Storb R, Gooley TA, Sandmaier BM, Maris MB, Maloney DG, Heimfeld S, Oparin D, Zellmer E, Radich JP, Grumet FC, Blume KG, Chauncey TR, Little MT. Kinetics of engraftment in patients with hematological malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood,2004,15;104(8):2254-62.
    [11]Gao HY,Feng K,Chen H. Guoji Yizhi yu Xueye Jinghua Zazhi,2006,7(4):24-27.
    [12]Taylor PA, LeesC J, BlazarB R. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft versus host disease lethality. Blood,2002,99(10):3493-3499.
    [13]Bader P, Kreyenberg H, Hoelle W, Dueckers G, Handgretinger R, Lang P, Kremens B, Dilloo D, Sykora KW, Schrappe M, Niemeyer C, Von Stackelberg A, Gruhn B, Henze G, Greil J, Niethammer D, Dietz K, Beck JF, Klingebiel T. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem—cell transp lantation:possible role for preemptive immunotherapy? J Clin Oncol,2004,22(9):1696-1705.
    [14]Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transp lantation:new variations on an old theme. Bone Marrow Transplant,2004,34(1):1-12.
    [15]Ramirez M, Diaz MA, Garcia-Sanchez F, Velasco M, Casado F, Villa M, Vicario JL, Madero L. Chimerism after allogeneic hematopoietic cell transplantation in childhood acute lymphoblastic leukemia.Bone Marrow Transplant,1996,18(6):1161-1165.
    [16]Bader P, Beck J, Frey A, Schlegel PG, Hebarth H, Handgretinger R, Einsele H, Niemeyer C, Benda N, Faul C, Kanz L, Niethammer D, Klingebiel T. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR inpatient with acute leukemias allow sthep rediction of relapse after allogeneic BMT. Bone Marrow Transplant,1998,21(5):487-495.
    [17]Bader P, Holle W, Klingebiel T, Handgretinger R, Benda N, Schlegelp G, Niethammer D, Beck J. Mixed hematopoietic chimerism after allogeneic bone marrow transplantation:the impact of quantitative PCR analysis for prediction relapse and graft rejection in children. Bone Marrow Transplant, 1997,19(7):697-702.
    [18]Huisman C, de Weger RA, de Vries L, Tilanus MG, Verdonck LF. Chimerism analysis within 6 months of allogeneic stem cell transplantation predicts relapse in acute myeloid leukemia. Bone Marrow Transplantation,2007,39(5):285-291.
    [19]Moscardo F, Sanz J, Senent L, Cantero S, de la Rubia J, Montesinos P, Planelles D, Lorenzo I, Cervera J, Palau J, Sanz MA, Sanz GF. Impact of hematopoietic chimerism at day+14 on engraftment after unrelated donor umbilical cord blood transplantation for hematologic malignancies. Haematologica,2009,94(6):827-32.
    [20]Sufliarska S, Minarik G, Horakova J, Bodova I, Bojtarova E, Czako B, Mistrik M, Drgona L, Demitrovicova M, Lakota J, Krivosikova M, Kovacs L. Establishing the method of chimerism monitoring after allogeneic stem cell transplantation using multiplex polymerase chain reaction amplification of short tandem repeat markers and Amelogenin. Neoplasma,2007,54(5):424-30.
    [21]Baron F, Petersdorf EW, Gooley T, Sandmaier BM, Malkki M, Chauncey TR, Maloney DG, Storb R. What is the role for donor natural killer cells after nonmyeloablative conditioning? Biol Blood Marrow Transplant,2009,15(5):580-8.
    [22]Bornhauser M, Thiede C, Platzbecker U, Jenke A, Helwig A, Plettig R, Freiberg-Richter J, Rollig C, Geissler G, Lutterbeck K, Oelschlagel U, Ehninger G Dose-reduced conditioning and allogeneic hematopoieticstem cell transplantation from unrelated donors in 42 pts. Clin Cancer Res,2001,7(8): 2254-2262.
    [23]Choi SJ, Lee KH, Lee JH, Kim S, Chung HJ, Lee JS, Kim SH, Park CJ, Chi HS, Kim WK. Prognostic value of hematopoietic chimaerism in patients with-acute leukemia after allogeneic bone marrow transplantation:a prospective study. Bone Marrow Transplant,2000,26(3):327-332.
    [24]Mattsson J, Uzunel M, Tammik L, Aschan J, Ringden O. Leukemia lincage-specific chimerism analysis is a sensitive predictor of relapse in patients with acute myeloid leukemia and myelodysplastic syndrome after allogeneic stem cell transplantation. Leukemial,2001,15(12):1976-1985.
    [25]Perez-Simon JA, Caballero D, Diez-Campelo M, Lopez-Perez R, Mateos G, Canizo C, Vazquez L, Vidriales B, Mateos MV, Gonzalez M, San Miguel JF. Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC)allogeneic transplantation. Leukemia,2002,16(8): 1423-1431.
    [26]van Besien K, Dew A, Lin S, Joseph L, Godley LA, Larson RA, Odenike T, Rich E, Stock W, Wickrema A, Artz AS. Patterns and kinetics of T-cell chimerism after allo transplant with alemtuzumab-based conditioning:mixed chimerism protects from GVHD, but does not portend disease recurrence. Leuk Lymphoma,2009,50(11):1809-17.
    [27]Mossallam GI, Kamel AM, Storer B, Martin PJ. Prognostic Utility of Routine Chimerism Testing at 2 to 6 Months after Allogeneic Hematopoietic Cell Transplantation Biol Blood Marrow Transplant, 2009,15(3):352-9.
    [28]Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S, Read EJ, Carter C, Bahceci E, Young NS, Barrett AJ. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation:full donor T-cell chimerism precedes alloimmune responses. Blood,1999,94(9): 3234-41. [29]Saito B, Fukuda T, Yokoyama H, Kurosawa S, Takahashi T, Fuji S, Takahashi N, Tajima K, Kim SW, Mori S, Tanosaki R, Takaue Y, Heike Y. Impact of T Cell Chimerism on Clinical Outcome in 117 Patients Who Underwent Allogeneic Stem Cell Transplantation with a Busulfan-Containing Reduced-Intensity Conditioning Regimen. Biol Blood Marrow Transplant.2008,14(10):1148-55.
    [30]van Besien K, Dew A, Lin S, Joseph L, Godley LA, Larson RA, Odenike T, Rich E, Stock W, Wickrema A, Artz AS. Patterns and kinetics of T-cell chimerism after allo transplant with alemtuzumab-based conditioning:mixed chimerism protects from GVHD, but does not portend disease recurrence. Leuk Lymphoma,2009,50(11):1809-17.
    [31]Shevach EM. Certified professionals:CD4+CD25+ suppressor T cells. J Exp Med,2001,193(11): 412-46.
    [32]Taylor PA, Lees CJ, Blazar BR.The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-verwus-host disease lethality. Blood,2002,99(10):3493-9.
    [33]Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, Negrin RS, Fathman CG, Strober S. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood,2005,105(5):2220-2226.
    [34]Clark FJ, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M, Begum G, Mahendra P, Craddock C, Moss P, Chakraverty R. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25hi regulatory T cells. Blood,2004,103(6):2410-2416.
    [35]Stanzani M, Martins SL, Saliba RM, St John LS, Bryan S, Couriel D, McMannis J, Champlin RE, Molldrem JJ, Komanduri KV. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identical stem cell transplantation in humans. Blood,2004,103(3):1140-1146.
    [36]Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol,2003,4(4):330-6.
    [1]Thomas ED. Bone marrow transplantation:a review. Semin Hematol,1999,36(4 Suppl 7):95-103.
    [2]Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S, Gadner H, Lion T, Muller-Berat N. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders:implications for timely detection of engrafment, graft failure and rejection. Leukemia,1999,13(12):2059-2069.
    [3]Michallet AS, Furst S, Le QH, Dubois V, Praire A, Nicolini F, Thomas X, Rafii H, Gebuhrer L, Michallet M. Impact of chimaerism analysis and kinetics on allogenenic haematopoietic stem cell transplantation outcome after conventional and reduced-intensity conditioning regimens.Br J Haematol, 2005,128(5):676-689.
    [4]Beck O, Seidl C, Lehrnbecher T, Kreyenberg H, Schwabe D, Klingebiel T, Seifried E, Bader P, Koehl U. Quantification of chimerism within peripheral blood, bone marrow and purified leukocyte subsets:comparison of singleplex and multiplex PCR amplification of shorttandem repeat (STR) loci. Eur J Haematol 2006:76(3):237-244
    [5]Yoshimi A, Niemeyer CM, Bohmer V, Duffner U, Strahm B, Kreyenberg H, Dilloo D, Zintl F, Claviez A, Wossmann W, Kremens B, Holter W, Niethammer D, Beck JF, Kontny U, Nollke P, Klingebiel T, Bader P. Chimaerism analyses and subsequent immunological intervention after stem cell transplantation in patients with juvenile myelomonocytic leukaemia. Br J Haematol.2005,129(4):542-9.
    [6]夏文杰,付涌水,叶欣,丁浩强,许茹,张祥忠,罗广平,汪传喜,邓晶,陈扬凯.PCR-STR用于异基因造血干细胞移植后的骨髓和外周血嵌合状态的监测及作用。中国输血杂志2008,21(6):424-427。
    [7]李大启,王椿,秦尤文,张帆,谢匡成,颜式可,金力,赵寿元。异基因外周血干细胞移植后淋巴细胞和粒细胞嵌合体的动态改变临床血液学杂志,2005,18(2):67-70。
    [8]Endler G, Greinix H, Winkler K, Mitterbauer G, Mannhalter C. Genetic fingerprinting in mouthwashes of patients after allogeneic bone marrow transplantation. Bone Marrow Transplant,1999, 24(1):95-98
    [9]汪宇春,刘霆。造血干细胞移植后植入证据检测方法的研究现状。中国输血杂志,2003,16:54-57。
    [10]Minden M D, M essner HA, Belch A. Origin of leukemic relapse after bone marrow transplantation detected by restriction fragment length polymorphism. J Clin Invest,1985,75(1); 91-93.
    [11]Blazar BR, Orr HT, Arthur DC, Kersey JH, Filipovich AH. Restriction fragment length polymorphisms as markers of engraftment in allogeneic marrow transDlantation. Blood,1985, 66(6):1436-1444.
    [12]Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S, Gadner H, Lion T, Muller-Berat N. Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders:implications for timely detection of engraftment, graft failure and rejection. Leukemia,1999,13(12):2060-2069.
    [13]刘变铃,曹履先。可变串联重复区多聚酶链反应法评估异基因骨髓移植后的嵌合状态。中华血液学杂志,1996,17(7):357-359.
    [14]Schichman SA, Suess P, Vertino AM, Gray PS. Comparison of short tandem repeat and variable number tandem repeat genetic markers for quantitative determination of allogeneic bone marrow transplant engraftment. Bone Marrow Transplantat,2002,29(3):243-248.
    [15]Van-Deerli VM, Leonard DG Bone marrow engraftment analysis after allogenic bone marrow transplantation. Clin Lab Med,2000,20(1):197-225.
    [16]Aerssens J, Armstrong M, Gilissen R, Cohen N. The human genome:an introduction. The Oncolog ist,2001,6(1):100-109.
    [17]Kent WJ, Haussler D. Assembly of the working draft of the human genome with gigassembler. Genome Research,2001,11(9):1541-154.
    [18]Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, Lamy T, Le Prise PY, Beauplet A, Bories D, Semana G, Quelvennec E.Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood,2002,99(12): 4618-4625.
    [19]Koldehoff M, Steckel NK, Hlinka M, Beelen DW, Elmaagacli AH. Quantitative analysis of chimerism after allogeneic stem cell transplantation by real-time polymerase chain reaction with single nucleotide poly-morphisms,standard tandem repeats,and Y-chromosome-specific sequences. American Journal of Hematology,2006,81(10):735-746.
    [20]Bai L, Deng YM, Dodds AJ, Milliken S, Moore J, Ma DD. A SYBR green-based real-time PCR method for detection of haemopoietic chimerism in allogeneic haemopoietic stem cell transplant recipients. Eur J Haematol,2006,77(5):425-431.
    [21]Fredriksson M, Barbany G, Liljedahl U, Hermanson M, Kataja M, Syvanen AC. Assessing hematopoietic chimerism after allogeneic stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles. Leukemia,2004,18(2):255-266.
    [22]McCann SR, Crampe M, Molloy K, Lawler M. Hemopoietic chimerism following stem cell transplantation. Transfus Apher Sci.2005,32(1):55-61. [23]Gyger M, Baron C, Forest L, Lussier P, Lagac6 F, Bissonnette I, Belanger R, Bonny Y, Busque L, Roy DC, Perreault C. Quantitative assessment of hematopoietic chimerism after allogeneic bone marrow transplantation has predictive value for the occurrence of irreversible graft failure and graft-vs-host disease. Exp Hematol,1998,26(5):426-434.
    [24]李大启,王椿,秦尤文,张帆,谢匡成等.异基因外周血干细胞移植后淋巴细胞和粒细胞嵌合体的动态改变。临床血液学杂志,2005,18(2):67-70.
    [25]Mattsson J, Uzunel M, Brune M, Hentschke P, Barkholt L, Stierner U, Aschan J, Ringden O. Mixed chimaerism is common at time of acute graft-versus-host disease and disease response in patients receiving non-myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol,2001, 115(4):935-944.
    [26]朱尊民,Anthony P Schwarerl, Miroslai Kapuscinski等,非清髓性造血干细胞移植及嵌合体检 测.医药论坛杂志,2005,26(14):1-2。
    [27]Baron F, Baker JE, Storb R, Gooley TA, Sandmaier BM, Maris MB, Maloney DG, Heimfeld S, Oparin D, Zellmer E, Radich JP, Grumet FC, Blume KG, Chauncey TR, Little MT. Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood 2004;104(8):2254-2262.
    [28]Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S, Read EJ, Carter C, Bahceci E, Young NS, Barrett AJ. Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation:full donor T-cell Chimerism precedes alloimmune response. Blood,1999, 94(9):3234-3241.
    [29]Ramirez M, Diaz MA, Garcia-Sanchez F, Velasco M, Casado F, Villa M, Vicario JL, Madero L. Chimerism after allogeneic hematopoietic cell transplantation in childhood acute lymphoblastic leukemia.Bone Marrow Transplant.1996,18(6):1161-1165.
    [30]Bader P, Beck J, Frey A, Schlegel PG, Hebarth H, Handgretinger R, Einsele H, Niemeyer C, Benda N, Faul C, Kanz L, Niethammer D, Klingebiel T. Serial and quantitative analysis of mixed hematopoietic chimerism by PCR inpatient with acute leukemias allow sthep rediction of relapse after allogeneic BMT.Bone Marrow Transplant.1998,21(5):487-495.
    [31]Bader P, Holle W, Klingebiel T, Handgretinger R, Benda N, Schlegelp G, Niethammer D, Beck J. Mixed hematopoietic chimerism after allogeneic bone marrow transplantation:the impact of quantitative PCR analysis for prediction relapse and graft rejection in children. Bone Marrow Transplant, 1997,19(7):697-702.
    [32]唐晓文,吴德沛,孙爱宁,朱子玲,常伟荣,阮长耿等,嵌合体的定量检测在异基因造血干细胞移植术后过继免疫治疗中的应用。中华内科杂志,2006,45(5):359-362。
    [33]Massenkeil G, Nagy M, Lawang M, Rosen O, Genvresse I, Geserick G, Dorken B, Arnold R. Reduced intensity conditioning and prophylactic DLI can cure patients with high-risk acute leukemias if complete donor chimerism can be achieved. Bone Marrow Transplant,2003,31(5):339-345.
    [34]Hill RS, Petersen FB, Storb R, Appelbaum FR, Doney K, Dahlberg S, Ramberg R, Thomas ED. Mixed hematologic chimerism after allogeneic marrow transplantation for severe aplastic anemia is associated with a higher risk of graft rejection and a lessened incidence of acute graft-versus-host disease.Blood,1986,67(3):811-816.
    [35]Choi SJ, Lee KH, Lee JH, Kim S, Chung HJ, Lee JS, Kim SH, Park CJ, Chi HS, Kim WK. Prognostic value of hematopoietic chimaerism in patients with-acute leukemia after allogeneic bone marrow transplantation:a prospective study. Bone Marrow Transplant,2000,26(3):327-332.
    [36]Mattsson J, Uzunel M, Tammik L, Aschan J, Ringden O. Leukemia lincage-specific chimerism analysis is a sensitive predictor of relapse in patients with acute myeloid leukemia and myelodysplastic syndrome after allogeneic stem cell transplantation. Leukemial,2001,15(12):1976-1985.
    [37]Perez-Sim6n JA, Caballero D, Diez-Campelo M, Lopez-Perez R, Mateos G, Canizo C, Vazquez L, Vidriales B, Mateos MV, Gonzalez M, San Miguel JF. Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC)allogeneic transplantation. Leukemia,2002,16(8): 1423-1431.
    [38]van Besien K, Dew A, Lin S, Joseph L, Godley LA, Larson RA, Odenike T, Rich E, Stock W, Wickrema A, Artz AS. Patterns and kinetics of T-cell chimerism after allo transplant with alemtuzumab-based conditioning:mixed chimerism protects from GVHD, but does not portend disease recurrence. Leuk Lymphoma,2009,50(11):1809-17.
    [39]Maris MB, Niederwieser D, Sandmaier BM, Storer B, Stuart M, Maloney D, Petersdorf E, McSweeney P, Pulsipher M, Woolfrey A, Chauncey T, Agura E, Heimfeld S, Slattery J, Hegenbart U, Anasetti C, Blume K, Storb R. HLA-matched unrelated donor hematopoietic cell transplantation after non-myeloablative conditioning for patient swith hematologic malignancies. Blood,2003,102(6):2021-2030.
    [40]Keil F, Prinz E, Moser K, Mannhalter C, Kalhs P, Worel N, Rabitsch W, Schulenburg A, Mitterbauer M, Greinix H. Rapid establishment of long-term culture-initiating cells of donor origin after non-myeloablative allogeneic hematopoietic stem-cell transplantation, and significant prognostic impact of donor T-cell chimerism on stable engraftment and progression-free survival.Transplantation.2003; 76(1):230-236.
    [41]Bornhauser M, Thiede C, Platzbecker U, Jenke A, Helwig A, Plettig R, Freiberg-Richter J, Rollig C, Geissler G, Lutterbeck K, Oelschlagel U, Ehninger G Dose-reduced conditioning and allogeneic hematopoieticstem cell transplantation from unrelated donors in 42 pts. Clin Cancer Res,2001,7(8): 2254-2262.
    [42]Huisman C, de Weger RA, de Vries L, Tilanus MG, Verdonck LF. Chimerism analysis within 6 months of allogeneic stem cell transplantation predicts relapse in acute myeloid leukemia. Bone Marrow Transplantation,2007,39(5):285-291.
    [43]Moscardo F, Sanz J, Senent L, Cantero S, de la Rubia J, Montesinos P, Planelles D, Lorenzo I, Cervera J, Palau J, Sanz MA, Sanz GF. Impact of hematopoietic chimerism at day+14 on engraftment after unrelated donor umbilical cord blood transplantation for hematologic malignancies. Haematologica,2009,94(6):827-32.
    [44]Sufliarska S, Minarik G, Horakova J, Bodova I, Bojtarova E, Czako B, Mistrik M, Drgona L, Demitrovicova M, Lakota J, Krivosikova M, Kovacs L. Establishing the method of chimerism monitoring after allogeneic stem cell transplantation using multiplex polymerase chain reaction amplification of short tandem repeat markers and Amelogenin. Neoplasma,2007,54(5):424-30.
    [45]Mattsson J, Uzunel M, Remberger M, Ringden O. T cell mixed Chimerism is significantly correlated to a decreased risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Transplantation,2001,71(3):433-439.
    [46]Mossallam GI, Kamel AM, Storer B, Martin PJ. Prognostic Utility of Routine Chimerism Testing at 2 to 6 Months after Allogeneic Hematopoietic Cell Transplantation Biol Blood Marrow Transplant 2009;15(3):352-9.
    [47]Baron F, Petersdorf EW, Gooley T, Sandmaier BM, Malkki M, Chauncey TR, Maloney DG, Storb R. What is the role for donor natural killer cells after nonmyeloablative conditioning? Biol Blood Marrow Transplant,2009,15(5):580-8.
    [48]Balon J, Halaburda K, Bieniaszewska M, Reichert M, Bieniaszewski L, Piekarska A, Pawlowski R, Hellmann A. Early complete donor hematopoietic chimerism in peripheral blood indicates the risk of extensive graft-versus-host disease. Bone Marrow Transplant,2005,35(11):1083-1088.
    [49]de Weger RA, Tilanus MG, Scheidel KC, van den Tweel JG, Verdonck LF. Monitoring of residual disease and guided donor leucocyte infusion after allogeneic bone marrow transplantation by chimerism an alysis with short tandem repeats. Br J Haematol,2000,110(3):647-653.
    [50]Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T, Weisdorf D. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendation from a workshop at the 2001 Tandem Meeting of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant,2001,7(9):473-485.
    [51]Peggs KS, Thomson K, Hart DP, Geary J, Morris EC, Yong K, Goldstone AH, Linch DC, Mackinnon S. Dose-escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism and disease responses. Blood,2004,103(4):1548-1556.
    [52]Marks DI, Lush R, Cavenagh J, Milligan DW, Schey S, Parker A, Clark FJ, Hunt L, Yin J, Fuller S, Vandenberghe E, Marsh J, Littlewood T, Smith GM, Culligan D, Hunter A, Chopra R, Davies A, Towlson K, Williams CD. The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood,2002,100(9):3108-3114.
    [53]Junghanss C, Takatu A, Little MT, Maciej Zaucha J, Zellmer E, Yunusov M, Sale G, Georges GE, Storb R. A doptive immunotherapy against kidney targets in dog-leukocyte antigen-identical mixed hematopoietic canine chimeras. Transplantation,2003; 75(3):268-274.
    [54]Slavin S, Ackerstein A, Morecki S, Gelfand Y, Cividalli G. Immunotherapy of relapsed resistant chronic myelogenous leukemia post allogeneic bone marrow transplantation with alloantigen pulsed donor lymphocytes.Bone Marrow Transp lant,2001; 28(8):795-798.
    [55]陈宝安,张琰,丁家华,毕延智等,非清髓造血干细胞移植后致敏供者淋巴细胞输注对嵌合状态及GVHD影响的实验研究。Journal of Experimental Hematology,2006,14 (1):102-106.
    [56]Shevach EM. Certified professionals:CD4+CD25+ suppressor T cells. J Exp Med,2001,193(11): 412-416.
    [57]Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD4+CD25+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol,2002,3(2):135-142.
    [58]Pacholczyk R, Kraj P, Ignatowicz L. Peptide specificity of thymic selection of CD4+CD25+ T cells. J Immunol,2002,168(2):613-20.
    [59]Pillai V, Ortega SB, Wang CK, Karandikar NJ. Transient regulatory T cells:a state attained by all activated human T-cells. Clin Immunol,2007,123(1):18-29.
    [60]Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol,2003,4(4):330-6.
    [61]Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood,2002,99(10):3493-9.
    [62]Cohen JL, Trenado A, VaseyD, Klatzmann D, Salomon BL. CD4+CD25+ immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J Exp Med.2002,196(3):401.
    [63]Hess AD. Modulation of graft-versus-host disease:role of regulatory T lymphocytes. Biol Blood Marrow Transplant,2006,12 (1 Suppl 2):13-22.
    [64]Pontoux C, Banz A, Papiernik M. Natural CD4+CD25+ regulatory T cells control the burst of superantigen-induced cytokine production:the role of IL-10. Int Immunol,2002,4(2):233-9.
    [65]Yong Z, Chang L, Mei YX, Yi L. Role and mechanisms of CD4+CD25+ regulatory T cells in the induction and maintenance of transplantation tolerance. Transpl Immunol,2007,17(2):120-9.
    [66]Ermann J, Hoffmann P, Edinger M, Dutt S, Blankenberg FG, Higgins JP, Negrin RS, Fathman CG, Strober S. Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood.2005,105(5):2220-6.
    [67]Liu YJ, Wu DP, Li CX, He J, Qiu QC, Zhang XG The role of CD4+CD25+ T cell and FOXP3 in host acute graft rejection. Zhonghua Nei Ke Za Zhi.2006,45(10):835-8.
    [68]Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J, Keyvanfar K, Montero A, Hensel N, Kurlander R, Barrett AJ. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood.2006,108(4): 1291-7.
    [69]Du Xin, Geng Su-xia, Weng Jian-yu, Lu Ze-sheng, Wu Sui-jing, Lin Qiu-xiong. Correlation of FOXP3 mRNA expression to graft-versus-host disease occurrence in patients undergoing allogeneic hematopoietic stem cell transplantation. Journal of Clinical Rehabilitative Tissue Engineering Research 2009,13(14):2631-2635.
    [70]YY Shen, AM Zhang, Q Li, ZM Sun, ZM Zhai. Relationship between CD4+CD25+regulatory T cells and graft-versus-host disease after allogeneic haematogene sis stem cell transplantation.Clinical Focus,2008,23(21):1524-1527.
    [71]Clark FJ, Gregg R, Piper K, Dunnion D, Freeman L, Griffiths M, Begum G, Mahendra P, Craddock C, Moss P, Chakraverty R. Chronic graft-versus-host disease is associated with increased numbers of peripheral blood CD4+CD25hi regulatory T cells. Blood,2004,103(6):2410-2416.
    [72]Stanzani M, Martins SL, Saliba RM, St John LS, Bryan S, Couriel D, McMannis J, Champlin RE, Molldrem JJ, Komanduri KV. CD25 expression on donor CD4+ or CD8+ T cells is associated with an increased risk for graft-versus-host disease after HLA-identical stem cell transplantation in humans.Blood,2004,103(3):1140-1146.
    [73]Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol,2003,4(4):330-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700