金刚石在TWT及MPM中的应用关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波功率模块(MPM)是一种新型微波功率组件。它使用高效小型化行波管(TWT)放大器作为功率器件,使用宽带低噪声固态放大器(SSA)驱动行波管,再与行波管电子功率调节器(EPC)集成到一个小型轻重量的封装内成为一个相对独立功能器件,MPM是当今最具发展前景的电真空器件之一。MPM技术关键之一是行波管小型化和微波多芯片模块(MMCM)的高密度集成,TWT小型化要求行波管体积很小,有很高效率和良好的散热能力,散热性能不仅是决定行波管平均输出功率的主要因素,也是直接影响着微波管工作的稳定性与可靠性的主要因素,使用高导热率的夹持材料和采用新型阴极是改进微波器件性能的重要手段之一。金刚石由于具有最高的热导率,最高的机械强度和硬度,低的介电常数和低的介电损耗,极强的抗热震性和抗裂性等优良性能,低功函数,极低的阈值电场,大电流密度、大面积范围内的均匀电子发射以及热化学性质不活泼等。将金刚石应用于TWT慢波结构的夹持杆、场发射阴极(FEA)及MMCM的基板或中间层中,应该对TWT的散热性能的改善,对MPM的小型化和MMCM的高密度集成有良好的作用,对相关的关键技术开展研究具有非常重要的现实意义。
     本文的主要工作有:
     1、本课题首先研究了用化学气相沉积(CVD)金刚石厚膜制作宽带大功率行波管的夹持杆取代传统有毒氧化铍瓷杆,改善宽带大功率行波管的散热性能,开展了相关的理论和实验研究,组装了表面沉积金刚石的Al_2O_3夹持杆、BeO夹持杆、金刚石夹持杆的慢波组件,测试了相关的热学和高频电学性能,并进行了对比分析,金刚石夹持杆组装的行波管慢波组件的传热速率明显大于BeO夹持杆组件的传热速率,大约是它的3倍;在此基础上组装了一只金刚石夹持杆慢波结构的C波段行波管整管,对整管进行了冷测和热测,冷测各项指标全部合格,热测整管在4.0~8.0GHz带宽内得到输出功率95W,增益35dB;然后对所用的齿型翼片加载螺旋慢波结构的色散特性了进行理论推导,并通过MAFIA软件和乌克兰2.5D大信号程序软件包Tau对整管进行计算机模拟,得出了其色散、耦合阻抗、增益和效率等特性曲线,并对其电子注相位轨迹和电子注轴向轨迹情况进行了模拟并与实验测试结果进行了对比分析。
     2、开展了使用金刚石FEA冷阴极代替普通电真空器件中的热阴极的基础性研究,场发射电子的开启电场和更大的发射电流以及场致发射的稳定性和可靠性是场致发射的主要指标,本文在采用MPCVD方法在硅、铜基上沉积了金刚石薄膜,经过多次实验发现采用在铜基上沉积未成膜、晶粒分散分布的金刚石微小颗粒作为发射体可以有效地降低场发射电子的开启电场。本文所制备的金刚石发射体的(宏观)开启场小于2V/μm(对应的发射电流>10μA,发射电流密度>0.5mA/cm~2)。最大发射电流>2.08mA,最大发射电流密度>100mA/cm~2,相应的电场强度为E=3.5V/μm。本文所得金刚石薄膜场发射体,开启电压较低的原因在于金刚石薄膜可以看成由很多微小的金刚石发射体微尖锥组成,当颗粒间的间距较大时,发射体尖顶部的场增强因子更大,又因为采用了导电性能优异的金属—无氧铜作为发射基底,有利于在金刚石与基底间形成欧姆接触,所以有利于电子的发射。
     3、随着微波功率模块(MPM)向大功率、小型化、高可靠及毫米波发展使得其微波多芯片模块(MMCM)也由2D向3D发展,高密度的组装使其散热性能成为主要瓶颈,金刚石具有最高的导热率和非常高的电阻率,且热胀系数与硅匹配,因此吸引人们用它来制作高性能、大功率的薄膜多层基板。本文开展了MPM中金刚石基板MMCM热分析研究,建立了三维多芯片组件的封装模型,分析了多芯片组件的温度场分布,分析了金刚石材料作为中间导热层和基板对组件温度的影响,并分析了散热条件对温度的影响;建立了二维和三维的模型分析了金刚石基板与硅芯片界面间的热应力分布,分析了封装的几何结构对热应力的影响,结果表明:由于金刚石材料具有很高的导热率,不论它作为中间导热层或是基板,都可以显著降低芯片的最高结温,改善组件的散热性能,可做为一种理想的热沉材料,为金刚石在多芯片组件中应用提供了一些参考。
     总之,CVD金刚石无论是应用于带大功率行波管的夹持杆,FEA冷阴极,还是大功率MPM中的MMCM,都具有非常优良的性能。目前虽然离实际应用还有较大距离,还不成熟,但具有极大的潜力。
As a new kind of microwave power modules,MPM is a high density compactmicrowave amplifier which includes a mini-traveling wave tube (TWT),a solid-statedriver amplifier (SSA),and a high density electronic power conditioner (EPC).MPM isa very important part in a next-generation electronic military system,and the millimeterwave power module (MMPM) will be well developed.For the development of widerban d width,high efficiency,high power,reliability and long lifetime of microwavetube,it is important to improve the thermal performance of the mireowave tube.Thethermal management under high temperature affects the reliability of tube and poor heatmanapement will decrease the output power and lifetime and limit the development ofhigh power and small size tube.Using an ideal dielectric material with high thermalconductivity is an important means to improve the performance of the microwave tube.The ideal dielectric materials possess low dielectric losses,high mechanical strength,high thermal conductivity,low thermal expansion,and a low dielectric constant.
     It is recognized diamond is one of the ideal dielectric materials.It should be usedin the wide-band high power TWT and MMCM to improve the thermal managementgreatly.In the thesis,the thermal dissipation of CVD diamond for vacuum electronicdevices (such as TWT helix rod,power windows and MMCM) has been analyzed.
     The main results are as follows:
     1.The project supported by government is to develop a CVD diamond thick filmand possible technology which can be taken over the traditional BeO rod and used in thewide-band high power TWT to improve the thermal management greatly.Havingexperienced over three years' efforts,we have successfully found a good way tomanufacture the right rectangular diamond rod by CVD,special Laser cutting andpolishing technology.After material tests and evaluation,parts assembly and tests andfinal TWT assembly and tests,we have got the first good results as follows:Thermalconductivity:κ>12 W/cm.℃,ten times better than BeO Rod;Dielectrical constant:ε=4.75~5.0;RF loss:tgδ<1×10~(-2);Resistivity:ρ>10~1~3Ω/cm;Slow wave partsassembly thermal test:3.0 times better than BeO.The first TWT with diamond rods has passed all cold tests and has got following hot test results:Δf=4~8GHz,P_(out)=95W,G=35dB.
     2.Diamond and diamond-like films are excellent field emission materials.Theyare strong candidates for field emission micro-cathodes applied in microwave tubes,because of their low or even negative electron affinity and chemical inertness.Undopeddiamond film on Cu and Si has been successfully fabricated using microwave plasmachemical vapor deposition (MPCVD) technology.Electron emission testing indicateslow turn-on voltages.Current densities from 0.5mA/cm2 to 100mA/cm2 had beenobtained for applied fields of 2-3.5V/μm.The bright light spot had been observed,while emitted electron bombardment fluorescent screen.The application is immaturenow,but their potential is very big.
     3.CVD diamond films is one of the ideal sink material of 3D-MCM,which isapplicable to the next generation high power MPM and high speed computers.Thisproject has innovative contribution in the following aspects:(1) Discuss the currentstatus of diamond films applied in microwave tubes.Study the merit,operating,physicaldesign and application possibility for microwave power modules and 3D-MCM.(2)Being based on actual multi-chips module packaging structure a three dimensionalthermal analysis model is built,thermal analysis on multi-chips module is conductedusing diamond substrate and thermal interfacial materials;2D and 3Dchip-adhesive-substrate thermal stress model are built,and interfacial thermal stressdistributions are computed based on different area ratios and thickness ratios ofsubstrate to chip.A stacked MCM model was developed,computational fluiddynamics solution was utilized to proceed the thermal dissipation analysis of thestacked MCM with CVD-diamond substrates,to simulate the heat transfer process andthe temperature distribution of the MCM under forced air-cooling conditions,and theeffects of different factors on the 3D-MCM temperature distribution are investigated,the affecting parameters include thermophysical properties and design structuralproperties.
     Although CVD diamond is one of the ideal dielectric materials,and high-qualitydiamond films have been used in some microwave tubes,there is still a gap to itscommercial application.
引文
[1]刘盛纲,李宏福,王文祥,等.微波电子学导论.北京:国防工业出版社,1995:1-10
    [2]廖复疆.真空微电子的新发展.电子学报,1991, 19(3):7-12
    [3]廖复疆,吴固基.真空电子技术一信息装备的心脏.北京:国防工业出版社,2003:1-10
    [4]廖复疆.功率微波电子注器件及其发展.真空电子技术,2007, (1):1-7
    [5]电子管设计手册编辑委员会.中小功率行波管设计手册.北京:试用稿,1977:1-10
    [6]王斌,苏振华.行波管现状与发展.电子产品可靠性与环境试验,1998,(2):45-49
    [7]王文祥,宫玉彬,魏彦玉,等.大功率行波管新型慢波线技术的进展.真空电子技术,2002,(6):13-18
    [8]唐惠东,徐洁,丘泰,沈春英.行波管输能窗和夹持杆的研究.江苏陶瓷,2002, 35(2):3-5
    [9]高陇桥.大功率真空电子器件实用的高热导率陶瓷的进展.真空电子技术,1999, (2):27-30
    [10]Tamashiro R N,Aldana S L.60 Percent Efficient K-Band TWT Using a New Diamond Rod Technology[C].Intemational Electron Devices Meeting, 1989, 187-190
    [11]Harper R, Pittack U.Diamond as a Support Material for TWT Helices[J].International Electron Devices Meeting, 1976, (2)2:655-658
    [12]J.P.Calame, D.K.Abe.Applications of advanced MaterialsTechnologies to Vacuum Electronic Devices .Proceedings of the IEEE,1999,87 (5):840-850
    [13]Dayton James A, Mearini G T, Chen Hsiung, et al.Diamond-Studied Helical Traveling Wave Tube[J].IEEETransactions on Electron Device, 2005,52 (5): 695-701
    [14]黄明光.人造金刚石在毫米波行波管中的应用分析.中国电子科技集团公司第十二研究所学术年会论文集,北京,中国电子科技集团公司第十二研究所:2006, 12-15
    [15]谢扩军,刘盛纲.行波管夹持杆微波等离子体化学气相沉积金刚石厚膜改善散热性能研究.电子学报,2000, 28(9):85-87
    [16]陈书,陈君乐,杨钢.人造金刚石作行波管夹持杆的实验.中国电子科技集团公司第十二研究所学术年会论文集,北京,2006:34-38
    [17]高陇桥.金刚石膜在真空电子器件输出窗中的应用.真空电子技术,2006, (4):4-6
    [18]D.R.Whaley, B.Gannon, KE.Kreischer, et.al.Characterization of Field Emitter Arrays Operating in a TWT Amplifier.27th International Conference on Infrared and Millimeter Waves,2002,177
    [19]A.Galdetskiy, Fryazino.Electron Gun for Microwave Tubes with Cold Field Emitting Cathodes.27th International Conference on Infrared and Millimeter Waves, 2002,92-93
    [20]王刚,林祖伦,王小菊.场发射阵列阴极(FEA)在微波器件中的应用.电子器件,2007,30(1):27-32
    [21]David R.et al, Application of Field Emitter Arrays to Microwave Power Amplifiers .IEEE PS,2000, 28(3):727-731
    [22]Xie kuojun,Zeng baoqing and yang zhonghai.Field Emission Characteristics of CVD Diamond Coated Copper Field Emitters.25th International conference on infrared and millimeter waves conference digest,2000, 341-342
    [23]王传声,张崎,朱咏梅.多芯片组件(MCM)的封装技术.微电子技术,2000, 28(3):40-45
    [24]何金奇.三维(3-D)封装技术.微电子技术,2001, 29(9):32-41
    [25]郝旭丹,金娜,王明皓.三维封装叠层技术.微处理机,2001, (4):16-18
    [26]杨朝邦,张经国.多芯片组件(MCM)技术及其应用.成都:电子科技大学出版社,2000
    [27]张强,孙东立,武高辉.电子封装基片材料研究进展.材料科学与工艺,2000, 8 (4) :66-73
    [28]祝名桔,魏彦玉,宫玉彬,等.有限厚度螺旋带慢波结构的分析.第十届高功率粒子束学术交流会议文,北京,2006, 535-538
    [29]赵士录.超宽带行波管的最新进展及其大功率合成技术.真空电子技术,1994, (1):38-43
    [30]顾慰兰,杨燕生.温度对接触热阻的影响.南京航空航天大学学报,1994, 26, (3):342-350
    [31]应济,贾星,陈子辰.粗糙表面接触热阻的理论和实验研究.浙江大学学报,1997,1(1):104-109
    [32]韩博.高效率螺旋线行波管慢波系统的研究:[硕士学位论文].北京:中国科学院研究生院,2006, 1-9
    [33]李实,刘韦,苏小保,阴和俊.螺旋线径向挤压变形对其慢波结构冷测特性的影响.强激光与粒子束,2004,16(9):1186-1189
    [34]李实,刘韦,苏小保,阴和俊.螺旋线慢波结构的参数变化对其冷测特性的影响.电子学报,2004,32(9):1511-1514
    [35]R.N.Tamashiro, S.L.Aldana.60 percent efficient K-band TWT using anew diamond rod technology.IEDM89, 1989, 187-190
    [36]刘燕文,韩勇,赵丽,等.不同方法制备的螺旋线慢波组件的散热性能的研究.真空电子技术,2007, (4):35-37
    [37]韩勇,刘燕文,丁耀根.慢波组件散热性能研究的发展现状.真空电子技术,2006, (5):36-41
    [38]韩勇,刘燕文,丁耀根,刘濮鲲.不同夹持杆材料对慢波系统散热性能的影响.真空电子技术,2007, (4):70-73
    [39]韩勇,刘燕文,丁耀根,刘濮鲲.夹持杆的结构和尺寸对慢波结构散热特性的影响的研究.电子与信息学报,2008,30(5):1267-1270
    [40]刘燕文,韩勇,赵丽,等.螺旋线行波管慢波组件散热性能的研究.真空科学与技术学报,2008, 28(1):6-10
    [41]韩勇,刘燕文,丁耀根.螺旋线慢波组件材料的选择对其散热特性的影响.第九届真空技术应用学术年会,绵阳,2006,52-56
    [42]吕反修.CVD金刚石膜研究进展及产业化趋势.1998年秋中国材料研讨会大会专题报告,北京,1998, 20-26
    [43]郑昌琼,张铭诚,冉均国.金刚石薄膜品质及其表征.材料研究学报,1997, (3):33-37
    [44]郑昌琼,冉均国.日本金刚石薄膜研究发展动态.材料科学与工程学报,1992, (2):35-39
    [45]满卫东,汪建华,王传新,等.金刚石薄膜的性质、制备及应用.新型炭材料,2002, (1):26-30
    [46]S.Matsumoto, YSato, M.Tsutsumi, et al.Growth of diamond particles from methane-hydrogen gas.F.Materials,Sci., 1982, (17):3106-3112.
    [47]杨胶溪,李成明,吕反修,等.金刚石膜介电性能影响因素的研究.绝缘材料,2004, (1):23-27
    [48]汪浩,朱鹤孙,池明荣,等.CVD金刚石薄膜的成核机制研究.材料学报,1998, 12 (6):570-574.
    [49]朱建勇,梅炳初,李力,等.CVD金刚石薄膜制备方法及应用.炭素技术,2002, (3):30-33
    [50]王永明.微波等离子体低温CVD金刚石膜工艺和机理研究:[硕士学位论文].武汉:武汉理工大学,2004
    [51]黄元盛,刘正义,瞿全炎,等.CVD金刚石薄膜晶粒尺寸对热导率的影响.兵器材料科学与工程,2001,24(4):27-30
    [52]顾长志,王春蕾,金曾孙,等.金刚石膜的热导率特性研究.科学通报,1994, 39(7): 667-669
    [53]周建.微波等离子体化学气相沉积法制备高质量金刚石膜研究:[博士学位论文].武汉:武汉理工大学,2002
    [54]冉均国,郑昌琼,尹光福,等.微波等离子体CVD合成金刚石薄膜的生长特性.微细加工技术,1990, Z1:187-193
    [55]苟立,刘炼,冉均国,等.大面积金刚石薄膜的均匀性.四川大学学报(工程科学版),2007,39 (2):103-106
    [56]王兵,梅军,冉均国,等.CVD金刚石膜产业化制备技术研究.材料科学与工艺,2003,(1):30-33
    [57]王兵,冉均国,梅军,等.大尺寸CVD金刚石厚膜的制备及应用.无机材料学报,2002,(2):375-379
    [58]王琳,王永明,刘桂珍,周建.微波等离子CVD低温沉积金刚石膜及其表征.武汉理工大学学报,2007, (4):55-59
    [59]熊军,汪建华,等.热丝CVD法制备大面积金刚石厚膜.武汉工程大学学报,2008.(1):34-38
    [60]谢扩军,季天仁,刘盛纲.多功能微波等离子体应用基础研究设备.电子科技大学学报,1996, 25 (4) :403-406
    [61]黄建良,汪建华.微波法大功率稳定快速沉积CVD金刚石膜.武汉工程大学学报,2007,(4):40-45
    [62]周健,余卫华,汪建华,袁润章.微波等离子体化学气相沉积工艺对透明金刚石膜质量的影响.硅酸盐学报2000, (5):223-228
    [63]郭世斌,吕反修,王耀华,等.大面积高质量金刚石自支撑膜热导率的影响因素研究.功能材料,2006, (12):144-149
    [64]吕反修,唐伟忠,刘敬明,等.大面积高光学质量金刚石自支撑膜的制备.材料研究学报,2001,(1):5-9
    [65]吕反修,唐伟忠.大面积高光学质量金刚石膜制备、加工及应用关键技术研究进展.材料导报,2001,(2):221-226
    [66]黄天斌,刘敬明,钟国仿,等.大面积无衬底自支撑金刚石厚膜沉积.北京科技大学学报,2000, (3):25-29
    [67]潘存海,杜素梅,赵桓,等.CVD金刚石膜热沉表面金属化.材料热处理学报,2003, 24(1):57-65
    [68]苟立,郑元元,冉均国.等离子体刻蚀处理大面积金刚石薄膜.微细加工技术,2007, (1):27-31
    [69]张恒大,刘敬明,吕反修,等.CVD金刚石膜的抛光技术.表面技术,2001, (1):7-12
    [70]郭世斌,曲杨,吕反修,等.大面积金刚石自支撑膜机械抛光的优化工艺研究.功能材料,2007, (7):167-172
    [71]张大恒,刘敬明,宋建华,等.CVD金刚石膜的抛光技术.表面技术,2001, 30 (1): 15-18
    [72]熊军,汪建华,等.激光切割CVD金刚石厚膜的工艺研究.工具技术,2007, (4):44-48
    [73]谢扩军,刘盛纲.CVD金刚石膜在微波管中的应用.真空科学与技术,2003, 23(1):64-67
    [74]Xie Kuojun, ShengGang Liu.CVD diamond rod and its application in the high power TWT.25th International Conference on Infrared and Millimeter Waves, 2000: 343-344
    [75]姚列明.微波管的热分析:[博士学位论文].成都:电子科技大学,2007:82-88
    [76]陈波.毫米波行波管金刚石夹持高频结构的设计和优化.真空电子技术,2007.(3):6-8
    [77]雷文强.宽带大功率行波管高频慢波系统CAD研究:[博士学位论文].成都:电子科技大学,2003: 17-54
    [78]李斌,朱小芳,廖莉,杨中海,曾葆青,姚列明.新型大功率毫米波螺旋线行波管高频系统研究.电子与信息学报,2007, 29(8):2017-2022
    [79]王自成,陈庆友,吴鸿适.带状螺旋慢波结构色散的研究.电子学报,1999, 27(3):40-44
    [80]樊孝年,邬显平.螺旋线慢波结构损耗特性研究.真空电子技术,2000, (3):1-9
    [81]F.J.Himpsel, J.A.Knapp, J.A.Van Vechten.Eastman.Quantum photoyield of diamond(111) —A stable negative-affinity emitter.Phys.Rev.B, 1979, 20(20):624-628
    [82]F.J.Himpsel, J.A.Knapp, J.A.Van Vechten.Eastman.Quantum photoyield of diamond(111)—A stable negative-affinity emitter.Phys.Rev.B,1979,20(20):624-628
    [83]Yih-Trong Jan, Hui-Chen Hsieh, Chia-Fu Chen.Fabrication of nano-site conic diamond arrays by bias assisted PCVD.Diamond & Related Materials, 1999, 8(2): 772-775
    [84]Kinneth E.Goodson,Katsuo Kurabayashi,R.Fabian W.Pease.Improved heat sinking for laser-diode arrays using microchannels in CVD diamond.IEEE Transactions on Components,Packaging, and Manufacturing Technology, 1997,20(1):104-108
    [85]曾葆青,杨中海.金刚石薄膜场发射四极管的计算机模拟.真空科学与技术学报,1998,19(5):355-358
    [86]曾葆青,谢扩军,杨中海.无氧铜基金刚石薄膜场致发射特性研究.真空科学与技术学报,2001, 21(1): 64-66
    [87]曾葆青,杨中海.同心圆环型场发射阵列阴极的粒子模拟.强激光与粒子束,1998, 10,(4) :611-616
    [88]Baoqing Zeng, Zhonghai Yang.Simulation of diamond-based field emission micro-tetrodes.J.Vac.Sci.Technol.B, 1999, 17(1):250-253
    [89]曾葆青,杨中海.场致发射的局域功函数研究.真空科学与技术学报,1999, 19(3):201-204
    [90]曾葆青.场致发射阵列阴极(FEA)的理论与实验研究:[博士学位论文].成都:电子科技大学,2002
    [91]俞泉.微波/毫米波功率模块固态放大驱动技术研究:[硕士学位论文].成都:电子科技大学,2006: 1-8
    [92]廖复疆.空间通信应用的微波功率模块.真空电子技术,2003, (2):33-36
    [93]王毅.MCM的应用前景.混合微电子技术,1997.8(2~3):17-20
    [94]张经国.面对未来的军用混合微电子技术.混合微电子技术,1996, 7(2):5-9
    [95]王世萍.雷达信号处理专用芯片及其热设计技术.电子机械工程,1997, (4):32-36
    [96]谢扩军,刘盛纲,徐建华.3D-MCM CVD金刚石热沉散热性能分析.金刚石与磨料磨具工程,2005, 150(6):27-30
    [97] S.Matsumoto, Y.Sato, M.Tsutsumi, et al.Growth of diamond particles from methane-hydrogen gas. RMaterials, Sci., 1982, (17):3106-3112.
    [98] Sturdivant, R.Chung Ly, Benson, J. Using MMIC flip chips and CVD diamond for improved thermal management of microwave modules. Microwave Symposium Digest, 1997, IEEE MTT-S International, 1997,2:505 -507
    [99] Fabis, P.M. Thermal engineering of electronics packages using CVD diamond. Advanced Packaging Materials: International Symposium on Proceedings, 1999,125 - 132
    [100] Gomes-Casseres, M. The thermal benefits of diamond enhanced plastic packages for microwave applications. International Microwave Symposium Digest, 1998 IEEE MTT-S , 1998,2: 1099-1102
    [101] Tang Y, Yoshikawa M, Murakawa M, et al. Applications of Diamond Films and Related Materials. Elsevier Science Publisher B V, 1991. 259-272
    [102] Steinhagen, F.Haydl, W.H. Microwave properties ofcoplanar transmission lines and filters on diamond from 1-120 GHz, International Microwave Symposium Digest.1998 IEEE MTT-S, 1998, 2(2): 1065-1068
    [103] V.Albert, D. Camien, A.High power chip stacks with interleaved heat spreading layers.50th Electronic Components and Technology Conference, Ozguz, 2000:1467 - 1469
    [104] Ozguz, V. Albert, D. Camien, A. Thermal management using interleaved CVD diamond layers for high power 3D chip stacks.IEEE International Workshop on Integrated Power Packaging Proceedings, 1998,66-67
    [105] Brown W. D. Beera R. A.Naseem H. A.et al. State of the art Synthesis and Post-deposition Processing of Large Area CVD Diamond Substrates for Thermal Management. Surface and Coating Technology. 1996, 86(87):697-707
    [106] A.P.Malshe, B.S.Park, W.D.Brown, H.A.Naseem.A review of techniques for polishing and planarizing chemically vapor-deposited(CVD)diamond films and substrates.Diamond and Related Materials, 1999, (8): 1197-1213
    [107] Sanders, A Lockheed Martin Co. The thermal benefits of diamond enhanced plastic packages for microwave applications. IEEE MTT-S Digest ,1998,1097-1102
    [108] P.J. Boudreaux.Thermal benefits of diamond inserts and diamond-coated substrates to IC Packages.Microcircuit Application Conference, 1991,251-256
    [109] David W.Peterson, et al.Demonstration of a high heat removal CVD Diamond substrate edge-cooled multichip module. MCM' 94 Proceedings, 1994:624-630
    [110] B.I. Chandran, M.H.Gordon, W.F. SchmidtComparison of CVD diamond to other substrate materials of thermal management.5th InterSociety Conference on Thermal Phenomena in Electronic Systems, Orlando, 1996,226-232
    [111] Moghaddam S. Rada M.Shooshtari A.et aLEvaluation of analytical models for thermal analysis and design of electronic packages.Microelectron J,2003,3(4):223-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700