规整形貌的多孔CaCO_3和MgO的可控合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有特定形貌(如纤维状、层状、片状、棒状、管状等)的纳微米无机材料已广泛应用于功能材料的改性和高性能复合材料的制备,特定形貌和晶体结构无机化合物的可控制备成为材料化学领域极具吸引力和挑战性的热点研究课题。传统的碳酸钙和氧化镁是在物理与化学领域均有重要用途的无机材料,而特定形貌和多孔结构的碳酸钙和氧化镁具有更为优越的物化性质。因此,探求高比表面积特定形貌和多孔结构的碳酸钙和氧化镁的可控制备方法及揭示其物化性质具有重要意义。本论文采用表面活性剂辅助的溶剂热法和水热法合成具有特定形貌或多孔结构的碳酸钙和氧化镁纳微米粒子,并利用XRD、HRSEM、HRTEM/SAED、TGA/DSC、FT-IR和BET等技术表征这些纳微米材料的物化性质,得到如下结果:
     1.以CTAB、P123、PVP、SDS或PEG为表面活性剂,以不规则氧化钙粒子为钙源,以OA/EtOH (或EG)、OAM或H2O为溶剂,采用溶剂热或水热法合成出花状、带状、珊瑚状、网状、六方状和四方状六方相碳酸钙纳微米粒子。以P123、F127、CTAB、PVP或PEG为表面活性剂,以不规则氧化镁粒子为镁源,以OA、DA或H2O为溶剂,采用溶剂热或水热法合成出花状、六方片状、六棱柱状和介孔立方相氧化镁纳微米粒子。表面活性剂、溶剂以及溶剂(水)热温度对碳酸钙和氧化镁纳微米粒子形貌有着重要影响。
     2.提高溶剂(水)热温度可增加所得碳酸钙样品的比表面积。采用表面活性剂辅助的OA/EtOH或OA/EG溶剂热法所合成的碳酸钙纳微米粒子的比表面积(8~21 m2/g)高于采用表面活性剂辅助的OAM溶剂热法所合成的碳酸钙纳微米粒子的比表面积(2~6 m2/g)。由PEG辅助的水热法在240 oC条件下水热处理72 h可获得最高比表面积(134 m2/g)的六方状和四方状介孔碳酸钙纳微米粒子。
     3.由P123、F127或OMA辅助的OA溶剂热法可合成出较高比表面积(122~161 m2/g)的立方相氧化镁纳米粒子,其中由OAM辅助的OA溶剂热法所获得氧化镁具有最高的比表面积(161 m2/g),由P123或F127辅助的OA溶剂热法所制得的六方状和四方状氧化镁粒子的比表面积次之,无表面活性剂辅助的OA溶剂热法合成的比表面积(122 m2/g)最低。由PEG辅助的水热法经240 oC水热处理72 h所得六棱柱状介孔氧化镁纳微米粒子的比表面积最高可达201 m2/g。
     4.具有六方状和四方状形貌且高比表面积(134 m2/g)的介孔碳酸钙纳微米粒子可在800 oC以下分解成相似形貌的高比表面积(110 m2/g)介孔氧化钙纳微米
     5.粒子。这种特定形貌和介孔结构的碳酸钙在较低温下表现出优异的可逆吸附与再生性能,使其在酸性气体的吸附和分离以及催化等领域有着重要用途。
Nano/microstructured inorganic materials with specific (e.g., fiber-, layer-, plate-, rod-, tube-like, etc.) morphologies have been utilized extensively in the modification of functional materials and the synthesis of high-performance composite materials. The controlled fabrication of inorganic compounds with desired crystalline structures and well-defined shapes is an attractive and challenging hot topic in the research of modern materials chemistry. Conventional calcium carbonate and magnesia are inorganic materials useful in the fields of physics and chemistry, however, their counterparts with specific morphologies and porous structures possess better physicochemical properties. Therefore, it is of significance to explore controllable making strategies and to clarify the physicochemical properties of high-surface-area porous CaCO3 and MgO with specific morphologies. The present thesis was focused on the surfactant-assisted solvo- or hydrothermal fabrication of CaCO3 and MgO nano/microparticles that possessed well-defined morphologies and/or porous structures, and on the physicochemical property characterization of these materials by means of the techniques, such as X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption-desorption measurements (BET). The results obtained are as follows:
     1. Hexagonally crystallized CaCO3 nano/microparticles with flower-, belt-, coralloid-, network-like, hexagonal, and rectangular parallelepiped morphologies were fabricated by adopting the solvo- or hydrothermal strategy with cetyltrimethylammonium bromide (CTAB), triblock copolymer EO20PO70EO20 (Pluronic P123), poly(N-vinyl-2-pyrrolidone (PVP), sodium dodecyl sulfate (SDS) or polyethylene glycol (PEG) as surfactant, irregularly morphological CaO powders as Ca source, oleic acid (OA)/ethanol (EtOH) (or ethylene glycol (EG)), oleylamine (OAM) or H2O as solvent. Cubically crystallized MgO nano/microparticles with flower-like, hexagonal, and hexagonal prism morphologies and mesopores were generated by adopting the solvo- or hydrothermal strategy with P123, triblock copolymer EO106PO70EO106 (Pluronic F127), CTAB, PVP or PEG as surfactant, irregularly morphological MgO powders as Mg source, and OA, decylamine (DA) or H2O as solvent. It is found that the morphologies of the CaCO3 and MgO nano/microparticles were dependent upon the nature of the surfactant and solvent and the solvo- or hydrothermal temperature.
     2. Increasing the solvo- or hydrothermal temperature favored the enhancement in surface area of the as-fabricated CaCO3 product. The surfactant-assisted solvothermally derived CaCO3 samples possessed higher surface areas (8?21 m2/g) in an OA/EtOH or OA/EG medium than those (2?6 m2/g) in an OAM medium. The mesoporous CaCO3 sample generated hydrothermally with PEG at 240 oC for 72 h exhibited hexagonal and rectangular parallelepiped morphologies and the highest surface area of 134 m2/g.
     3. Cubic MgO nanoparticles with higher surface areas (122?161 m2/g) were fabricated solvothermally with P123, F127 or OAM as surfactant and OA as solvent, in which the OAM-assisted derived MgO sample possessed the highest surface area (161 m2/g), the surfactant-free derived MgO sample displayed the lowest surface area (122 m2/g), and the P123- or F127-assisted derived MgO samples with hexagonal and rectangular parallelepiped morphologies exhibited surface areas between those of the above MgO samples. The hexagonal prism-like MgO sample obtained hydrothermally with PEG at 240 oC for 72 h possessed the highest surface area of 201 m2/g.
     4. The high-surface-area (134 m2/g) mesoporous CaCO3 nano/microparticles with hexagonal and rectangular parallelepiped morphologies generated hydrothermally with PEG at 240 oC for 72 h could decompose below 800 oC to similarly morphological mesoporous CaO nano/microparticles with a higher surface area (110 m2/g). The excellent reversible adsorption and regeneration behavior at lower temperatures between CaO and CaCO3 with well-defined particle shapes and mesoporous architectures makes such materials useful in the applications of acidic gas adsorption and separation as well as catalysis.
引文
1 E. Dalas, P. Klepetsanis, P. G. Koutsoukos. The overgrowth of calcium carbonate on poly(vinyl chloride-co-vinyl acetate-co-maleic acid). Langmuir. 1999, 15(23): 8322~8327
    2 C. Peng, Q. Zhao, C. Gao. Sustained delivery of doxorubicin by porous CaCO3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloid. Surf. A: Physicochem. Eng. Aspects. 2010, 353: 132~139
    3 C. L. Yan, D. F. Xue, L. J. Zou. Fabrication of hexagonal MgO and its precurors by a homogeneous precipitation method. Mater. Res. Bull. 2006, 41: 2341~2345
    4 E. Lucas, S. Decker, A. Khaleel, A. Seitz, S. Fultz, A. Ponce, W. Li, C. Carnes, K. J. Klabunde. Nanocrystalline metal oxides as unique chemical reagents/sorbents. Chem. Eur. J. 2001, 7, 2505~2510
    5 H. Itoh, S. Utampanya, J. V. Stark, K. J. Klabunde, J. R. Schulp, Nanoscale metal oxide particles as chemical reagents. Intrinsic effects of particle size on hydroxyl content and on reactivity and acid/base properties of ultrafine magnesium oxide. Chem. Mater. 1993, 5(1): 71~77
    6 H. A. Lowenstam, S. Weiner, On Biomineralization, Oxford University Press, New York, 1989.
    7 E. Beniash, J. Aizenberg, L. Addadi, S. Weiner. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. R. Soc. London Ser. B. 1997, 264: 461~465
    8 L. Addadi, S. Raz, S. Weiner. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 2003, 15(12): 959~970
    9 P. Wan, H. Tong, Z. Zhua, X. Shen, J. Yan, J. Hua. A novel approach to study the dynamic process of calcium carbonate crystal growth by microcalorimetric method Mater. Sci. Eng. A. 2007, 458: 244~248
    10 S. H. C. Liang, I. D. Gay. A C-13 Solid-state nmr-study of the chemisorption and decomposition and decomposition of ethanol of MgO. J. Catal. 1986, 101(2): 293~300
    11 B. M. Choudary, R. S. Mulukutla, K. J. Klabunde. Benzylation of aromatic compounds with different crystallites of MgO. J. Am. Chem. Soc. 2003, 125(8): 2020~2021
    12 P. D. Yang, C. M. Lieber. Nanorod-superconductor composites: A pathway to materials with high critical current densities. Science. 1996, 273(5283): 1836~1840
    13 L. E. Euliss, M. H. Bartl, G. D. Stucky. Control of calcium carbonate crystallization utilizing amphiphilic block copolypeptides. J. Cryst. Growth. 2006, 286: 424~430
    14 Y. S. Han, G. Hadiko, M. Fuji, M. Takahashi. Effect of ?ow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method. J. Cryst. Growth. 2005, 276: 541~548
    15肖良质,王德军,洪广言等,链状超微碳酸钙的合成机理与热稳定性的研究.中国稀土学报. 1992, 10 (1): 44~48
    16 S. Utamapanya, K. J. Klabunde, J. R. Schlup. Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem. Mater. 1991, 3: 175~181
    17 P. Ouraipryvan, T. Sreethawong, S. Chavadej. Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol–gel process. Mater. Lett. 2009, 63: 1862–1865
    18徐如人,庞文琴.无机合成与制备化学.高等教育出版社, 2002: 257~277
    19 K. Chhor, J. F. Boequet, C. Pommier. Syntheses of submieron magnesium oxide powders. Mater. Chem. Phys. 1995, 40:63~68
    20 S. Stankic, M. Müller, O. Diwald, M. Sterrer, E. Kn?zinger, J. Bernardi. Size-dependent optical properties of MgO nanocubes. Angew. Chem. Int. Ed. 2005, 44: 4917~4920
    21 Y. S. Xia, H. X. Dai, H. Y. Jiang, J. G. Deng, H. He, C. T. Au. Mesoporous chromia with ordered three-dimensional structures for the complete oxidation of toluene and ethyl acetate. Environ. Sci. Technol. 2009, 43: 8355~8360
    22 B. J. McKenna, J. H. Waite, G. D. Stucky. Biomimetic control of calcite morphology with homopolyanions. Cryst. Growth Des. 2009, 9(10): 4335~4343
    23 P. Li, C. Z Wu, Q. S. Wu, J. Li, H. Li. Biosynthesis of different morphologies of CaCO3 nanomaterial assisted by thermophilic strains HEN-Qn1. J. Nanopart. Res. 2009, 11: 903~908
    24 G. Z. Wang, L. Zhang, H. X. Dai, J. G. Deng, C. X. Liu, H. He, C. T. Au. P123-assisted hydrothermal synthesis and characterization of rectangular parallelepiped and hexagonal prism single-crystalline MgO with three-dimensional wormholelike mesopores. Inorg. Chem. 2008, 47: 4015~4022
    25 C. L. Gao,W. L. Zhang, H. B. Li, L. M. Lang, Z. Xu. Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth Des. 2008, 8 (10): 3785~3790
    26 Z. D. Nan, Z. Y. Shi, B. Q. Yan, R. Guo, W. G. Hou. A novel morphology of aragonite and an abnormal polymorph transformation from calcite to aragonite with PAM and CTAB. J. Colloid Inter. Sci. 2008, 317: 77~82
    28 Z. X. Ling, M. B. Zheng, Q. L. Du, Y. W. Wang, J. K. Song, W. J. Dai, L. F. Zhang, G. B. Ji, J. M. Cao. Synthesis of mesoporous MgO nanoplate by an easy solvothermal-annealing method. DOI: 10.1016/j.solidstatesciences.2010.01.013
    29 G. W. Yan, J. H. Huang, J. F. Zhang, C. J. Qian. Aggregation of hollow CaCO3 spheres by calcite nano?akes. Mater. Res. Bull. 2008, 43: 2069~2077
    30 Y.S. Han, M. S. Fuji, D. Shchukin, H. M. hwald, M. Takahashi. A new model for the synthesis of hollow particles via the bubble templating method. Cryst. Growth Des. 2009, 9(8): 3771~3775
    31 J. T. Han, X. Xu, K. Cho. Sequential formation of calcium carbonate superstructure: From solid/hollow spheres to sponge-like/solid films. J. Cryst. Growth. 2007, 308: 110~116
    32 F. Guo, Y. Li, H.-X. Xu, G.-Q. Zhao, X.-J. He. Size-controllable synthesis of calcium carbonate nanoparticles using aqueous foam films as templates. Mater. Lett. 2007, 61: 4937~4939
    33 L. Chen, Y. H. Shen, A. J. Xie, B. Huang, R. Jia, R. Y. Guo,W. Z. Tang. Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst. Growth Des. 2009, 9(2): 743~754
    34 M. F. Butler, W. J. Frith, C. Rawlins, A. C. Weaver, M. Heppenstall-Butler. Hollow calcium carbonate microsphere formation in the presence of biopolymers and additives. Cryst. Growth Des. 2009, 9(1): 534~545
    35 A.-J. Xie, Z.-W. Yuan, Y.-H. Shen. Biomimetic morphogenesis of calcium carbonate in the presence of a new amino-carboxyl-chelating-agent. J. Cryst. Growth. 2005, 276: 265~274
    36 X. D. Yang, G. Y. Xu, Y. J. Chen, F. Wang, H. Z. Mao, W. P. Sui, Y. Bai, H. J. Gong. CaCO3 crystallization control by poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer and O-(hydroxy isopropyl) chitosan. J. Cryst. Growth. 2009, 311: 4558~4569
    37 C. D. Lendrum, K. M. McGrath. Calcite nucleation on mixed acid/alcohol monolayers. Cryst.Growth Des. 2009, 9(10): 4391~4400
    38 J. G. Yu, M. Lei, B. Cheng, X. J. Zhao. Facile preparation of calcium carbonate particles with unusual morphologies by precipitation reaction. J. Cryst. Growth. 2004, 261: 566~570
    39 Y. Zhao, Z. H. Chen, H. Y. Wang, J. J. Wang. Crystallization control of CaCO3 by ionic liquids in aqueous solution. Cryst.Growth Des. 2009, 9(11): 4984~4986
    40 C. Y. Wang, Y. Sheng, X. Zhao, Y. Pan, H. -Bala, Z. C. Wang. Synthesis of hydrophobic CaCO3 nanoparticles. Mater. Lett. 2006, 60: 854~857
    41 L. H. Yue, Y. F. Zheng, D. L. Jin. Spherical porous framework of calcium carbonate prepared in the presence of precursor PS–PAA as template. Micropor. Mesopor. Mater. 2008, 113: 538~541
    42 X. H. Liu, L. X. Zhang, Y. L.Wang, C. L. Guo, E. K. Wang. Biomimetic crystallization of unusual macroporous calcium carbonate spherules in the presence of phosphatidylglycerol vesicles. Cryst. Growth Des. 2008, 8(3): 759~762
    43 Y. W. Hou, A. G. Kong, X. H. Zhao, H. Y. Zhu, Y. K. Shan. Synthesis of high surface area mesoporous carbonates in novel ionic liquid. Mater. Lett. 2009, 63: 1061~1064
    44 M. G. Page, N. Nassif, H. G. B?rner, M. Antonietti, H. C?lfen. Mesoporous calcite by polymer templating. Cryst. Growth Des. 2008, 8 (6): 1792~1794
    45 H. Tang, J. G. Yu, X. F. Zhao. Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate. Mater. Res. Bull. 2009, 44: 831~835
    46 D.-K. Keum, K. Naka, Y. Chujo. Unique crystal morphology of hydrophobic CaCO3 composite by sodium trisilanolate in a mixture of a water-miscible organic solvent and water. J. Cryst. Growth. 2003, 259: 411~418
    47 J. H. Xiang, H. Q. Cao, J. H. Warner, A. A. R. Watt. Crystallization and self-assembly of calcium carbonate architectures. Cryst. Growth Des. 2008, 8(12): 4583~4588
    48 D. Y. Chen, E. H. Jordan. Synthesis of porous, high surface area MgO microspheres. Mater. Lett. 2009, 63: 783~785
    49 Z. P. Zhang, Y. J. Zheng, J. P. Chen, Q. Zhang, Y. W. Ni, X. M. Liang. Facile synthesis of monodisperse magnesium oxide microspheres via seed-induced precipitation and their applications in high-performance liquid chromatography. Adv. Funct. Mater. 2007, 17: 2447~2454
    50 T. Muraoka, T. Kashimura, S. Iizuka. Spherical MgO microparticle deposition by RF impulse discharge with small coaxial electrodes. Thin Solid Films. 2009, 518: 1012~1015
    51 Y. J. He. MgO nanostructured microspheres synthesized by an interfacial reaction in a solid-stabilized emulsion. Mater. Lett. 2006, 60: 3511~ 3513
    52 Q. Yang, J. Sha, L. Wang, J. Wang, D. R. Yang. MgO nanostructures synthesized by thermal evaporation. Mater. Sci. Eng. C. 2006, 26: 1097~1101
    53 H. W. Kim, S. H. Shim. Growth of MgO nanowires assisted by the annealing treatment of Au-coated substrates. Chem. Phys. Lett. 2006, 422: 165~169
    54 L. A. Ma, Z. X. Lin, J. Y. Lin, Y. A. Zhang, L. Q. Hu, T. L. Guo. Large-scale growth of ultrathin MgO nanowires and evaluate their field emission properties. Phys. E. 2009, 41: 1500~1503
    55 L. Yan, J. Zhuang, X. M. Sun, Z. X. Deng, Y. D. Li. Formation of rod-like Mg(OH)2 nanocrystallites under hydrothermal conditions and the conversion to MgO nanorods by thermal dehydration. Mater. Chem. Phys. 2002, 76: 119~122
    56 Z. Cui, G. W. Meng, W. D. Huang, G. Z. Wang, L. D. Zhang. Preparation and characterization of MgO nanorods. Mater. Res. Bull. 2000, 35: 1653~1659
    57 Y. B. Li, Y. Bando, D. Golberg, Z. W. Liu. Ga-filled single-crystalline MgO nanotube:Wide-temperature range nanothermometer. Appl. Phys. Lett. 2003, 83(5): 999~1001
    58 Q. Yang, J. Sha, L. Wang, Y. Wang, X. Ma, J. Wang, D. R. Yang. Synthesis of MgO nanotube bundles. Nanotechnology. 2004,15(8): 1004~1008
    59 H. A. Lowenstam, S. Weiner. On Biomineralization; Oxford University Press: U.K., 1989.
    60 E. Matijevi?. Introduction : 49th National Colloid Symposium. J. Colloid Interface Sci.. 1976, 55: 1
    61 K. Naka, Y. Tanaka, Y. Chujo, Y. Ito. The effect of an anionic starburst dendrimer on the crystallization of CaCO3 in aqueous solution. Chem. Commun. 1999, 1931~1932
    62 F. Manoli, E. Dalas. Calcium carbonate overgrowth on elastin substrate. J. Cryst. Growth. 1999, 204: 369~375
    63 F. Manoli, E. Dalas. Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol . J. Cryst. Growth 2000, 218: 359~364
    64 K. Naka, D. K. Keum, Y. Tanaka, Y. Chujo. Control of crystal polymorphs by a‘latent inductor’: crystallization of calcium carbonate in conjunction with in situ radical polymerization of sodium acrylate in aqueous solution. Chem. Commun.. 2000, 16:1537~1538
    65 L. B. Gower, D. J. Odom. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth. 2000, 210: 719~734
    66 A. Kai, T. Miki. Hybrid crystals of calcium carbonate and amino acids. Jpn. J. Appl. Phys. 2000, 39: L1071~L1073
    67 W. Wang, G. Wang, Y. Liu, C. Zheng, Y. Zhan. Synthesis and characterization of aragonite whiskers by a novel and simple route. J. Mater. Chem. 2001, 11: 1752~1754
    68 R. K. Pai, K. Jansson, N. Hedin. Transport-mediated control of particles of calcium carbonate. Cryst. Growth Des. 2009, 9: 4581~4583
    69 R. Kniep, S. Busch. Biomimetic growth and self-assembly of fluorapatite aggregates by diffusion into denatured collagen matrices. Angew Chem. Int. Ed. 1996, 35: 2624~2626
    70 H. Yang, N. Coombs, G. A. Ozin. Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 1997, 386: 692~695
    71 L. Qi, H. C?lfen, M. Antonietti. Crystal design of barium sulfate using double-hydrophilic block copolymers. Angew. Chem. Int. Ed. 2000, 39: 604~605
    72 S. Mann. The chemistry of form. Angew. Chem. Int. Ed. 2000, 39: 3392~3406
    73 F. C. Meldrum. Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 2003, 48: 187~224
    74 H. C?lfen. Precipitation of carbonates: recent progress in controlled production of complex shapes. Curr. Opin. Colloid Interface Sci. 2003, 8: 23~31
    75 J. Zhan, H. P. Lin, C. Y. Mou. Biomimetic formation of porous single-crystalline CaCO3 via nanocrystal aggregation. Adv. Mater. 2003, 15, 621~623
    76 D. Rautaray, S. R. Sainkar, M. Sastry. Ca2+?Keggin Anion Colloidal Particles as Templates for the Growth of Star-Shaped Calcite Crystal Assemblies. Langmuir. 2003, 19: 10095~10099
    77 A. Sugawara, T. Ishii, T. Kato. Self-organized calcium carbonate with regular surface-relief structures. Angew. Chem. Int. Ed. 2003, 42, 5299~5303
    78 C. R. MacKenzie, S. M. Wilbanks, K. M. McGrath. Superimposed effect of kinetics and echinoderm glycoproteins on hierarchical growth of calcium carbonate. J. Mater. Chem. 2004, 14: 1238~1244
    79 Zhang, S.; Gonsalves, K. E. Influence of the Chitosan Surface Profile on the Nucleation and Growth of Calcium Carbonate Films. Langmuir. 1998, 14: 6761~6766
    80 J. Yu, M. Lei, B. Cheng, X. J. Zhao. Effects of PAA additive and temperature on morphology ofcalcium carbonate particles. Solid State Chem. 2004, 177, 681~689
    81 Q. Shen, Y. Chen, H. Wei, Y. Zhao, D. Wang, D. Xu. Suspension Effect of Poly(styrene-ran-methacrylic Acid) Latex Particles on Crystal Growth of Calcium Carbonate. Cryst. Growth Des. 2005, 5: 1387~1391
    82 T. J. Han, X. Xu, D. H. Kim, K. Cho. Biomimetic Fabrication of Vaterite Film from Amorphous Calcium Carbonate on Polymer Melt: Effect of Polymer Chain Mobility and Functionality. Chem. Mater. 2005, 17: 136~141
    83 M. Balz, E. Barriau, V. Istratov, H. Frey, W. Tremel. Controlled Crystallization of CaCO3 on Hyperbranched Polyglycerol Adsorbed to Self-Assembled Monolayers. Langmuir. 2005, 21: 3987~3991
    84 S. Penczek, J. Pretula, K. Kaluzynski. Poly(alkylene phosphates): From synthetic models of biomacromolecules and biomembranes toward polymer - Inorganic hybrids (mimicking biomineralization). Biomacromolecules. 2005, 6: 547~551
    85 D. Rautaray, A. Sanyal, A. Bharde, A. Ahmad, M. Sastry. Biological Synthesis of Stable Vaterite Crystals by the Reaction of Calcium Ions with Germinating Chickpea Seeds. Cryst. Growth Des. 2005, 5:399~402
    86 H. Matahwa, R. D. Sanderson. Surface and statistical analysis of CaCO3 crystals synthesized in the presence of fluorescein-tagged starch grafted with polyacrylic acid. J. Cryst. Growth. 2009, 311:1136~1146
    87 C. Zhong, C. C. Chu. Acid Polysaccharide-Induced Amorphous Calcium Carbonate (ACC) Films: Colloidal Nanoparticle Self-Organization Process. Langmuir. 2009, 25: 3045~3049
    88 Y. Yamamoto, T. Nishimura, A. Sugawara, H. Inoue, H. Nagasawa, T. Kato. Effects of Peptides on CaCO3 Crystallization: Mineralization Properties of an Acidic Peptide Isolated from Exoskeleton of Crayfish and Its Derivatives. Cryst. Growth Des. 2008, 8: 4062~4065
    89 X. X. Ji, G. Y. Li, X. T. Huang. The synthesis of hollow CaCO3 microspheres in mixed solutions of surfactant and polymer. Mater. Lett. 2008, 62: 751~754
    90 L. M. Qi, J. Li, J. M. Ma. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv. Mater. 2002, 14: 300~+
    91 S. G. Deng, J. M. Cao, J. Feng, J. Guo, B. Q. Fang, M. B. Zheng, J. Tao. A Bio-Inspired Approach to the Synthesis of CaCO3 Spherical Assemblies in a Soluble Ternary-Additive System. J. Phys. Chem. B 2005, 109: 11473~11477
    92 X. Zhang, Z. Zhang, Y. Yan. A facile surfactant-assisted approach to the synthesis of urchin-shaped aragonite micropatterns. J. Crystal Growth 2005, 274: 550~554
    93 C. You, Q. Zhang, Q. Z. Jiao, Z. D. Fu. Supernet Structures of Calcium Carbonate Mesocrystals Formed in a Blend System of Anionic/Nonionic Surfactants. Cryst. Growth Des. 2009, 9: 4720~4724
    94 R. Q. Song, A. W. Xu, M. Antonietti, H. C?lfen. Angew. Chem., Int. Ed. 2009, 48: 395~340
    95 Liu, D.; Yates, M. Z. Formation of Rod-Shaped Calcite Crystals by Microemulsion-Based Synthesis. Langmuir. 2006, 22: 5566~5569
    96 H. Sugihara, K. Inoue, M. Nakayama, T. Inoue, K. Nagaoka, Y. Takita. A novel nanotube of composite of calcium carbonate and calcium sulfate. Mater. Lett. 2009, 63: 322~324
    97 P. S. Lukeman, M. L. Stevenson, N. C. Seeman. Morphology Change of Calcium Carbonate in the Presence of Polynucleotides. Cryst. Growth Des. 2008, 8: 1200~1202
    98 L. P. Liu, D. W. Fan, H. Z. Mao, X. Fang, J. C. Hao. Multi-phase equilibrium microemulsions and synthesis of hierarchically structured calcium carbonate through microemulsion-based routes. J Colloid Interface Sci. 2007, 306: 154~160
    99 Y. Yao, W. Y. Dong, S. M. Zhu, X. H. Yu, D. Y. Yan. Novel Morphology of Calcium Carbonate Controlled by Poly(l-lysine). Langmuir. 2009, 25: 13238~13243
    100 R.-Q. Song, H. C?lfen, A.-W. Xu, J. Hartmann, M. Antonietti. Polyelectrolyte-directed nanoparticle aggregation: systematic morphogenesis of calcium carbonate by nonclassical crystallization. ACS Nano 2009, 3: 1966~1978
    101 K.-S. Seo, C. Han, J.-H. Wee, J.-K. Park, J.-W. Ahn. Synthesis of calcium carbonate in a pure ethanol and aqueous ethanol solution as the solvent. J. Cryst. Growth 2005, 276: 680~687
    102 C. Y. Wang, Y. Xu, Y. L. Liu, J. Li. Mater. Sci. Eng. C. 2009, 29: 843~
    103 W. B. Bu, Z. X. Chen, F. Chen, J. L. Shi. Oleic Acid/Oleylamine Cooperative-Controlled Crystallization Mechanism for Monodisperse Tetragonal Bipyramid NaLa(MoO4)2 Nanocrystals. J. Phys. Chem. C 2009, 113: 12176~12185
    104 J.-W. Seo, Y.-W. Jun, S. J. Ko, J. Cheon. In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals. J. Phys. Chem. B. 2005, 109: 5389~5391
    105 T.-D. Nguyen, T.-O. Do. General two-phase routes to synthesize colloidal metal oxide nanocrystals: Simple synthesis and ordered self-assembly structures. J. Phys. Chem. C. 2009, 113: 11204~11214
    106 H. N. Li, L. Zhang, H. X. Dai, H. He. Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria?zirconia solid solutions with crystalline mesoporous walls. Inorg. Chem. 2009, 48: 4421~4434
    107 C. X. Liu, L. Zhang, J. G. Deng, Q. Mu, H. X. Dai, H. He. Surfactant-aided hydrothermal synthesis and carbon dioxide adsorption behavior of three-dimensionally mesoporous calcium oxide single-crystallites with tri-, tetra-, and hexagonal morphologies. J. Phys. Chem. C. 2008, 112: 19248~ 19256
    108 Y. J. Zhang, L. Zhang, J. G. Deng, H. X. Dai, H. He. Controlled synthesis, characterization, and morphology-dependent reducibility of ceria?zirconia?yttria solid solutions with nanorod-like, microspherical, microbowknot-like, and micro-octahedral shapes. Inorg. Chem. 2009, 48: 2181~ 2192
    109 Luo, C.; Xue, D. F. Mild, Quasireverse emulsion route to submicrometer lithium niobate hollow spheres. Langmuir. 2006, 22: 9914~9918
    110 J. S. Jang, U. A. Joshi, J. S. Lee. Solvothermal Synthesis of CdS Nanowires for Photocatalytic Hydrogen and Electricity Production. J. Phys. Chem. C 2007, 111: 13280~1328760 K. X. Yao, H. C. Zeng. ZnO/PVP nanocomposite spheres with two hemispheres. J. Phys. Chem. C. 2007, 111(36): 13301~13308
    111 G. Garnweitner, B. Smarsly, R. Assink, D. R. Dunphy, C. Scullin, C. Brinker. Characterization of self-assembled lamellar thermoresponsive silica?hydrogel nanocomposite films. J. Langmuir 2004, 20(22): 9811~9820
    112 K. X. Yao, H. C. Zeng. ZnO/PVP nanocomposite spheres with two hemispheres. J. Phys. Chem. C. 2007, 111(36): 13301~13308
    113 K. Woo, J. Hong, J.-P. Ahn, J.-K. Park, K.-J. Kim. Coordinatively induced length control and photoluminescence of W18O49 Nanorods. Inorg. Chem. 2005, 44(20): 7171~7174
    114 E. Amstad, T. Gillich, I. Bilecka, M. Textor, E. Reimhult. Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with cat echol-derived anchor groups. Nano Lett. 2009, 9(12): 4042~4048
    115 Pretsch, E., Bühlmann, P., Affolter, C. Structure determination of organic compounds-Tables of spectral data, 3rd ed.; Springer-Verlag: New York, 2003.
    116 Q. J. Cai, Y. Gan, M. B. Chan-Park, H. B. Yang, Z. S. Lu, C. M. Li, J. Guo, Z. L. Dong, Solution-processable barium titanate and strontium titanate nanoparticle dielectrics for low-voltage organic thin-Film transistors. Chem. Mater. 2009, 21(14): 3153~3136
    117 J. A. Gadsden. Infrared Spectra of Minerals and Related Inorganic Compounds; Butterworths: London, U. K., 1975.
    118 X.-H. Zhang, K. M. Ho, A.-H. Wu, K. H. Wong, P. Li. Hydrothermal microemulsion synthesis of oxidatively stable cobalt nanocrystals encapsulated in surfactant/polymer complex shells. Langmuir. 2010, 26(8): 6009~6014
    119 C. J. Liu, Z. Q. Wang, X. Zhang. Force spectroscopy of single-chain polysaccharides: force-induced conformational transition of amylose disappears under environment of micelle solution. Macromolecules 2006, 39(10): 3480~3484
    120 B. Thierry, L. Zimmer, S. McNiven, K. Finnie, C. Barbé, H. J. Griesser. Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles. Langmuir 2008, 24(15): 8143~8150
    121 G. Busca, V. Lorenzelli. Infrared spectroscopic indentification of species arising from reactive adsorption of carbon oxides on metal-oxide surfaces. Mater. Chem. 1982, 7(1): 89~126
    122 C. S. Shan, D. X. Han, J. F. Song, A. Ivaska, L. Niu. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 2009, 81(6): 2378~2382
    123 R. Echterhoff, P. Hoffmann, E. Kn?zinger. Proceedings of the 9th International Congress on Catalysis, Calgary, Canada, 1988; Chemical Institute of Canada: Ottawa, ON, 2008; p 1418.
    124 L. Zhou, W. Z. Wang, L. S. Zhang, H. L. Xu, W. Zhu. Single-Crystalline BiVO4 Microtubes with Square Cross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property. J. Phys. Chem. C. 2007, 111: 13659~13664
    125 Y. Zhao, Y. Xie, X. Zhu, S. Yan, S. X. Wang. Surfactaut-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries. Chem. Eur. J. 2008, 14: 1601~1606
    126 L. Zhou, W. Z. Wang, H. L. Xu. Controllable Synthesis of Three-Dimensional Well-Defined BiVO4 Mesocrystals via a Facile Additive-Free Aqueous Strategy. Cryst. Growth Des. 2008, 8: 728~733
    127 O. Grassmann, P. L?bmann. Morphogenetic control of calcite crystal growth in sulfonic acid based hydrogels. Chem. Eur. J. 2003, 9: 1310~1316
    128 S. H. Yu, H. C?lfen. Bio-inspired crystal morphogenesis by hydrophilic polymers. J. Mater. Chem. 2004, 14(14): 2124~2147
    129 A. W. Xu, M. Antonietti, H. C?lfen, Y. P. Fang. Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv. Funct. Mater. 2006, 16: 903~908
    130 T. X. Wang, M. Antonietti, H. C?lfen. Calcite mesocrystals: "Morphing" crystals by a polyelectrolyte. Chem. Eur. J. 2006, 12: 5722~5730
    131 Q. Gong, X. Qian, X. Ma, Z. Zhu. Large-Scale Fabrication of Novel Hierarchical 3D CaMoO4 and SrMoO4 Mesocrystals via a Microemulsion-Mediated Route. Cryst. Growth Des. 2006, 6: 1821~1825
    132 X. H. Guo, S. H. Yu. Controlled Mineralization of Barium Carbonate Mesocrystals in a Mixed Solvent and at the Air/Solution Interface Using a Double Hydrophilic Block Copolymer as a Crystal Modifier. Cryst. Growth. Des. 2007, 7: 354~35959
    133 C. J. Murphy, N. Jana. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14: 80~82
    134 G. Berhault, M. Bausach, L. Bisson, L. Becerra, C. Thomazeau, D. Uzio. Seed-MediatedSynthesis of Pd Nanocrystals: Factors Influencing a Kinetic- or Thermodynamic-Controlled Growth Regime. J. Phys. Chem. C 2007, 111: 5915~5925
    135 Y.-X. Zhou, Q. Zhang, J.-Y. Gong, S.-H. Yu. Surfactant-Assisted Hydrothermal Synthesis and Magnetic Properties of Urchin-like MnWO4 Microspheres. J. Phys. Chem. C. 2008, 112: 13383~13389
    136 Y.-S. Luo, W.-D. Zhang, X.-J. Dai, Y. Yang, S.-Y. Fu. Facile Synthesis and Luminescent Properties of Novel Flowerlike BaMoO4 Nanostructures by a Simple Hydrothermal Route. J. Phys. Chem. C 2009, 113: 4856~4861
    137 X. Zhang, M. Tsuji, S. Lim, N. Miyamae, M. Nishio, S. Hikino, M. Umezu. Synthesis and Growth Mechanism of Pentagonal Bipyramid-Shaped Gold-Rich Au/Ag Alloy Nanoparticles. Langmuir 2007, 23: 6372~6376
    138 L. Wu, C. Shi, L. Tian, J. Zhu. A One-Pot Method to Prepare Gold Nanoparticle Chains with Chitosan. J. Phys. Chem. C. 2007, 112: 319~323
    139 P. S. Kumar, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, F. J. G. d. Abajo, L. M. Liz-Marzan. High-yield synthesis and optical response of gold nanostars. Nanotechnology. 2008, 19: 15606~15612
    140 J. Li, S. Q. Wang, S. Y. Li, Q. Wang, Y. Qian, X. P. Li, M. Liu, Y. Li, G. Q. Yang. One-pot synthesis and self-assembly of copper phthalocyanine nanobelts through a Water-Chemical Route. Inorg. Chem. 2008, 47: 1255~1257
    141 W.-S. Wang, L. Zhen, C.-Y. Xu, W.-Z. Shao. Room Temperature Synthesis, Growth Mechanism, Photocatalytic and Photoluminescence Properties of Cadmium Molybdate Core?Shell Microspheres. Cryst. Growth Des. 2009, 9: 1558~1568
    142 Z. Yang, Z. H. Lin, C. Y. Tang, H. T. Chang. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials. Nanotechnology 2007, 18: 255606~255610
    143 A. R. Roosen, W. C. Carter. Simulations of microstructural evolution: anisotropic growth and coarsening. Phys. A 1998, 261: 232~247
    144 S. J. Gregg, K. S. W. Sing. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK, 1982.
    145 W. C. Li, A. H. Lu, C. Weidenthaler, F. Schüth. Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 2004, 16: 5676~5681
    146 L. Gou, C. J. Murphy. Controlling the size Of Cu2O nanocubes from 200 to 25 nm. J. Mater. Chem. 2004, 14: 735~738
    147 K. Olga, X. L. Yong, J. K. Kenneth. Destructive adsorption of chlorinated hydrocarbons on ultrafine (nanoscale) particles of calcium oxide. Chem. Mater. 1993, 5: 500~505
    148 K. M. Allal, M. Abbessi, A. Mansour. Determination of the sulfite content for the reaction of SO2 with CaO. Bull. Soc. Chim. Fr. 1991, 128: 880~883
    149 J. A. Withum, H. Yoon. Treatment of hydrated lime with methanol for in-duct desulfurization sorbent improvement. Environ. Sci. Technol. 1989, 23(7): 821~837
    150 D. Beruto, R. Botter, A. W. Searcy. Thermodynamics and kinetics of carbon dioxide chemisorption on calcium oxide. J. Phys. Chem. 1984, 88(18): 4052~4055
    151 R. Philipp, K. Fujimoto. FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts. J. Phys. Chem. 1992, 96(22): 9035~9038
    152 R. Philipp, K. Omata, A. Aoki, K. Fujimoto. On the active site of MgO/CaO mixed oxide for oxidative coupling of methane. J. Catal. 1992, 134(2): 422~433
    153 E. P. Reddy, P. G. Smirniotis. High-temperature sorbents for CO2 made of alkali metals dopedon CaO supports. J. Phys. Chem. B. 2004, 108(23): 7794~7800
    154 Liu, S.; Huang, S.; Li, J.; Zhao, N.; Wei, W.; Sun, Y. Petrochem. Technol. (in Chinese) 2007, 36, 1250.
    155 R. Portillo, T. Lopez, R. Gomez. Magnesia synthesis via sol?gel: structure and reactivity. Langmuir, 1996, 12(1): 40~44
    156 C. Gao, W.Zhang, H. Li. Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth .Des. 2008, 8(10): 3785~3790
    157 L. I. Vera-Robles, A. Campero. A novel approach to vanadium oxide nanotubes by oxidation of V4+ species. J. Phys. Chem. C, 2008, 112(50): 19930~19933
    158 A. T. Heitsch, C. M. Hessel, V. A. Akhavan, B. A. Korgel. Colloidal silicon nanorod synthesis. Nano Lett. 2009, 9(8): 3042~3047
    159 K. Naoe, C. Petit, M. P. Pileni. From wormlike to spherical palladium nanocrystals: digestive ripening. J. Phys. Chem. C. 2007, 111(44): 16249~16254
    160 D.M. Antonelli, A. Nakahira, J. Y. Ying. Ligand-assisted liquid crystal templating in mesoporous niobium oxide molecular sieves. Inorg. Chem. 1996, 35(11): 3126~3136
    161 C. M. Janet, B. Viswanathan, R. P. Viswanath, T. K. Varadarajan. Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J. Phys. Chem. C. 2007, 111: 10267~10272
    162 J. A. Wang, O. Novaro, X. Bokhimi, T. López, R. Gómez, J. Navarrete, M. E. Llanos, E. López-Salinas. Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO. Mater. Lett. 1998, 35(5~6): 317~323
    163 S. Ardizzone, C. L. Bianchi, M. Fadoni, B. Vercelli. Magnesium salts and oxide: an XPS overview. Appl. Surf. Sci. 1997, 119(3~4): 253~259
    164 M. B. I. Chowdhury, R. Sui, R. A. Lucky, P. A. Charpentier. One-pot procedure to synthesize high surface area alumina nanofibers using supercritical carbon dioxide. Langmuir. 2010, 26: 2707~2713
    165 C. M. Janet, B. Viswanathan, R. P. Viswanath, T. K. Varadarajan. Characterization and photoluminescence properties of MgO microtubes synthesized from hydromagnesite flowers. J. Phys. Chem. C. 2007, 111: 10267~10272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700