纳米Pt-Rh/C的制备、表征及甲醇电催化氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铂催化剂是一种具有较高电催化活性的燃料电池催化剂,但是甲醇的解离吸附产物CO容易使铂中毒。目前抗CO中毒能力最强的双金属催化剂是PtRu合金,但在阳极反应中发生的Ru溶出损失一直是一个难题。而作为最有前景的双金属阳极催化剂PtRh,相关的研究报道大都局限于Rh修饰Pt电极的制备与应用,很少涉及表面合金和实质性催化剂的制备与应用。
     本论文以Pt网为模型电极催化剂,以甲醇的电化学氧化作为探针反应,采用强迫沉积法在铂网表面制备了沉积结构及Pt、Rh含量不同的沉积层,通过循环伏安法对催化剂进行了表征,并研究了甲醇的电催化氧化行为。在此基础上,以石墨为载体,通过在超声波作用下化学还原制备了5%Pt(记作:Pts/C)催化剂基底,考察了不同焙烧温度、还原温度对Pts/C催化剂基底的影响;然后,通过强迫沉积法制备了不同的PtxRhy/Pt5/C、PtxRhyPtz/Pt5/C“三明治”式沉积层,采用循环伏安法研究了Pt、Rh沉积结构和沉积量改变,以及焙烧还原气氛对负载PtRh合金催化剂制备的影响,采用X-射线衍射(XRD)手段对催化剂表面的形态和组成进行了表征,并考察了催化剂在甲醇电化学氧化中的催化活性。
     结果表明:
     (1)采用强迫沉积法均可以使纯Rh和PtRhPt“三明治”式结构沉积在Pt网上形成取向附生的沉积层。对于纯Rh沉积层而言,甲醇氧化起始电势没有下降,但峰顶电势略降低了40mV;随着Rh覆盖度增大,使得甲醇氧化电流密度大幅度减小。而PtxRhyPtz“三明治”结构沉积层在沉积过程中形成了部分合金,改变了催化剂表面特性,从而提高了催化剂的催化活性和稳定性。甲醇在Pt1Rh8Pt1“三明治”结构沉积层的氧化电势比纯Pt表面降低了45 mV,氧化电流密度提高了40%。
     (2)采用400℃下焙烧的Pt5/C作为催化剂基底,对比不同焙烧温度下制备的Pt5/C基底,起始氧化电势和峰顶电势几乎没有变化,但是从峰电流来看,在400℃下焙烧制备的Pts/C催化剂基底峰电流最高。
     (3)采用强迫沉积法将不同含量的Pt、Rh沉积在Pts/C基底上制备了三明治式沉积层,在300℃下焙烧、150℃还原后形成了很好的合金,由Pt0.1Rh2/Pt5/C“三明治”式沉积层形成的PtRh/Pt5/C合金催化剂表现出较好的催化活性。甲醇在PtRh/Pt5/C催化剂表面的氧化峰顶电势与Pt5/C基底相比起来降低了60 mV。
It is well known that Platinum is the most efficient catalyst in the direct methanol fuel cells. However, Platinum is easily poisoned by chemisorption of CO produced by dissociative adsorption of methanol. By far, PtRu bimetallic catalysts are the most acceptable catalysts to tolerate CO. Nevertheless, the ruthenium loss during the anode reaction at working condition is a severe problem, due to the unstablilty and solublility of ruthenium. Pt-Rh catalysts are considered to be the most promising bimetallic anode catalyst candidate. And recent research has mostly focused on the preparation, characterization of rhodium modified platinum single crystals and their applications in electro-oxidation of CO, CH3OH, CH3CH2OH, etc. There have been few papers concerning the formation and characterization of surface alloys, the preparation of actual supported PtRh alloy catalysts.
     Firstly, the preparation and characterization of PtRh bimetallic film on the Pt mesh with different content of Pt, Rh by force deposition were studied and the effects of the variation of the deposit structure and the catalytic in the methanol electrooxidation were investigated by means of cyclic voltammetry (CV). Then, using graphite as the carrier, Pt5/C substrate was prepared by formaldehyde reduction at ultrasonic enviroument. The effects of different calcination temperature and different reduction temperature to the catalytic properties of Pt5/C were studied. On the Pt5/C substrate, PtxRhy/Pt5/C、PtxRhyPtz/Pt5/C "sandwich structure" layers were deposited by force deposit method. The effects of the variation of the deposit structure, the amount of Pt, Rh and reduction atmosphere on the formation of supported PtRh alloy were studied via CV and X-ray diffraction (XRD), and the methanol catalytic electrooxidation on the surface fo above catalysts were studied as well.
     The results are as follows:
     (1) It is observed that both pure Rh and PtRhPt sandwich structure deposit growth are epitaxial on the Pt mesh by force deposition. For pure Rh deposits, there is no siganificant change for the onset potentials of methanol oxidation, but the peak potential of methanol oxidation on the reduced catalysts was 40mV lower than that on the pure Pt mesh, with the Rh coverage increases, the current density of methanol significantly reduced. The PtRhPt sandwich structure deposit on Pt mesh formed partial alloy during the deposition process, which showed better catalytic activity and stability. The peak potential of methanol oxidation at Pt1Rh8Pt1 was 45mV more negative than that on pure Pt mesh, while the oxidation peak current intensity increased by 40%.
     (2) The self-made Pt5/C substrate possesses similar properties as Pt polycrystal electrode. The calcination temperature has less effect on the catalytic activity of the Pt5/C substrate. The only difference is the current density of methanol oxidation on Pt5/C calcined at 400℃was higher than on those calicned at other ptemoratures.
     (3) Similar to PtRh alloy formed on Pt mesh, epitaxial PtRh alloy formation are observed on Pt5/C substrate. Therein, PtRh surface alloy derived from Pt0.1Rh2/Pt5/C sandwich structure shows better catalytic activity in methanol electrooxidation, which the oxidation potential was 60mV negative shift compared to that on pure Pt5/C.
引文
[1]CARRETTE L, FRIEDRICH K A, STIMMING U. Fuel Cells-Fundamentals and Applications[J]. Fuel Cells,2001,1:5-39.
    [2]PELED E, LIVSHITS V, DUVDEVANI T. High-Power Direct Ethylene Glycol Fuel Cell (DEGFC) Based on Nanoporous Proton-Conducting Membrane (NP-PCM)[J]. J. Power Sources,2002,106:245-248.
    [3]朱红,许韵华,李战国.质子交换膜燃料电池的研究进展[J].北方交通大学学报,2003,27(6):92-97.
    [4]戴宪滨.燃料电池发电技术的特点及发展现状[J].科技咨询导报,2007,20:98.
    [5]邹文,穆宏江,王靖等.车用燃料电池与催化剂发展应用前景分析[J].长安科技,2007,13(1):15-19.
    [6]衣宝廉.燃料电池[M].化学工业出版社.2000.
    [7]蔡杭锋,丁建波.直接甲醇燃料电池用抗CO电催化剂研究进展[J].浙江工业大学学报,2007,35(3):255-261.
    [8]王树博,王要武,谢晓峰.直接甲醇燃料电池阳极催化剂的制备[J].化工进展,2006,25(6):658-262.
    [9]HAMNETT A. Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell[J]. Catal. Today,1997,38:445-457.
    [10]LIU L, PU C, VISNANATHAN R, et al. Carbon Supported and Unsupported Pt-Ru Anodes for Liquid Feed Direct Methanol Fuel Cells[J]. Electrochim. Acta,1998, 43(24):3657-3663.
    [11]李军涛.纳米结构Pd、Pt及PtRu合金薄膜阵列的红外和电催化性能研究[D].厦门大学,博士论文,2005.
    [12]李文峰,辛文利,吕玲等.直接甲醇燃料电池电催化剂的研究及进展[J].材料导报,2001,15(1):57-59.
    [13]陈胜洲,董新法,林维明.直接甲醇燃料电池甲醇电氧化催化剂研究的新动向[J].化工进展,2003,22(4):466-470.
    [14]PARSONS R, VANDERNOOT T. The oxidation of small organic molecules:A survey of recent fuel cell related research[J]. J. Electroanal.Chem.,1988,257(1-2): 9-45.
    [15]CHEPURI RAO R K, TRIVEDI D C. Chemical and Electrochemical Depositions of Platinum Group Metalsand Their Applications[J]. Coor. Chem. Rev.,2005,249: 613-631.
    [16]周卫江,周振华,李文震等.直接甲醇燃料电池阳极催化剂研究进展[J].化学通报,2003,4(1):228-234.
    [17]杜娟,原鲜霞,巢亚军等.直接甲醇燃料电池电催化剂研究进展[J].稀有金属材料与工程,2006,36(7):1309-1313.
    [18]郑海涛,李永亮,梁剑莹等.甲醇在Pd基电催化剂上的氧化[J].物理化学学报,2007,23(7):993-996.
    [19]ZHANG X G, MURAKAMI Y, YAHIKOZAWA K, et al. Electrocatalytic Oxidation of Formaldehyde on Ultrafine Palladium Particles Supported on A Glass Carbon[J]. Electrochim. Acta,1996,42(2):223-227.
    [20]RAGHUVEER V, VISWANATHAN B. Can La2-xSrxCuO4 be Used as Anodes for Direct Methanol Fuel Cells[J]. Fuel Cell,2002,81:2191-2197.
    [21]BARNETT C J, BURSTEIN G T, KUCERNAK A R J, et al. Electrocatalytic Activity of Some Carburised Nickel, Tungsten and Molybdenum Compounds[J]. Electrochim. Acta,1997,42(15):2381-2388.
    [22]GOETZ M, WENDT H. Composite Electrocatalysts for Anodic Methanol and Methanol-Reformate Oxidation[J]. J. Appl. Electrochem.,2001, (31):811-817.
    [23]SCHMIDT T J, GASTEIGER H A, BEHM R J. Rotating Disk Electrode Measurements on the CO Tolerance of a High-Surface Area Pt/Vulcan Carbon Fuel Cell Catalyst[J]. J. Electrochem. Soc.,1999,146:1296-1304.
    [24]GASTEIGER H A, MARKOVIC N, ROSS P N, et al. Carbon Monoxide Electrooxidation on Well-Characterized Platinum-Ruthenium Alloys[J]. J.Phys. Chem.,1994,98:617-625.
    [25]隋静,卢进,李伟善.直接甲醇燃料电池铂辅助催化剂[J].电池工业,2004,9(2):1-5
    [26]SHUKLA A K, RAVIKUMAR M K, ARICO A S. Methanol Electrooxidation on Carbon-Supported Pt-WO3-x Electrodes in Sulphuric Acid Electrolyte [J]. J. Appl. Electrochem.,1995,25(6):528-532.
    [27]CAO D X, STEVEN H B. Pt-Ruadatom Nanoparticles as Anode Catalysts for Direct Methanol Fuel Cells[J]. J. Power Sources,2004, (134):170-180.
    [28]彭程,程璇,张颖等.直接甲醇燃料电池中阳极催化剂的研究进展[J].电源技术,2003,27(5):470-475.
    [29]PETRII O A, PODLOVCHENKO B I, FRUMKIN A N, et al. The Behaviour of Platinized-Platinum and Platinum-Ruthenium Electrodes in Methanol Solutions[J]. J. Electroanal. Chem.,1965,10:253-269.
    [30]周卫江,李文震,周振华等.直接甲醇燃料电池阳极催化剂PtRu/C的制备和表征[J].高等学校化学学报,2003,24(5):858-862.
    [31]HUYEN N D, REN X M, FERNANDO H G, et al. Electrocatalysis in Direct Methanol Fuel Cells:In-Situ probing of PtRu Anode Catalyst Surfaces[J]. J. Electroanal. Chem.,2000, (491):222-233.
    [32]CAMARA G A, GIZ M J, PAGANIN V A, et al. Correlation of Electrochemical and Physical Properties of PtRu Alloy Electrocatalysts for PEMC Fuel Cells[J]. J. Electroanal. Chem.,2002, (537):21-29.
    [33]BATISTA E A, HOSTER H, IWASITA T. Analysis of FTIRS Data and Thermal Effects during Methanol Oxidation on UHV-Cleaned PtRu Alloys[J]. J. Electroanal. Chem.,2003, (554-555):265-271.
    [34]CAMARA G A, DELIMA R B, IWASITA T. Catalysis of Ethanol Electrooxidation by PtRu:The Influence of Catalyst Composition[J]. Electrochem.Comm.,2004, (6): 812-815.
    [35]CAMARA G A, DELIMA R B, IWASITA T. The Influence of PtRu Atomic Composition on the Yields of Ethanol Oxidation:A Study by in Situ FTIR Spectroscopy[J]. J. Electroanal. Chem.,2005, (585):128-131.
    [36]DE LIMA R B, MASSAFERA M P, BATISTA E A, et al. Catalysis of Formaldehyde Oxidation by Electrodeposits of PtRu[J]. J. Electroanal. Chem.,2007, (603):142-148.
    [37]GASTEIGER H A, MARKOVIC N, ROOS P N, et al. Electrooxidation of Small Organic Molecules on Well-Characterized Pt-Ru Alloys[J]. Electrochim. Acta,1994, 39(11-12):1825-1832.
    [38]WATANABE M, MOTOO S. Electrocatalysis by Ad-Atoms:Part Ⅱ. Enhancement of the Oxidation of Methanol on Platinum by Ruthenium Ad-Atoms[J]. J. Electroanal.Chem.,1975,60:267-273.
    [39]陆勤,李俊鹏.甲醇氧化电催化剂Pt、Ru和PtRu的性能研究[J].广东化工,2006,33(12):8-10.
    [40]PARK S, YOO S H. Electrocatalytic Applications of a Vertical Au Nanorod Array Using Ultrathin Pt/Ru/Pt Layer-by-Layer Coatings[J]. Electrochim. Acta,2008,53: 3656-3662.
    [41]LEMOSA S G, OLIVEIRA R T S, PEREIRA E C, et al. Electrocatalysis of Methanol, Ethanol and Formic Acid Using A Ru/Pt Metallic Bilayer[J]. J. Power Sources,2007, 163:695-701.
    [42]李金峰,宋焕巧,邱新平.直接甲醇燃料电池阳极催化剂的研究进展[J].电源技术,2007,31(2):167-170.
    [43]沈家庭,李将渊.阳极电催化剂在直接甲醇燃料电池的应用[J].绥化师专学报,2003,23(4):155-158
    [44]KOPER M T M. Electrocatalysis on Bimetallic and Alloy Surfaces[J]. Surf. Sci., 2004,548:1-3.
    [45]PANIA C, SALIBA N, KOEL B E. Adsorption of Methanol, Ethanol and Water on Well-Characterized Pt-Sn Surface Alloys[J]. Surf. Sci.,1998,35:248-259.
    [46]JANSSEN M M P, MOOLHUYSEN J. Platinumtin Catalysts for Methanol Fuel Cells Prepared by A Novel Immersion Technique by Electrocodeposition and by Alloying[J]. Electrochim. Acta,1976,21:861-868.
    [47]WATANABE M, FURUUCHI Y, MOTOO S. Electrocatalysis by Ad-Atoms:Part X 111. Preparation of Ad-Electrodes with Tin Ad-Atoms for Methanol, Formaldehyde and Formic Acid Fuel Cells[J]. Electroanal. Chem.,1985,191:367-375.
    [48]FRELINK T, VISSCHER W, VANVEEN J A R. Effect of Sn on Pt/C Aatalysts for The Methanol Electro-Oxidation[J]. Electrochim. Acta,1994,39:1871-1875.
    [49]唐志诚,吕功煊.直接甲醇燃料电池阳极电催化剂[J].化学进展,2007,19(9):1301-1312.
    [50]ARICO A S, ANTONUCCI V, GIORDANO N. Methanol Oxidation on Carbon-Supported Platinum-Tin Electrodes in Sulfuric Acid[J]. J. Power Sources, 1994, (50):295-309.
    [51]ABDEL RAHIM M A, KHALIL M W, HASSAN H B. Platinumtin Alloy Electrodes for Direct Methanol Fuel Cells[J]. J. Appl. Electrochem.,2000,30:1151-1155.
    [52]CAMPBEEL S A, PARSONS R. Effect of Bi and Sn Adatoms on Formic Acid and Methanol Oxidation at Well Defined Platinum Surfaces[J]. J. Chem. Soc. Faraday Trans.,1992,88:833-841.
    [53]ARENZ M, STAMENKOVIC V, SCHMIDT T J, et al. The Electro-Oxidation of Formic Acid on Pt-Pd Single Crystal Bimetallic Surfaces[J]. Phys. Chem. Chem. Phys.,2003,5:4242-4251.
    [54]WATSON D J, ATTARD G A. Surface Segregation and Reconstructive Behaviour of the (100) and (110) Surfaces of Platinum-Palladium Bulk Alloy Single Crystals:A Voltammetric and LEED/AES Study[J]. Surf. Sci.,2002,515:87-93.
    [55]VIDAL-IGLESIAS F G, WATSON D, ATTARD G A, et al. Electrochemical Characterization of PtPd Alloy Single Crystal Surfaces Prepared Using Pt Basal Planes as Templates[J]. J. Electroanal. Chem.,2007,611:117-125.
    [56]ALVAREZ B, CLIMENT V, FELIU J M, ea al. Anion Adsorption on Pd-Pt(111) Electrodes in Sulphuric Acid Solution[J]. J. Electroanal. Chem.,2001,497:125-138.
    [57]ATTARD G A, PRICE R, AL-AKL A. Palladium Adsorption on Pt(111):A Combined Electrochemical and Ultra-High Vacuum Study[J]. Electrochim. Acta, 1994,39(11-12):1525-1530.
    [58]SOLLA-GULLON J, MONTIEL V, ALDAZ A, et al. Electrochemical and Electrocatalytic Behaviour of Platinum-Palladium Nanoparticle Alloys[J]. Electrochem. Comm.,2002,4:716-721.
    [59]ALVAREZ B, CLIMENT V, RODES A, et al. Anion Adsorption on Pd-Pt(111) Electrodes in Sulphuric Acid Solution [J]. J. Electroanal. Chem.,2001,497: 125-138.
    [60]GUTIERREZ DE DIOS F J, GOMEZ R, FELIU J M. Preparation and Electrocatalytic Activity of Rh Adlayers on Pt(100) Electrodes:Reduction of Nitrous Oxide[J]. Electrochem. Comm.,2001,3:659-664.
    [61]VIDAL-IGLESIAS F J, AL-AKL A, WATSON D J, et al. A New Method for The Preparation of PtPd Alloy Single Crystal Surfaces[J]. Electrochem. Comm.,2006,8: 1147-1150.
    [62]FELIU J M, ALVARE B, BERNAL A, et al. Electrochemical Properties of Palladium Adlayers on Pt(100) Substrates[J]. Surf. Sci.,2004,573:32-46.
    [63]DAVIES J C, HAYDEN B E, PEGG D J. The Modification of Pt(110) by Ruthenium: CO Adsorption and Electro-Oxidation[J]. Surf. Sci.,2000,467:118-130.
    [64]CREEMERS C, HELFENSTEYN S, LUYTEN J, et al. On the Conspicuous Segregation Behavior at Pt-Rh Surfaces[J]. Surf. Revi. Lett.,2004,11:341-348.
    [65]HANNA S, WOJCIECH T, PIOTR P, et al. Electrochemical Behavior of CO, CO2 and Methanol Adsorption Products Formed on PtRh Alloys of Various Surface Composition[J]. J. Power Sources,2008,181:24-30.
    [66]WOJCIECH T, HANNA S, PIOTR P, et al. Electro-Oxidation of Methanol on Pt-Rh Alloys[J]. Electrochim. Acta,2007, (52):5565-5573.
    [67]CHOI J O, PARK K W, PARK I S, et al. Methanol Electro-Oxidation and Direct Methanol Fuel Cell Using Pt/Rh and Pt/Ru/Rh Alloy Catalysts[J]. Electrochim. Acta, 2004, (50):787-790.
    [68]ATTARD G A, PRICE R, AL-AKL A. Electrochemical and Ultra-high Vacuum Characterization of Rhodium on Pt(111):A Temperature Dependent Growth Mode[J]. Surf. Sci.,1995,335(20):52-62.
    [69]GOMEZ R, FELIU J. Rhodium Adlayers on Pt(111) Monocrystalline Surfaces. Electrochemical Behavior and Electrocatalysis[J]. Electrochim. Acta,1998,44 (6-7): 1191-1205.
    [70]GOMEZ O, GUTIERREZ DE DIOS F J, FELIU J M. Carbon Monoxide Oxidation and Nitrous Oxide Reduction on Rh/Pt(111) Electrodes[J]. Electrochim. Acta,2004, 49(8):1195-1208.
    [71]OLIVEIRA R T S, SANTONS M C, BULHOES L O S, et al. Rh Electrodeposition on Pt in Acidic Medium:A Study Using Cyclic Oltammetry and An Electrochemical Quartz Crystal Microbalance[J]. J. Electroanal. Chem.,2004,569:233-240.
    [72]OLIVEIRA R T S, SANTONS M C, MARCUSSI B G, et al. The Use of A Metallic Bilayer for the Oxidation of Small Organic Molecules[J]. J.Electroanal. Chem.,2005, 575:177-182.
    [73]OLIVEIRA R T S, SANTONS M C, NASCENTE P A P, et al. Nanogravimetric and Voltammetric Studies of a Pt-Rh alloy Surface and its Behavior for Methanol Oxidation[J]. Electrochem. Sci.,2008,3:970-979.
    [74]FANG L, VIDAL-IGLESIAS F J, HUXTER S E, et al. A Study of The Growth and CO Electrooxidation Behaviour of PtRh Alloys on Pt{100} Single Crystals [J]. J. Electroanal. Chem.,2008,622:73-78.
    [75]ATTARD G A, PRICE R, AL-AKL A. Electrochemical and Ultra-High Vacuum Characterization of Rhodium on Pt(111):A Temperature Dependent Growth Model[J]. Surf. Sci.,1995,335(20):52-62
    [76]IANNIELLO R, SCHMIDT V M, STIMMING U, et al. CO Adsorption and Oxidation on Pt and Pt-Ru Alloys:Dependence on Substrate Composition[J]. Electrochim. Acta,1994,39:1863-1869.
    [77]OLIVEIRA R T S, SANTOS M C, BULHOES L O S, et al. Rh Electrodeposition on Pt in Acidic Medium:A Study Using Cyclic Voltammetry and An Electrochemical Quartz Crystal Microbalance[J]. J. Electroanal. Chem.,2004,569:233-240.
    [78]LIMA A, COUTANCEAU C, LEGER J M, et al. Investigation of Ternary Catalysts for Methanol Electrcoxidation[J].J. Appl. Electrochem.,2001,31:379-386.
    [79]REDDINGTON E, SAPIENZA A, GURAU B, et al. A Highly Parallel, Optical Screening Method for Discovery of Better Electrocatalysts[J]. Science,1998,280: 1735-1737.
    [80]ARICO A S, POLTARZEWSKI Z, KIM H, et al. Investigation of A Carbon-Supported Quaternary Pt-Ru-Sn-W Catalyst for Direct Methanol Fuel Cells [J].J. Power Source,1995,55:159-166.
    [81]唐亚文.直接甲醇质子交换膜燃料电池阳极催化剂的研究[D].南京师范大学,硕士毕业论文,2002.
    [82]COSTAMAGNA P, SRINIVASAN S. Quantum Jumps in the PEMFC Science and Technology from the 1960s to the Year 2000:Part Ⅰ. Fundamental Scientific Aspects[J]. J. Power Sources,2001,102:242-252.
    [83]GLOAGUEN F, LEGER J M, LAMY C. Electrocatalytic Oxidation of Methanol on Platinum Nanoparticles Electrodeposited onto Porous Carbon Substrates [J].J. Appl. Electrochem.,1997,27:1052-1060.
    [84]CHEN W X, ZHAO J, LEE J Y, et al. Microwave Heated Polyol Synthesis of Carbon Nanotubes Supported Pt Nanoparticles for Methanol Electrooxidation[J]. Mater. Chem. Phys.,2005, (91):124-129.
    [85]NIU J J, WANG J N. Synthesis of Macroscopic SiC Nanowires at the Gram Level and Their Electrochemical Activity with Pt Loadings[J]. Acta Materialia,2009,57: 3084-3090.
    [86]SIRK A H C, HILL J M, KUNG S K Y, et al. Effect of Redox State of PtRu Electrocatalysts on Methanol Oxidation Activity[J]. J. Phys. Chem. B,2004,108: 689-695.
    [87]MA L, LIU C P, ZHANG J J, et al. High Activity PtRu/C Catalysts Synthesized by a Modified Impregnation Method for Methanol Electro-Oxidation[J]. Electrochim. Acta,2009,54:7274-7279.
    [88]HSU N Y, CHIEN C C, JENG K T. Characterization and Enhancement of Carbon Nanotube-Supported PtRu Electrocatalyst for Direct Methanol Fuel Cell Applications[J]. Applied Catalysis B:Environmental.,2008,84:196-203.
    [89]HE W, LIU J, YANG H, et al. Simple Preparation of Pd-Pt Nanoalloy Catalysts for Methanol-Tolerant Oxygen Reduction[J]. J. Power Source,2010,195:1046-1050.
    [90]LIMA F H B, PROFETI D, LIACANO-VALBUENA, et al. Carbon-dispersed Pt-Rh Nanoparticles for Ethanol Electro-oxidation. Effect of the Crystallite Size and of Temperature[J]. J. Electroanal. Chem.,2008,617:121-129.
    [91]方莉.PtRh合金催化剂的制备及其在CO电化学氧化中的应用研究[D].山西大学,博士毕业论文,2009.
    [92]CHOI J H, PARK K W, SUNG Y E, et al. Methanol Electro-oxidation and Direct Methanol Fuel Cell Using Pt/Rh and Pt/Ru/Rh Alloy Catalysts[J]. Electrochim. Acta, 2004,50:787-790.
    [93]LIMA F H B, GONZALE E R. Ethanol electro-oxidation on carbon-supported Pt-Ru, Pt-Rh and Pt-Ru-Rh nanoparticles[J]. Electrochim. Acta,2008, (53):2963-2971.
    [94]PAPAGEORGOPOULOS D C, KEIJZER M, DE BRUIJN F A. The Inclusion of Mo, Nb and Ta in Pt and PtRu Carbon Supported 3 Electrocatalysts in the Quest for Improved CO Tolerant PEMFC Anodes[J]. Electrochim. Acta,2002,48:197-204.
    [95]LIAO S J, HOLMES K A, TASPRAILIS H, et al. High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol[J]. J. Am. Chem.Soc.,2006,128:3504-3505.
    [96]AL-AKL A, ATTARD G A, PRICE R, et al. Electrochemical and UHV Characterisation of Stepped Pt{100} Electrode Surfaces[J]. Phys. Chem.,2001,3: 3261-3268.
    [97]CLAVILIER J, FELIU J, ALDAZ A, et al. Electrochemical Behaviour of Irreversibly Adsorbed Bismuth on Pt (100) with Different Degrees of Crystalline Surface Order[J].J. Electroanal. Chem.,1989,269:175-189.
    [98]GOMEZ R, FELIU J. Rhodium Adlayers on Pt (111) Monocrystalline Surfaces. Electrochemical Behavior and Electrocatalysis[J]. Electrochim. Acta,1998,44 (6-7): 1191-1205.
    [99]RHEAD G E, BARTHES M G, ARGILE C. Determination of Growth Modes of Ultrathin Films From Auger Electron Spectroscopy:An Assessment and Commentary[J]. Thin Solid Films,1982,82:201-211.
    [100]PRABHURAM J, MANOHARAN R. Investigation of Methanol Oxidation on Unsupported Platinum Electrodes in Strong Alkal and Strong acid[J]. J. Power Sources,1998,74:54-61.
    [101]ATTARD G A, PRICE R, AL-AKL A.Electrochemical and Ultra-High Vacuum Characterization of Rhodium on Pt (111):A Temperature Dependent Growth Model[J]. Surf. Sci.,1995,335(20):52-62.
    [102]TOKARZ W, SIWEK H, PIELA P, et al. Electro-Oxidation of Methanol on Pt-Rh Alloys[J]. Electrochim. Acta,2007,52:5565-5573.
    [103]KIM H J, CHOI S M, KIM W B, et al. Effect of Rh content on carbon-supported PtRh catalysts for dehydrogenative electrooxidation of cyclohexane to benzene over polymer electrolyte membrane fuel cell[J]. Appl. Catal. A,2009,352:145-151.
    [104]WANG Z B, WANG X P, ZUO P J, et al. Investigation of the Performance Decay of Anodic PtRu Catalyst with Working Time of Direct Methanol Fuel Cells [J]. J. Power Source.,2008,181:93-100.
    [105]HSU N Y, CHIEN C C, JENG K T. Characterization and Enhancement of Carbon Nanotube-Supported PtRu Electrocatalyst for Direct Methanol Fuel Cell Applications [J]. Applied Catalysis B:Environmental.,2008,84:96-203.
    [106]孙芳,邬冰,李桂春.乙醇和CO在Pt-WO3/C电极上的电催化氧化[J].分子科学学报,2006,22:215-218.
    [107]LIMA F H B, PROFETI D, LIZCANO-VALBUENA W H, et al. Carbon-dispersed Pt-Rh Nanoparticles for Ethanol Electro-Oxidation. Effect of the Crystallite Size and of Temperature[J].J.Electroanal. Chem.,2008,617:121-129.
    [108]PARK K W, HAN D S, SUNG Y E. PtRh alloy Nanoparticle Electrocatalysts for Oxygen Reduction for Use in Direct Methanol Fuel Cells[J]. J. Power Sources,2006, 163:82-86.
    [109]KIM Y S, NAM S H, KIM W B, et al. Electrospun Bimetallic Nanowires of PtRh and PtRu with Compositional Variation for Methanol Electrooxidation[J]. Electrochem. Comm.,2008,10:1016-1019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700