羰基硫加氢脱除催化剂的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是以煤炭为主要能源的国家,整体煤气化联合发电(IGCC)技术由于高效率、低污染等特点成为当前最有前景的洁净燃煤发电技术之一,其中煤气脱硫净化是关键环节。煤气中的有机硫(主要是羰基硫,COS)脱除相对比较困难。加氢转化法脱除有机硫精度高、操作简单,设备投资低,而且可以直接利用煤气中的H2而无需外加气源,是加氢脱除煤气中COS的有效手段,开发高效加氢脱硫催化剂一直是本领域的研究热点。
     近年来,纳米科技的发展为催化剂的研究带来了新的机遇,纳米材料的优异催化性能受纳米晶的暴露晶面、形状、表面缺陷等参数的影响。因此,本论文将通过形貌控制合成,制备具有不同形貌、特定晶面的纳米材料,用作COS加氢脱除的非负载催化剂,探讨其对反应性能的影响。主要研究内容如下:
     (1)纳米氧化铈的控制合成及脱除COS性能
     采用水热合成法,通过调控反应参数,制备得到不同形貌的Ce02纳米多面体和一维纳米棒,与商业级Ce02对比,考察了它们在强还原气氛中对COS的加氢转化与脱除效果。结果表明,二者均优于商业级Ce02,Ce02纳米多面体颗粒比纳米棒可保持长时间的高活性及稳定性,分析了Ce02在不同温度下对COS的脱除机理。
     (2)纳米氧化钴的控制合成及脱除COS性能
     乙二醇法合成了不同形貌的Co3O4纳米棒和纳米多面体,在相同的预硫化和加氢脱硫反应条件下,一维纳米棒的活性显著优于纳米多面体。通过TEM、BET、XRF、H2-TPR等表征手段分析表明,二者主要暴露晶面不同:棒状Co3O4主要暴露晶面为活泼的(110)面,而多面体Co3O4为稳定的(111)晶面;影响催化活性的主要因素是催化剂的晶面效应,Co3O4纳米棒更容易被H2S气体预硫化,所形成的金属-硫键较活泼,容易形成硫空位,从而获得较高的加氢脱硫活性。
     此外,鉴于Pd基催化剂优异的加氢性能,进一步研究了负载型Pd基催化剂对COS的加氢脱除性能。分别以上述制备的纳米Ce02和不同种类的炭质材料为载体,采用超声辅助浸渍法制备了负载型Pd基催化剂,发现载体是影响催化效果的主要因素之一。相对于非负载Ce02,Pd/Ce02催化剂对COS的催化活性有所提高;以椰壳炭(AC)、超高比表活性炭(SAC)和碳纳米管(CNTs)为载体制备的催化剂,在相同反应条件下,对COS的加氢脱除性能依次为:Pd/CNTs>Pd/SAC>Pd/AC,Pd/CNTs表现出显著的高脱硫活性和稳定性。
Coal is the main source of energy in our country. Due to high efficiency and low pollution, Integrated Gasification Combined Power Generation (IGCC) technology has become the one of the most promising clean coal power generation technology, in which gas desulfurization is the key point. The organic sulfur gas (mainly carbonyl sulfide, COS) removal is relatively difficult. Because of high precision removal of gaseous organic sulfur, simple operation, low investment in equipment, and the H2 source in coal gas can be used directly without the additional gas source, hydrodesulphurization (HDS) is the effective means for COS removal. The exploitation of high efficiency catalysts for the HDS of COS becomes an interesting task.
     In recent years, the development of nano-technology has brought new opportunities for catalyst research, and the excellent catalytic properties of nanometer materials is effected by parameters such as nanocrystalline exposed, shape and the surface defects. Based on the background of the subject, the main aim of our work is focused on the shape-control synthesis of nanocrystals and their properties as unsupported catalysts for COS hydrogenation. The contents are as follows:
     (1) Shape-control synthesis of cerium oxide nanocrystals and its performance for COS removal. CeO2 nanocrystals with different shape of nanopolyhedra and one dimensional nanorods have been obtained through hydrothermal route by controlling the reaction parameters. Compared with commercial grade CeO2, the COS conversion over the as-prepared products in strong reduction atmosphere is investigated. Results show that CeO2 nanopolyhedra can keep higher activity and stability for a long time than CeO2 nanorods and commercial CeO2. The COS removal mechanism of CeO2 nanopolyhedra under different temperatures has been discussed.
     (2) Shape-control synthesis of cobalt oxide nanocrystals and its performance for COS removal. CO3O4 nanocrystals, i.e. nanorods and nanopolyhedra, have been synthesized by a facile ethylene glycol route. After in situ presulfidation, the HDS activity of COS is conducted on these unsupported catalysts with unchanged morphology. Under the same reaction condition, the catalytic activity of the nanorods is more than four times of the nanopolyhedra at low temperature of 200℃. By the help of TEM、BET、XRF、H2-TPR technologies, it is found that the catalytic properties of the as-made nanocrystals are dependent on the nature of their surface, exposed facets, and the crystal plane of Co3O4 plays an important role in determining its degree and easiness of presulfidation and consequently HDS performance for COS.
     In addition, considering palladium is one of the most active components in hydrogenation reaction, we further study the performance of Pd-supported catalysts for the HDS of COS. Adopting the above-mentioned CeO2 nanopolyhedra and several carbon materials as supports, including coconut active carbon (AC), high surface active carbon (SAC) and carbon nanotubes (CNTs), the activities of Pd/CeO2 and Pd/C catalysts for the hydrogenation of COS are determined. It is clear that Pd/CeO2 is superior to CeO2 itself, and the activity order of Pd/C is as follows:Pd/CNTs>Pd/SAC>Pd/AC under the same reaction condition, so the nature of support is a crucial factor for the COS hydrodesulphurization.
引文
[1]梁丽彤.改性氧化铝基高浓度羰基硫水解催化剂研究[D].太原:太原理工大学,2005.
    [2]SPARKS D E, MORGAN T, PATTERSON P M, et al. New sulfur adsorbents derived from layered double hydroxides I:Synthesis and COS adsorption [J]. Applied Catalysis B: Environmental,2008, (82):58-66.
    [3]TODD J T, CROCKER M. New sulfur adsorbents derived from layered double hydroxides II: Drifts study of COS and H2S adsorption [J]. Applied Catalysis B:Environmental,2008, 82:199-207.
    [4]张峰.COS在氧化物上的反应研究[D].上海:复旦大学,2003.
    [5]Svorons D N, Bruno T J. Carbonyl Sulfide:A review of its chemistry and properties [J]. Industrial and Engineering Chemistry Research,2002,41 (22):5321-5336.
    [6]申文琴,鲁军,豆斌林等.热煤气中有机硫转化催化剂的选用[J].华东理工大学学报,2000,26(3):294-297.
    [7]申文琴,邢嵘,赵国靖等.热煤气中有机硫转化催化剂使用条件的探讨[J].煤气与热力,2000,20(5):327-330.
    [8]沙兴中,周中一.热煤气中有机硫转化催化剂使用条件的探讨[J].煤气与热力,2002,2(1):54-59.
    [9]Zhou K B, Wang X, Sun S M, Peng Q, Li Y D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal,2005,229:206-212.
    [10]Xu R, Wang X, Wang D S, Zhou K B, Li Y D. Surface structure effects in nanocrystal MnO2 and Ag/Mn02 catalytic oxidation of CO. J Catal,2006,237:426-430.
    [11]杨直,李春虎.整体煤气化联合循环(IGCC)中高温煤气脱硫技术进展[J].山西化工,2001,21(2):15-17.
    [12]王芳芳,伍星亮,赵海等.干法脱除煤气中有机硫的研究现状与进展[J].煤化工,2007,3(13):28-32.
    [13]梁美生,李春虎,谢克昌.高温煤气脱硫剂的研究进展[J].煤炭转化,2002,25(1):13-17.
    [14]气化煤气与热解煤气共制合成气的多联产应用的基础研究(课题结题中期技术报告,无相变工艺匹配脱硫净化).山西:太原理工大学煤化工研究所.
    [15]万晨,沙兴中,申文琴等.铜锰高温脱硫剂的研究I.脱硫工艺条件对脱硫性能的影响[J].燃料化学学报,1998,26(5):400-405.
    [16]Aysel T. Atlmtay L D. Gasper-Galvln et al. Novel supported sorbent for hot gas desulfurization [J]. Environmental Science & Technology,1993,27(7):1295-1303.
    [17]张海鹰,王旭珍,郑军等.高温煤气中羰基硫的加氢脱除研究进展[J].应用化工,2008,37(8)943-948.
    [18]梁丽彤,上官炬,李春虎等.国内外COS水解技术研究进展[J].天然气化工,2005,30(1):54.
    [19]王国兴,孔渝华,王俊士.常温有机硫水解催化剂及其制备[P].CN1069673,1993.
    [20]Polleck. Hydrolysis of carbonyl sulfide over alumina[p].US:4491516,1985.
    [21]Louis D D. Edgar M. process for removing carbonyl sulphide from liquid propylene[p].Ep:019,1986,5534.
    [22]Aboulayt A, Mauge F, Hoggan P E, et al. Combined FTIR, reactivity and quantum chemistry investigation of COS hydrolysis at metal oxide surfaces used to compare hydroxyl group basicity[J]. Catalysis Letters.1996,39:213-218.
    [23]Tong S. Catalytic hydrolysis of carbon disulfide and carbonyl sulfide [D]. University of Alderta, Canada,1992, P.163.
    [24]John West, B. Peter Wiliams, Nicola Young, et al. Ni-and Zn-promotion of γ-Al2O3 for the hydrolysis of COS under mild conditions[J].Catalysis Communications.2001, (2):135-138.
    [25]李春虎,上官炬,李彦旭.常低温有机硫水解催化剂及制备[P].CN:1189394,1998.
    [26]张益群,肖忠斌,马建新.O2和SO2对稀土氧硫化物上羰基硫水解反应的影响[J].复旦学报(自然科学版),2003,42(3):379-381.
    [27]王会娜,上官炬,王晓鹏.羰基硫催化水解研究进展[J].工业催化,2007,15(2):18-21.
    [28]林建英,郭汉贤,谢克昌.羰基硫水解催化剂的失活行为研究[J].宁夏大学学报,2001,22(2):192-194.
    [29]梁美生,李春虎,郭汉贤等.红外光谱法对COS水解催化剂氧中毒行为的研究[J].燃料化学学报,2002,30(4):347-352.
    [30]黄劲,李小定,孔渝华.羰基硫水解催化剂失活研究的现状与进展[J].氮肥设计.1995,33(6):11-15.
    [31]Colin R, Stewart A R, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide:a review [J]. Catalysis Today,2000,59:443-464.
    [32]Gudmund H, Orville C. Sandal L. Absorption of carbonyl sulfide in aqueous diethanolamine [J]. Chemical Engineering Science.2000,8(55):5813-5818.
    [33]AMARARENE F, CHAKIB B. Kineties of Carbonyl Sulfide (COS) Absorption with Aqueous Solutions of Diethanolamine and Methyldiethanolamine [J]. Ind. Eng. Res.2004,43: 6136-6141.
    [34]魏雄辉.生化铁-碱溶液催化法气体脱硫方法.中国专利:CN1398659[P].2004.
    [35]王胜利,王淑兰,萧新彝.SDS系列高效脱硫剂脱总硫的机理与处理效果[J].石化技术与应用.2004,9:346-352.
    [36]梁丽彤.改性氧化铝基高浓度羰基硫水解催化剂研究[C].山西:太原理工大学,2005.
    [37]Wivela C, Clausenb S B, Candiab R, et al Mossbauer Emission Studies of Calcined Co-Mo/ Al2O3 Catalysts:Catalytic Significance of Co Precursors [J]. J Catal,1984,87 (2):497.
    [38]巫辉,赵萱,钱菁.石油加氢脱硫催化剂载体的研究[J].武汉理工大学学报,2006,28(3):113-114.
    [39]鲁勋.CeO2改性贵金属催化剂在加氢脱硫反应的性能研究[M].南昌大学,2008.6.
    [40]Klicpera T, Zdrazil M. Preparation of High-Activity MgO-Supported Co-Mo and Ni-Mo Sulfide Hydrodesulfurization Catalysts [J]. J Catal,2002,206(2):314-320.
    [41]程松.Ti02用于Mo系加氢脱硫催化剂的研究进展[J].化学工业与工程技术,2000,21(2):27.
    [42]刘欣梅,阎子峰,Lu G Q.介孔纳米二氧化锆的微观结构及其应用[J].科学通报,2004,49(6):522-527.
    [43]贾美林,Afanasiev P, Vrinat M,et al. NiMo/Zr02加氢脱硫催化剂的研究[J].石油化工,2005,34(3):218-220.
    [44]贾美林,Afanasiev P, Vrinat M, et al.噻吩加氢脱硫反应中NiMo催化剂的研究[J].石油化工,2004,33(3):202-204.
    [45]Vannice MA, R L. The influence of the support on the catalytic behavior of ruthenium in CO/H2synthesis reactions [J]. Journal of Catalysis,1980,63:255-260.
    [46]Aika K, Hori H, Ozaki A. Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal [J]. Journal of Catalysis,1980,27:424-431.
    [47]尾崎等著.催化剂手册.北京:化学工业出版社,1982:150.
    [48]Guerrero A R, Rodriguez I R, Rodriguez F R et al. The role of nitrogen and oxygen surface groups in the behavior of carbon-supported iron and ruthenium catalysts [J]. Carbon, 1988,26:417-423.
    [49]Beer V H, Derbyshire F J, Groot C K et al. Hydrodesulphurization activity and coking propensity of carbon and alumina supported catalysts [J]. Fuel,1984,63:1095-1100.
    [50]Topsoe H. Preparation of catalysts II Amsterdam. Elsevier,1979,479.
    [51]Farag H, Whitehurst D D, Sakanishi K, et al. Carbon versus alumina as a support for Co-Mo catalysts reactivity towards HDS of dibenuothiophenes and diesel fuel [J]. Catalysis Today,1999,50(1):9-17.
    [52]Whitehurst D D, Farag H, Nagamatsu T, et al. Assessment of Limitations and Potentials for Improvement in Deep Desulfurization Through Detailed Kinetic Analysis of Mechanistic Pathways [J]. Catal Today,1998,45(1-4):299-305.
    [53]Pawalec B, Mariscal R, Fierro J L G, et al. Carbon-Supported Tungsten and Nickel Catalysts for Hydrodesulfurization and Hydrogenation Reactions [J]. Appl Catal, A,2001,206 (2):295-307.
    [54]魏昭彬,辛勤,盛世善等.炭担载的Mo和CoMo加H2脱硫催化剂[J].催化学报,1995,16(5):359.
    [55]商红岩,刘晨光,徐永强等.活性炭负载的Co-Mo催化剂的加氢脱硫性能I.活性炭载体与γ-Al2O3的对比[J].催化学报,2005,25(5):363-368.
    [56]董昆明,武小满,林国栋等.碳纳米管负载/促进的Mo-Co加氢脱硫催化剂[J].催化学报,2006,26(7):551-556.
    [57]刘志.金属-炭材料的合成、表征和催化应用研究[D].大连:中国科学院大连化学物理研究所,2007.
    [58]王磊,马建新,孙凡,陈易新,谢敏明.稀土氧化物上S02和N0的催化还原[J].催化学报,200,21(6):547-551.
    [59]Zeng Y, Zhang S, et al. High temperature gas desulfurization with elemental sulfur production [J]. Chemical Engineering Science,1999,54:3007-3017.
    [60]Zeng Y, Kaytakoglu S, Harrison D P. Reduced cerium oxide as efficient and durable high temperature desulfurization sorbent [J]. Chemical Engineering Science,2000, 55:4893-4900.
    [61]Ralph T. Y, James M C. Kinetics of desulfurization of hot fuel gas with calcium oxide. reaction between carbonyl sulfide and calcium oxide [J]. Environmental Science &Technology.1979,13 (5):549-553.
    [62]郭汉贤,王恩过,梁生兆.微量TG法研究氧化锌脱硫的催化加氢效应及动力学行为[J].燃料化学学报,1993,21(3):261-270.
    [63]Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide [J]. J Catal,1989,115:301-309.
    [64]Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties [J]. Science,1998,281:1647-1650.
    [65]Thomas J M, Johnson BFG, Raja R, Sankar G, Midgley P A. High-performance nanocatalysts for single-step hydrogenations [J]. AccChem Res,2003,36:20-30.
    [66]徐如人.无机合成与制备化学[M].北京:高等教育出版社,2001:532-540.
    [67]Fokema M D, Chiu E, Ying J Y Synthesis and characterization of nanocrystalline yttrium oxide prepared with tetraalkylammonium hydroxides [J]. Langmuir 2000,16(7):3154-3159.
    [68]郭景坤,徐跃萍.高压水热法制备ZrO2超细粒子[J].硅酸盐学报.1992,20(3):286-291.
    [69]Yu S H, Han Z H, Yang J, et al. Synthesis and formation mechanism of La2O2S via a novel solvothermal pressure-relief process [J]. Chem. Mater.1999,11(2):192-194.
    [70]周益明,忻新泉.低热固相合成化学[J].无机化学学报.1999,15(3):273-292.
    [71]雷立旭,忻新泉.室温固相反应与固体结构[J].化学通报.1997,12(2):1-7.
    [72]Liu T, Zhang Y H, Shao H Y. Synthesis and characteristics of Sm2O3 and Nd203 nanopaticles [J]. Langmuir.2003,19(18):7569-7572.
    [73]唐波,葛介超,王春先.金属氧化物纳米材料的制备新进展[J].化工进展.2002,21(10):707-712.
    [74]徐光宪,稀土(上册)[M].第二版.北京:冶金工业出版社,1995.
    [75]陈伟凡.纳米稀土氧化物的控制制备及其催化性能研究[D].南京:南京理工大学,2006.
    [76]姜崴.纳米氧化铈制备进展[J].广州化工,2009,37(3):23-25.
    [77]Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes [J]. J. Catal.,2005,229:206-212.
    [78]Jia K M, Zhang H L, Li W C. Effect of the Morphology of the Ceria Support on the Activity of Au/CeO2 Catalysts f or CO Oxidation [J]. Chinese J. Catal.2008,29(11):1089-1092.
    [79]Mai H X, Sun L D, Zhang Y W, Yan C H. Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods and Nanocubes [J]. J. Phys. Chem. B, 2005,109:24380-24385.
    [80]彭卿,李亚栋.功能纳米材料的化学控制合成、组装、结构与性能[J].中国科学B辑:化学.2009,(39)10:1028-1052.
    [81]Trovarelli A, Leitenburg C D, Marta B, Dolcetti G. The utilization of ceria in industrial catalysis [J]. Catal. Today.50(1999)353-367.
    [82]Jae L S, Jun H K, Jung S Y. Regenerable MgO-based SOx Removal Sorbents Promoted with Cerium and Iron Oxide in RFCC [J]. Ind. Eng. Chem. Res.,2005,44:9973-9978.
    [83]张一帆,郭曙强,鲍国杭,唐建春,丁伟中.氧化铈脱硫剂的高温煤气脱硫研究[J].煤炭转化,2008,31(2):20-24.
    [84]杜彩霞.有机硫加氢转化催化剂的使用[J].石油化工与催化,2003,11(9):13-17.
    [85]赵海,王芳芳.复合金属氧化物脱除羰基硫的研究[J].煤炭转化,2007,30(2):31-35.
    [86]Kogan V M, Rozhdestvenskaya N N. Radio isotopic study of CoMo/Al2O3 sulfide catalysts for HDS. Part I. Active site monitoring [J]. Applied Catalysis A,2002,234:207-219
    [87]Pavel A, Bezverkhyy I. Ternary transition metals sulfides in hydrotreating catalysis [J]. Applied Catalysis A,2007,322:129-141.
    [88]Xie X W, Li Y, Shen W J. Low-temperature oxidation of CO catalyzed by Co3O4 nanorods [J]. nature.458(2009)746.
    [89]杨春亮,董群,王鉴.加氢催化剂预硫化技术进展及其应用[J].化学工业与工程技术,2006,27(4).
    [90]孙树成.加氢催化剂预硫化剂研究[D].黑龙江大庆:大庆石油学院,2005.
    [91]冯续,崔芳.有机硫加氢催化剂的预硫化[J].大氮肥,2003,26(1):39-44.
    [92]Decierck-Grimee R I, Canesson P, Friedman R M. An X-Ray Photoelectron Spectroscopy Study of Various CoMo/Al2O3 Hydrodesulfurization Catalysts [J]. The Journal of Physical Chemistry,1978,82(8):889-895.
    [93]Wakker J P, Gerritsen A W, Moulijn J A. High temperature H2S and COS removal with MnO and FeO on γ-Al2O3 acceptors [J]. Industrial & Engineering Chemistry Research, 1993,32:139-149.
    [94]Okamoto Y, Ochiai K, Kawano M A, et al. Evaluation of the maximum potential activity of Co-Mo/Al2O3 catalysts for hydrodesulfurization [J]. Journal of Catalysis,2004,222:143-151.
    [95]Rui S, Maria F S. Shape and Crystal-Plane Effects of Nanoscale Ceria on the Activity of Au-CeO2 Catalysts for the Water-Gas Shift Reaction [M]. Angew. Chem. Int. Ed.2008,47,2884-2887.
    [96]Claus J H. Jacobsen, Eric T, Henrik T. HDS, HDN and HYD activities and temperature-programmed reduction of unsupported transition metal sulfides [J]. Catalysis Letters,1996,63:179-183.
    [97]Norskov J K, Clausen B S, Topsoe H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides [J]. Catalysis Letters 1992,13:1-8.
    [98]Franck L, Michel L, Daniel S, High-Pressure Temperature-Programmed Reduction of Sulfided Catalysts [J], Journal of catalysis,1997,167:464-469.
    [99]Satterfield C N. Heterogeneous catalysis in industrial practice (Seconded)[M]. McGraw-Hill, NewYork,1991.201.
    [100]Bertani V, Cavallotti C, Masi M, et al. A theoretical analysis of the molecular events involved in hydrocarbons reactivity on palladium clusters [J]. Journal of Molecular Catalysis A:Chemical,2003,204-205:771-778.
    [106]王献科,李玉萍,李莉芬.选择性螯合滴定法测定钯[J].化学推进剂与高分子材料,1998,62(2):29-31.
    [102]Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysts [J]. Carbon,1998,36:159-175.,
    [103]湛雪辉,黄艳.五氟氯乙烷的钯催化法加氢脱氯反应研究[J].环境科学研究,2003,16(2):61-64.
    [104]Tijmen G R, Adrianus J. Van D, et al. Surface oxidation of carbon nanofibres [J]. Chem. Eur. J.,2002,8:1151-1162.
    [105]Chen P, Zhang H B, Lin G D, Tsai K R. Studies on Structure and Property of Carbon nanotubes Formed Catalytically from Decomposition of CH4 or CO [J]. Chem J Chin Univ, 1998,19(5):765.
    [106]Anderson R B. Experimental methods in catalytic research[R], Vol Ⅱ.
    [107]贾永涛.碳纳米管负载铂基催化剂的制备及其催化邻氯硝基苯加氢性能[D].大连:大连理工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700