负载型钯炭脱氯催化剂制备过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭作为催化剂载体,除了具有价格低廉、性质稳定、孔隙结构发达、比表面积大、吸附性能强等一系列特点之外,还有一个突出的特点就是活性炭材料能够通过物理或化学手段改变其表面的物理和化学性质,具有极强的町塑性。对活性炭载体进行预处理的作用,除了在一定程度上改变了活性炭的比表面和孔结构等物理性质之外,最大的作用是在活性炭表面引入了有利于把前驱体吸附的功能性离子或基团。活性炭预处理,是在活性炭表面引入了各种类型的酸性基团:而对于湿法非氧化性预处理,是在活性炭表面引入了处理剂自身的部分离予或基团。这些功能性离子或基团与贵金属离子的相互作用直接受功能性离子或基团的种类和浓度的影响,最终决定了金属钯在活性炭表面的分散状态。因此,对预处理试剂和预处理条件进行适当的调控,可以在活性炭表面引入合适的功能性离子或基团,从而制备高分散的活性炭负载钯催化剂。
     本文对Pd/C催化剂,活性炭载体进行了表征,比如比表面积和孔容。并在此基础上对表征数据进行了讨论。通过对催化剂进行扫描电子显微镜微和能谱(SEM和EDS)等方法联用分析,发现用氧化负载法能够更好的使催化剂的活性组分均匀的分伽在载体上,有利于提高催化剂的活性。一定浓度的硝酸为介质,采用超声波处理活性炭载体时,超声空化作作用会导致活性炭中孔孔容增加,载体pH值降低,灰分降低,有利于Pd/C催化剂活性的提高。通过采用H_2O_2、盐酸、硝酸和超声波处理等手段对活性炭载体进行前处理,最佳制备工艺为PdCl_2的浓度O.5wt%;浸渍时间为8 h:甲醛用量是1.5 mL;浸渍pH值为7.5。做了不同时间下的超声处理,其中10 min超声处理的活性碳作为载体制备的Pd/C催化剂,显示了最高的催化活性,适当的超声作用,可以大大减少活性炭表面与其内部的灰分含量,减少表面不稳定的含氧基团,并保持活性炭中孔结构不变,从而有利于Pd的负载和分散,从而提高钯炭催化剂的活性。制得催化剂样品的比表面积、孔容分别为1356.75 m~2/g和0.7068 mI//g。
     本论文还系统研究了在265℃~285℃、l~7MPa左右的反应压力下的(Pd/C,)(Pd含量为O.5%(质量百分比)催化剂用于对苯二甲酸加氢精制反应的速率常数规律。假定该反应为拟一级反应,在该反应温度下建立了反应速率方程,证明了在265~285℃时对苯二甲加氢,该反应对该反应为一级反应,反应速率常数k与T的关系符合k=A×exp(.E/RT)方程式的反应温度下的反应规律,与实验数掘比较表明已经得到的宏观动力学方程的估算是准确的。研究了在100~170℃温度下、l~5MPa反应压力和不同催化剂用量下2,5-二甲氧基.4.氯苯胺精馏残渣加氢脱氯反应规律,并推导了可能的反应速率常数。确定了最佳的反应条件为:催化剂用量为0.65%/0(以原料重量为标准),转速500r/min,反应温度l 50℃,反应时间5h;2,5-二-甲氧基-4-氯苯胺精馏残渣反应足以其原料进行加氢脱氯实验,得出其促进反应的方程为k=27.97×exp(-28.789×10~3/RT)为本论文的创新性研究。
?? Activated carbons have some advantages as catalyst supports. They are relatively inexpensive, possess a high surface area, allow easy recovery of supported metal by simple combustion of the support, and show chemical inertness both in acidic and basic media. Moreover, the activated carbon has strong plasticity. It means that the properties of activated carbon can be reformed by kinds of pretreatments. The effect of pretreatment not only have influences on the physical structure of activated carbon, but also introduce the functional ions or radicals on the surface of activated carbon to enhance the interaction between the surface and Pd metal. Changing the medium and condition of pretreatment can adjust the species and concentrate of the functional ions or radicals on the surface of activated carbon.
     The process of production and usage of Palladium-Carbon catalyst has been investigated. It relates to the production of supported catalysts and in particular to a method for obtaining peripheral distribution of palladium on a carrier or support material. Palladium catalysts have been found to be unusually effective in various catalytic processes. It has been proved that after the preparation of the carbon with nitric acid and hydrochloric acid, the palladium impregnation on this carrier could be used several times and has more activity. The dispersion of Pd metal is determined by the species and concentrate of the functional ions or radicals. According to SBET capacity, measured soaking conditions Pd/C catalyst for the SBET surface area, Gas Chromatography catalytic reaction product composition, identified Pd/C catalyst activity. Experimental data indicate that PdCl_2 dosage, impregnating solution pH, soaking time and reductant consumption are Pd/C catalyst activity of important factors, Through the various factors discussed with the study found the activated carbon catalyst in the amount of 1.5 g, PdCl_2 the amount of 1.0 g(0.5wt%), impregnating solution pH 7.5, maceration time of 8 hours, 0.7068 mL/g and 1356.75 m2/g.The reductant amount of 2.0 ml catalyst obtained when the sample best catalytic activity. After 10 minutes ultrasonic wave treatment, the activated carbon has more activity, for it improve the species and concentrate of the functional ions or radicals to improve Pd load on it. The Pd/C catalyst, the activated carbon are token, the specific surface area, the dispersion of the Pd metal ,the distribution of pore size and the volume of the pore and the phenomenon in the reactions above is discussed. From the SEM and EDS, it is found that the active catalyst can uniformly distribute on the support through oxidation loading process, beneficial to improve the catalytic activity.
     The macro-kinetics and kinetics equation of the reaction of the refused rectify of 4-chloro-2, 5-dimethoxyaniline by hydrogenation has been studied on the radius Pd/C catalyst (0.5wt%) , 60-100mesh ) and study reaction at 100~170℃、1~5MPa and which was put into a special-made basket in a high-pressure stirred stainless batch reactor. The reaction of the internal effectiveness of catalyst was varied with the change of temperature pressure and so on, the radius of catalyst and The kinetics of disproportion reaction was observed to determine the best preparation process of Pd/C catalyst and the optimal reaction conditions of disproportion reaction of refused rectify of 4-chloro-2,5-dimethoxyaniline. The best reaction conditions are : usage of catalyst(0.65wt%) per mass of reaction raw material ,stirring 500r/min, reaction temperature is 150℃, and reaction time is 5h;and its kinetics of disproportion reaction equation is k=27.97×exp(-28.789×10~3/RT), Also, the kinetics of purification of the terephthalic acid by hydrogenation has been studied on the Pd/C catalyst .Through the research of enunciate, if the radius of the catalyst let up, the effectiveness factor increase, the rate of the hydrogenation increase together. The reaction is a first order reaction. On the basis of it, the effectiveness of the catalyst on the different temperature at 265℃,275℃,285℃was estimated and k=A×exp(-E/RT). In this study, the preparation of Pd/C catalyst and its application in the 4-CTP was investigated systemically with the coconut charcoal as the support.
引文
[1]王昱,曾宪春.延长Pd/C催化剂使用寿命[J].聚酯工业,2001,19:25
    [2]李光兴,缪建英,陈兵等.Pd/C及Pd-Bi/C催化剂制备及催化氧化性能研究[J].化学试剂,1996,18(4):207~210
    [3]王桂香,董国君,张密林等.负载型Pd催化剂[J].化学工程,2001,87(6):6~8
    [4] Pham-Huu.C, Ziessel.R and.Ldoux. M.Carbon nanofiber supported palladium catalyst for liquid-phase reactions [J].Chem.Communication. ,2 000 ,1 871~1 874?
    [5]畅延青,王德义,陈大伟等.CTP系列加氢精制钯碳催化剂的开发与应用[J].石油化工,2003,32:290~291
    [6]畅延青,陈大伟,吴征等.用于对苯二甲酸精制的加氢催化剂[P].中国:1457922A,2003
    [7]黄伟,杨爱军,李玉杰等.一种碳负载型贵金属催化剂及其制备方法[P].中国:1663679A,2005
    [8]韩卫荣,欧育湘,陈博仁.不同载体钯催化剂的结构表征及其在笼形叔胺脱N2苄基上的应用[J].精细化工,2004,21(11):819~822
    [9]黄伟,贾艳秋,孙盛凯.Pd/C催化剂研究进展[J].工业催化,2006,14(10):6~11
    [10]方岩雄.Pd/C催化剂对一步法合成对乙酰氨基酚的影响[J].科研开发,2000,8(2):20~22
    [11]张明珠.Pd/Al2O3-SiO2催化剂在丙酮一步合成MIBK反应中的寿命与再生[J].精细石油化工,1998,(2):11~13
    [12]陈一飞.钯系催化剂的制备及其在催化氢化中的应用[J].化学研究与应用,1995,7(4):451~455
    [13]周碧.Pd-Pt/HM催化剂上含氮化合物的氧化降解[J].现代化工,1997,(12):28~29
    [14]施介华.Pd-Cu/Al2O3双金属及其单金属催化剂的TPR特性[J].石油化工,1994,23(7):426~431
    [15]刘菁.(PdC12-PVP)/Al2O3催化剂中Pd的状态的探讨[J].分子催化,1992,6(1):32~37
    [16]张晓梅.石油化学工业中的贵金属催化剂[J].贵金属,1998,19(2):54~58
    [17]廖晖生.钯层粘土加氢裂化催化剂及其性能[J].石油炼制与化工,1999,30(17):35~38
    [18]江琦.担载型催化剂CO2加H2甲烷化反应的催化性能[J].贵金属,1998,19(2):17~22
    [19]王桂香,董国君,张密林,景晓燕.负载型Pd催化剂[J].化学工程师,2001,87(6):6~8
    [20]周春晖,李小年,葛忠华.贵金属钯催化剂的研究现状和发展前景[J].化工生产与技术,2000,7(1):12~16
    [21]陈慕华,秦晓静,储伟,洪景萍.载体对钯基选择性加氢催化剂性能的影响[J].石油学报(石油加工),2006,22(2):20~26
    [22]姜麟忠.催化氢化在有机合成中的应用[M].北京:化学工业出版社,1987.
    [23] Boehm.H.Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons[J].Carbon, 1994, 32(5):756~769
    [24]邱介山,富勒.烯类炭材料作为新型载体在多相催化中的应用[J].炭素技术,2001,6,23~30
    [25]李雅莉.清洗世界[J],2006,22(7):31
    [26]于凤文等.催化学报[J],2005,26(6):485
    [27]吴越.催化化学[M].北京:科学出版社,2000:932
    [28] Aika.K,Hori.H,Ozaki.A. An active and selective catalyst for hydrogenation of C=C bonds Catal[J],1972,27(3):424
    [29]丁恒如,闻人勤.中国滤料[J],2006,10:14
    [30]赵波等.浙江工业大学学报[J],2004,32(2):131
    [31]钱斌.对苯二甲酸精制技术的研究进展[J].金山油化纤,2003,1,21~24
    [32]董树仁,张军,孙健.氯化钯的研制与应用[J].中国物资再生,1999 16-19
    [33]范艳青,冯晓锐,陈雯,顾云峰.活性炭制备技术及发展[J].昆明理工大学学报,2002, 27(5):17~20
    [34]周仁贤.γ-Al2O3为基体的Pt、Pd双金属催化剂氧化性能的研究[J].科技通报,1995,7,193~1971
    [35] Fanning. P. E, Vannice .M.A.Study of the formation of surface groups on carbon by oxidation[J].Carbon, 1993, 31(5):721~730
    [36]侯振宇,高原.工业生产中延长钯碳催化剂使用寿命的方法探讨[J].辽宁化工,1999,28 (6):331~352
    [37]傅锦坤.生物化学法制备负载型钯催化剂[J].厦门大学学报,2001,67~711
    [38]吴世华.金属蒸气法制备聚合物固载双金催化剂[J].高分子学报,1998,(2):49~53
    [39]张继光.催化剂制备过程技术[M].北京:中国石化出版社,2004.258~333
    [40] Jansen R.J.J,Van Bekkum.H.XPS of Nitrogen-Containing Function Groups on Activated Carbon[J].Carbon,1995,33(33):1021~1027
    [41] Fane.G,Vanne.M.The role of the formation of surface groups on carbon surface modification of actived carbon [J].Carbon,1993,31(5):721~730
    [42] Biniak.S,Szymanski.G,Siedlewski.J.The characterization of activated carbons with oxygen and nitrogen surface groups[J].Carbon,1997,35(12):1799~1810
    [43]范延臻,王宝贞.活性炭表面化学[J].煤炭转化,2000,23(4):26~31
    [44] H.F.Stoeckli, Microporous carbons and their characterization:The present state of the art,The role of carbon materials in heterogeneous catalysis[J].Carbon,1990,28,1~6
    [45] Van.E , Christian.A.G , Mullenets.W , et al.Protease muteins and their use in detergents[P].United States Patent,6,271,012,2001
    [46]马柏辉,叶李艺,张会平.活性炭的生产及发展趋势[J].福建化工,2002,4,65~76
    [47]吴明铂,郑经堂,王茂章.炭分子筛概述[J].炭素技术,1997,6,19~24
    [48]刘军利,古可隆.高温处理对活性炭孔隙结构的影响[J].林产化学与工业,1999,19(3):37~40
    [49]谭小耀.改性活性炭低温催化脱除H2S的研究[J].石油化工,1995,24(10):716~720
    [50]古可隆.活性炭的应用(一)[J].林产化工通讯,1999,33(4):37~40
    [51] Vinke.P,Van Verbee.M,Voskamp.A.F et al.Modification of the surfaces of gas-activated carbon and a chemically activated carbon with HNO3[J].Carbon,1994,32(4):675~686
    [52] Imre.P,Glene.E,David.E.J,et al. Process for purification of crude terephthalic acid [P].US,446711.1984.
    [53]刘振宇,郑经堂等..PAN基ACF的孔结构表征[J].材料研究学报,1999,13(5):477~482
    [54] Menende .J .A. Modification of the surface chemistry of active carbons by means of microwave-induced treatment.[J].Carbon,1999,37(7):1115~1121
    [55]赵虹,商连弟.比表面积简易测定法[J].无机盐工业,2002,34(3):43~45
    [56]顾惕人,马季铭等编著.表面化学[M].北京:科学出版社,1994
    [57]潘泽琳,王学香等.氧化铝孔容测定方法改进研究[J].轻金属,1994,10:7~10
    [58]邱介山.低温等离子体技术在炭材料改性方面的应用[J].新型炭材料,2001,16(3):58~63
    [59]单晓梅,朱书全,张文辉等.氧化法改性煤基活性炭和椰壳活性炭的研究[J].中国矿业大学学报,2003,32(6):729~733
    [60]汤进华,梁晓怿,龙东辉,刘小军等.活性炭孔结构和表面官能团对吸附甲醛性能影响[J]碳素技术,2007,3:26 36-29
    [61]刘守新,陈曦,张显权.?活性炭孔结构和表面化学性质对吸附硝基苯的影响[J].环境科学.2008,5:29 25-27
    [62]孟冠华,李爱民,张全兴.?活性炭的表面含氧官能团及其对吸附影响的研究进展[J]?离子交换与吸附,2007,23(1):88~94
    [63]王昱,曾宪春.延长Pd/C催化剂使用寿命[J].聚酯工业,2001,19:25~27
    [64]李光兴,缪建英,陈兵等.Pd/C及Pd-Bi/C催化剂制备及催化氧化性能研究[J].化学试剂,1996,18(4):207~210
    [65]李兆基.活性炭负载钯催化剂合成碳酸二甲酯[J].石油化工,1997,26:286~289
    [66]王桂香,董国君,张密林等.负载型Pd催化剂[J].化学工程,2001,87(6):6~8
    [67]侯振宇,高原.工业生产中延长钯碳催化剂使用寿命的方法探讨[J].辽宁化工,1999,28 (6):331~352
    [68]韩卫荣,欧育湘,陈博仁.不同载体钯催化剂的结构表征及其在笼形叔胺脱N2苄基上的应用[J].精细化工,2004,21(11):819~822
    [69]李福祥,孟鑫,吕志平等.制备温度对Pd/C加氢脱氯催化剂失活的影响[J].应用化学,2005,22(1):30~34
    [70]吕志平,薛建伟.加氢脱氯Pd/C催化剂失活原因探讨[J].稀有金属材料与工程,2005,34(4):657~660
    [71] Pham-Huu.C, Keller.N, Charbonniere.L.J, Ziessel.R and Ldoux .M.J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An catalyst for hydrogenation of C=C bonds [J].Chem.Commun.2000, 1871~1872
    [72] Sokawa.T.Ho,Kawamura.Y ,Minami.K.Effective Palladium(Ⅱ) Catalyst for Oxypalladation of Alkene[J].Journal of Fudan Universit (Natural Science),2005,44(5):711~712
    [73]陈小燕.低含量钯的分析方法研究[J].黄金,2005,5(26):48~49
    [74]雷玲,钱枝茂.Pd/C催化剂的失活与再生[J].化学工业与工程技术,1997,17(2):38~40
    [75]方奕文,董新法,薛亮,王文进,林维明.负载型Wacker催化剂的预处理及Pd和Cu含量的测定[J].光谱学与光谱分析,2006,26(10):1912~1914
    [76]袁文辉,叶振华.高性能活性炭的制备及其性能研究[J].天然气化工,1997(22):30~33
    [77]金晓农,李弘,何炳林.钯盐中负离子对聚合物载钯催化剂加氢性能的影响[J].离子交换与吸附,1995,11(6):530~535
    [78]胡艾希,袁帅,伍小云,陈平,张正学.5-溴6-甲氧基-2-丙酰基萘的钯催化氢化脱溴[J].应用化学,2002,19(6):582~584
    [79]朱炳辰.化学反应工程,化学工业出版社.[P]2001年1月3版95~105
    [80]丁春黎,朱永娟,顾薇.对浸渍法制备Pd/ C催化剂表面积影响因素的讨论[J].吉林工学院学报,2001,22(1):4~6
    [81]华南平,杨平,杜玉扣.活性炭为载体的负载型高变催化剂的研究[J].化工设计通讯,2005,31(3):1~4
    [82] Yongwen.W ,zhong.Li ,Hongxia.X A review of oxygen-containing surface groups and surface modification of actived carbon[J].Chinese Journal of Reactive Polymers , 2004 ,13(1-2):89~96
    [83]何炳林,黄少铭.高分子负载金属钯催化剂结构与性能关系研究的进展[J].自然科学进展—国家重点实验室通讯,1994,4(3):257~264
    [84]丁春黎,尚晓敏,刘喜晶,段庆春.Pd/C催化剂制备条件对其比表面积及糠醛脱羰涪性的影响[J].化工科技,2006,14(3):19~22
    [85]崔永春,汤峨,张小曼,尹家元.Pd(Ⅱ)-o-NBR-Triton X-100分光光度法测定微量钯[J].光谱实验室,2003,20(4):580~582
    [86]崔永春,汤峨,张小曼.Pd(Ⅱ)-p-NBR-CTMAB分光光度法测定微量钯[J].光谱实验室,2003,20(5):713~715
    [87]白宗庆,陈皓侃,李保庆.酸处理对活性炭性质及其催化裂解甲烷制氢性能的影响[J].中国矿业大学学报,2006,35(2):246~250
    [88]林辉,史鸿鑫,吴美宁等.Pd/C催化剂的制备与活性[J].浙江工业大学学报,1998,26 (2):94~97
    [89] Qiang.X,Xiang-lan.Z,Qing-ru.C.Influence of surface modification by nitric acid on the dispersion of copper nitrate in activated carbon[J].New carbon materials,2003,18(3):203~20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700