离子液体稳定的金属纳米粒子催化加氢性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以液相还原的方法,分别以2,3-二甲基-1-(3-N,N’-二(2-吡啶)-丙酰胺)咪唑六氟磷酸盐([BMMDPA]PF6)和1-(3-氨丙基)-2,3-二甲基咪唑盐([AMMIM]X) (X=Br-, OAc-)功能化离子液体为稳定剂,分别制备出在离子液体相和水相中稳定存在的纳米钯和纳米镍催化剂。利用UV-vis, XRD, TG, TEM, XPS和活性评价等多种研究方法,系统考察了催化剂的制备条件、物理化学性质(金属纳米颗粒的尺寸以及表面电荷性质)和催化反应性能之间的相互关系。通过研究主要得出以下结论:
     (1)合适的还原条件以及反应条件对催化反应活性和选择性有着非常重要的影响。
     作为稳定剂的功能化离子液体可以经过特殊分子设计:一方面保证其在对应反应溶剂中有良好的溶解性,保证反应物与纳米催化剂的良好的互溶性和传质速率;另一方面通过引入特殊官能团可以在还原过程中控制纳米颗粒的大小,增加其稳定性,防止聚集失活,同时也有可能改善纳米颗粒表面的电荷性质,提高反应活性和选择性。但过多的稳定剂会堵塞催化剂活性中心,不利于加氢反应的进行。通过对比实验发现:催化剂制备过程中剩余的稳定剂和添加剂在反应时会严重抑制催化活性,但可以通过多次离心分离洗涤等后处理步骤除去。此外,合适的还原条件有助于制备出粒径小,分散性好的过渡金属纳米颗粒,能使其保持高的反应活性和选择性;而温和的反应条件有利于提高纳米催化剂的稳定性和增加使用寿命。
     (2)通过UV-vis、XRD、TG、TEM、XPS和元素分析等多种表征手段证明:制备的Pd(0)或Ni(0)晶相均属于典型的面心立方晶系;即使通过多次离心分离洗涤后处理步骤,仍有重量含量约为24%的离子液体吸附在催化剂表面;并且功能化离子液体与纳米催化剂表面明显发生了电荷转移以及配位稳定作用。
     (3)通过对含不同阴离子的功能化离子液体[AMMIM]X稳定的镍纳米催化剂加氢活性研究发现:阴离子对加氢反应活性有重要影响。BF4-和[N(CN)2]-在反应条件下容易发生水解,引起Ni(0)被氧化成没有活性的Ni(Ⅱ)物种;含有多-OH或-COOH官能团的阴离子由于其较强的配位作用,毒害催化中心,导致催化剂前驱体很难被还原;以醋酸根,p-丙氨酸根和乳酸根为阴离子的三种功能化离子液体稳定的镍纳米催化剂在合适的反应条件下对柠檬醛C=C双键的选择性加氢可以得到相近的产率。通过对以OAc-和Br-为阴离子的功能化离子液体进一步研究发现:以前者为稳定剂时制备的镍纳米催化剂虽然粒径较大,但由于OAc-亲核能力相对较弱,因而能在更加温和的反应条件下表现出更高的加氢活性和选择性,通过循环实验发现该催化剂稳定性也相对较好。
     (4)本文另一新颖之处在于:将功能化离子液体稳定的Pd、Ni纳米催化剂分别分散在离子液体或水相当中,采用环境友好的两相催化体系(有机/离子液体相、有机/水相)对催化加氢反应进行研究。结果发现这两种催化体系对多种底物的选择性加氢反应都得到很高的转化率和选择性,优于商业催化剂,并在催化剂循环实验中发现纳米催化剂即使使用多次仍能保持较好的稳定性,活性和选择性也仍维持较高水平。
In this work, two kinds of functionalized ionic liquids-[2,3-dimethyl-1-(3-N, N-bis(2-pyridyl)-propylamido) imidazolium hexafluorophosphate ([BMMDPA]PF6) and 1-(3-aminopropyl)-2,3-dimethyl-imidazolium salts [AMMIM]X (X=Br-, OAc-)] were first synthesized and utilized for stabilizing palladium and nickel nanoparticles. The nanoparticles have been applied to selective hydrogenation in ionic liquids and aqueous phase, respectively. The relationships of the preparation conditions, physico-chemical characteristics (especially the particle size, surface electronic character) with the performance of the catalyst were discussed and analyzed by UV-vis, XRD, TG, TEM, XPS methods.
     (1) Suitable preparation and mild reaction conditions were favorable to enhancing the activity and selectivity of the catalyst.
     As stabilizers, the functionalized ionic liquids could be specially designed to increase the nanocatalysts solubility in reaction media (avoiding the mass transfer limitations), to control the nanoparticles size and enhance the stability of nanocatalysts from being aggregated. They could also alter the surface electronic characteristics of the nanocatalysts, and thus leading to the higher activity and selectivity. In the control experiments, it was found that the excess stabilizer would block and deactivate the active centre of the catalysts and seriously suppressed the activity of the hydrogenation. However, the purification steps seemed to be an effective way to remove the excess ligands adsorbed on the surface of the catalyst and the activity could be recovered. Besides, suitable pre-reduction conditions were critical to obtaining small, well-dispersed and stabilized nanoparticles and thus kept their high activity and selectivity.
     (2) XRD analysis had confirmed that both of the Pd(0) and Ni(0) crystallites were indexed as face-centered cubic (fcc) structure. UV-vis, TG, ICP-AES, TEM and XPS analyses showed that even if the nanocatalysts had been underwent the purification steps, there was still ca.24 wt.% of ionic liquid remaining on their surface.
     (3) The different anions in functionalized ionic liquids-[AMMIM]X utilized for stabilizing Ni(0) nanocatalysts significantly affected their activity towards selective hydrogenation of C=C double bonds of citral:BF4- and [N(CN)2]- were easy to hydrolyze under reaction conditions, which would induce the highly active Ni(0) nanocatalysts to be oxidized into unreactive Ni(II) species; the anions containing more -OH or -COOH groups with strong coordination ability would lead the precursor hard to be reduced to active metal nanocatalysts; Ni(0) nanocatalysts stabilized by [AMMIM]X (X=OAc-,NH2CH2CH2COO-and CH3CH(OH)COO-) had showed comparable performance under optimized reaction conditions. The activity difference of OAc- and Br- anions was unexpected:although the size of Ni(0) nanoparticles stabilized by [AMMIM]OAc was much bigger, they owned higher activity and stability. This could be ascribed to stronger hydrophility of Br- anion and thus some of the active centers were blocked by Br- and became inaccessible to substrates.
     (4) The strategy in this work was to utilize biphasic catalytic system (organic/ionic liquid, organic/aqueous phase), which was convenient for the recycling of the catalysts. The present catalytic systems had showed higher activity and selectivity towards many substrates than commercial catalysts.
引文
[1]王延吉,赵新强.绿色催化过程与工艺.化学工业出版社,2002.
    [2]Welton T. Room temperature ionic liquids solvent for synthesis and catalysis. Chem. Rev.1999,99(8):2071-2083.
    [3]邓友全.离子液体-性质、制备与应用.中国石化出版社,2006.
    [4]石家华,孙逊,杨春和等.离子液体研究进展.化学通报.2002,(4):243-250.
    [5]Earle M J, Esperanc J M S S, Gilea M A, Canongia Lopes J N, Rebelo L P N, Magee J W, Seddon K R, Widegren J A. The distillation and volatility of ionic liquids. Nature.2006,439(7078):831-834.
    [6]Rantwijk van F, Sheldon R A. Biocatalysis in ionic liquids. Chem. Rev.2007, 107(6):2757-2785.
    [7]Newington I, Perez-Arlandis J M, Welton T. Ionic liquids as designer solvents for nucleophilic aromatic substitutions. Org. Lett.2007,9(25):5247-5250.
    [8]Varma R S, Namboodiri V V. An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun.2001, (7):643-644.
    [9]Law M C, Xong K Y, Chan T H. Solvent-free route to ionic liquid precursors using a water-moderated microwave process. Green Chem.2002,4(4):328-330.
    [10]Khadilkar B M, Rebeito G L. Microwave-assisted synthesis of room-temperature ionic liquid precursor in closed vessel. Org. Process Res. Dev.2002,6(6):826-828.
    [11]Namboodiri V V, Varma R S. Solvent-free sonochemical preparation of ionic liquids. Org. Lett.2002,4(18):3161-3163.
    [12]Leveque J M, Luche J L, Petrier C, Roux R, Bonrath W. An improved preparation of ionic liquids by ultrasound. Green Chem.2002,4(4):357-360.
    [13]King Jr J A. Extractive method for the preparation of quaternary salts. US: 5705696,1998.
    [14]Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic crystals. J. Chem. Soc. Dalton. Trans.1999, 13,2133-2139.
    [15]Bonhote P, Dias A P, Papageorgiou N. Hydrophobic highly conductive ambient-temperature molten salts. Inorg. Chem.1996,35(5):1168-1178.
    [16]Bowlas C J, Bruce D W, Seddon K R. Probing anion-carbon dioxide interactions in room temperature ionic liquids:Gas phase cluster calculations. Chem. Commun. 1996,3(14):1625-1626.
    [17]Gordon J E, Subba R G N. Fused organic salts properties of molten straight-chain isomers of tetra-n-pentylammonium salts. J. Am. Soc. Chem.1978,100(24): 7445-7454.
    [18]Sun J, Forsyth M, MacFarlane D R. Room-temperature molten salts based on the quartemary ammonium ion. J. Phys. Chem. B.1998,102(44):8858-886.
    [19]Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporations. Inorg. Chem.2001,11(3):2484-2485.
    [20]Ma M, Johnson K E. Carbocation formation by selected hydrocarbons in trimethylsulfonium bromide-AlCl3/AlBr3-HBr ambient temperature molten salts. J. Am. Chem. Soc.1995,117(5):1508-1513.
    [21]Fannin A A, Floreani D A, King L A. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids.2. Phase transitions, densities, electrical conductivities and viscosities. J. Phys. Chem. B.1984,88(12):2614-2621.
    [22]Quarmby I C, Osteryoung R A. Latent acidity in buffered chloroaluminate ionic liquids. J. Am. Chem. Soc.1994,116(6):2649-2650.
    [23]Tait S, Osteryoung R A. Cofacial assembly of partially oxidized metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids:Synthesis and properties of cofacially joined silicon and germanium hemiporphyrazine polymers. Inorg. Chem.1984,23(25): 4352-4360.
    [24]Clive J. Boxwell, Paul J. Dyson, David J. Ellis, Thomas Welton. A highly selective arene hydrogenation catalyst that operates in ionic liquid. J. Am. Chem. Soc. 2002,124(32):9334-9335.
    [25]McLachlan F, Mathews C J, Smith P J, Welton T. Palladium-catalyzed Suzuki cross-coupling reactions in ambient temperature ionic liquids:Evidence for the importance of palladium imidazolylidene complexes. Organometallics.2003,22(25): 5350-5357.
    [26]Bosmann A, Datsevich L, Jess A, Lauter A, Schmitz C, Wasserscheid P. Deep desulfurization of disel fuel by extraction with ionic liquids. Chem. Commun.2001, (23):2494-2495.
    [27]Boon J A, Levisky J A, Pflug J L, Wikes J S. Friedel-Crafts reactions in ambient-temperature molten salts. J. Org. Chem.1986,51(4):480-483.
    [28]DeCastro C, Sauvage E, Valkenberg M H, Holderich W F. Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene. J. Catal.2000,196(1):86-94.
    [29]Earle M J, Hakala U, Hardacre C, Karkkainen J, McAuley B J, Rooney D W, Seddon K R, Thompson J M, Wahala K. Chloroindate(III) ionic liquids:Recyclable media for Friedel-Crafts acylation reactions. Chem. Commun.2005, (7):903-905.
    [30]Howarth J, Hanlon K, Fayne D, McCormac P. Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous lewis acids in the Diels-Alder reaction. Tetrahedron Lett.1997,38(17):3097-3100.
    [31]Doherty S, Goodrich P, Hardacre C, Luo H K, Rooney D W, Seddon K R, Styring P. Marked enantioselectivity enhancements for Diels-Alder reactions in ionic liquids catalysed by platinum diphosphine complexes. Green Chem.2004,6(1): 63-67.
    [32]Picquet M, Tkatchenko I, Tommasi I, Wasserscheid P, Zimmermann J. Ionic liquids,3. Synthesis and utilisation of protic imidazolium salts in homogeneous catalysis. Adv. Synth. Catal.2003,345(8):959-962.
    [33]Chauvin Y, Mussmann L, Olivier H. A novel class of versatile solvents for two-phase catalysis:hydrogenation, isomerization, and hydroformylation of alkenes catalyzed by rhodium complexes in liquid 1,3-dialkylimidazolium salts. Angew. Chem. Int. Ed. Engl.1996,34(23):2698-2700.
    [34]Suarez P A, Dullius J E L, Einloft S, De Souza R F, Dupont J. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron.1996,15(7):1217-1219.
    [35]Dyson P J, Ellis D J, Welton T, Parker D G. Arene hydrogenation in a room-temperature ionic liquid using a ruthenium cluster catalyst. Chem. Commun. 1999, (1):25-26.
    [36]Adams C J, Earle M J, Seddon K R. Stereoselective hydrogenation reactions in chloroaluminate(III) ionic liquids:a new method for the reduction of aromatic compounds. Chem. Commun.1999, (11):1043-1044.
    [37]Muzart J. Ionic liquids as solvents for catalyzed oxidations of organic compounds. Adv. Synth. Catal.2006,348(3):275-295.
    [38]Cull S G, Holbrey J D, Vargas-Mora V, Seddon K R, Lye G J. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng.2000,69(2):227-233.
    [39]Sheldon R A, Lau R M, Sorgedrager M J, van Rantwijk F, Seddon K R. Biocatalysis in ionic liquids. Green Chem.2002,4(2):147-151.
    [40]Magnusson D K, Bodley J W, Adams D F. The activity and stability of alkaline phosphatase in solutions of water and the fused salt ethylammonium nitrate. J. Sol. Chem.1984,13(8):583-587.
    [41]Lee S. Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem. Commun.2006, (7):1049-1063.
    [42]McGuinness D S, Saendig N, Yates B F, Cavell K J. Kinetic and density functional studies on alkyl-carbene elimination from Pd(Ⅱ) heterocylic carbene complexes:A new type of reductive elimination with clear implications for catalysis. J. Am. Chem. Soc.2001,123(17):4029-4040.
    [43]McGuinness D S, Cavell K J, Yates B F, Skelton B W, White A H. Oxidative addition of the imidazolium cation to zerovalent Ni, Pd and Pt:A combined density functional and experimental study. J. Am. Chem. Soc.2001,123(34):8317-8328.
    [44]Chaumont A, Wipff G. Solvation of uranyl(II) and europium(1Ⅱ) cations and their chloro complexes in a room-temperature ionic liquid:A theoretical study of the effect of solvent "humidity". Inorg. Chem.2004,43(19):5891-5901.
    [45]Gaillard C, El Azzi A, Billard I, Bolvin H, Hennig C. Uranyl complexation in fluorinated acids (HF, HBF4, HPF6, HTf2N):A combined experimental and theoretical study. Inorg. Chem.2005,44(4):852-861.
    [46]Katsyuba S A, Dyson P J, Vandyukova E E, Chernova A V, Vidis A. Molecular structure, vibrational spectra and hydrogen bonding of the ionic liquid 1-ethyl-3-methyl-lH-imidazolium tetrafluoroborate. Helv. Chim. Acta.2004,87(10): 2556-2565.
    [47]Ellis D J, Dyson P J, Parker D G, Welton T. Hydrogenation of non-activated alkenes catalysed by water-soluble ruthenium carbonyl clusters using a biphasic protocol. J. Mol. Catal. A:Chem.1999,150(1-2):71-75.
    [48]Dyson P J, Ellis D J, Welton T. A temperature-controlled reversible ionic liquid-water two phase-single phase protocol for hydrogenation catalysis. Can. J. Chem.2001,79(5):705-708.
    [49]Dyson P J, Kathryn R. Welton T. Electrospray mass spectrometry of [Ru4(η6-C6H6)4(OH)4]4+:First direct evidence for the persistence of the cubane unit in solution and its role as a precatalyst in the hydrogenation of benzene. Inorg. Chem. Commun.2001,4(10):571-573.
    [50]Boxwell C J, Dyson P J, Ellis D J, Welton T. A highly selective arene hydrogenation catalyst that operates in ionic liquid. J. Am. Chem. Soc.2002,124(32): 9334-9335.
    [51]Dyson P J, Ellis D J, Henderson W, Laurenczy G. A comparison of ruthenium-catalysed arene hydrogenation reactions in water and 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Adv. Synth. Catal.2003, 345(1-2):216-221.
    [52]Dyson P J, Laurenczy G, Ohlin C A, Vallance J, Welton T. Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation. Chem. Commun.2003, (19):2418-2419.
    [53]Zhao D, Dyson P J, Laurenczy G, Mclndoe J S. On the catalytic activity of cluster anions in styrene hydrogenation:considerable enhancements in ionic liquids compared to molecular solvents. J. Mol. Catal. A:Chem.2004,214(1):19-25.
    [54]Ohlin C A, Dyson P J, Laurenczy G. Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation. Chem. Commun.2004, (9):1070-1071.
    [55]Daguenet C, Scopelliti R, Dyson P J. Mechanistic investigations on the hydrogenation of alkenes using ruthenium(Ⅱ)-arene diphosphine complexes. Organometallics.2004,23(21):4849-4857.
    [56]Vidis A, Ohlin C A, Laurenczy G, Kuesters E, Sedelmeier G, Dyson P J. Rationalisation of solvent effects in the Diels-Alder reaction between cyclopentadiene and methyl acrylate in room temperature ionic liquids. Adv. Synth. Catal.2005, 347(2):266-274.
    [57]Xiao J C, Shreeve J M. Synthesis of 2,2'-biimidazolium-based ionic liquids:Use as a new reaction medium and ligand for palladium-catalyzed Suzuki cross-coupling reactions. J. Org. Chem.2005,70(8):3072-3078.
    [58]Zhao D, Fei Z, Geldbach T J, Scopelliti R, Dyson P J. Nitrile-functionalized pyridinium ionic liquids:synthesis, characterization and their application in carbon-carbon coupling reactions. J. Am. Chem. Soc.2004,126(48):15876-15882.
    [59]Geldbach T J, Dyson P J. A versatile ruthenium precursor for biphasic catalysis and its application in ionic liquid biphasic transfer hydrogenation:Conventional vs task-specific catalysts. J. Am. Chem. Soc.2004,126(26):8114-8115.
    [60]Sasaki K, Matsumura S, Toshima K. A novel glycosidation of glycosyl fluoride using a designed ionic liquid and its effect on the stereoselectivity. Tetrahedron Lett. 2004,45(38):7043-7047.
    [61]Brown R J C, Welton T, Dyson P J. Ellis D J. 1-Butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]:A catalytically active organometallic ionic liquid. Chem. Commun.2001, (18):1862-1863.
    [62]Qian W, Jin E, Bao W, Zhang Y. Clean and highly selective oxidation of alcohols in an ionic liquid by using an ion-supported hypervalent iodine(III) reagent. Angew. Chem. Int. Ed. Engl.2005,44(6):952-955.
    [63]He X, Chan H. New non-volatile and odorless organosulfur compounds anchored on ionic liquids. Recyclable reagents for Swern oxidation. Tetrahedron.2006,62(14): 3389-3394.
    [64]Dubreuil J F, Bazureau J P. Rate accelerations of 1,3-dipolar cycloaddition reactions in ionic liquids. Tetrahedron Lett.2000,41(38):7351-7355.
    [65]Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. Novel Bronsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc.2002,124(21):5926-5963.
    [66]Zhang H B, Zhou X H, Xu F. A bronsted acidic ionic liquid as an efficient and reusable catalyst system for esterification. Green Chem.2007,9(10):1208-1211.
    [67]Hu S Q, Jiang T, Zhang Z F. Functional ionic liquid from biorenewable materials: Synthesis and application as a catalyst in direct aldol reactions. Tetrahedron Lett. 2007,48(32):5613-5617.
    [68]Zhou H C, Shi F, Tian X. Synthesis of carbamates from aliphatic amines and dimethyl carbonate catalyzed by acid functional ionic liquids. J. Mol. Catal. A:Chem. 2007,271(1):98-92.
    [69]Yang Q W, Wei Z J, Xing H B. Bronsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal. Commun.2008,9(6): 1307-1311.
    [70]Gu Y, Shi F, Deng Y. SO3H-functionalized ionic liquid as efficient, green and reusable acidic catalyst for oligomerization of olefins. Catal. Commun.2004,4(11): 597-601.
    [71]DeCastro C, Sauvage E, Valkenberg M H, Holderich W F. Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene. J. Catal.2000,196(1):86-94.
    [72]Riisager A, Fehrmann R, Haumann M, Wasserscheid P. Supported ionic liquid phase (SILP) catalysis:An innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur. J. Inorg. Chem.2006, (4):695-706.
    [73]Jerome B, Katy P, Pierre J M. Development of new SILP catalysts using chitosan as support. Green Chem.2007,9(12):1346-1351.
    [74]Keim W, Korth W, Wasserscheid P. Ionic liquids. WO0016902,2000.
    [75]Schmidt M, Heider U, Geissler W, Ignatyev N, Hilarius V. Ionic liquid Ⅱ. US2002015884,2002.
    [76]Hilarius V, Heider U, Schmidt M. Ionic liquids. EP1160249,2001.
    [77]Robertson A J. Phosphonium salts. WO0187900,2001.
    [78]Chauvin Y, Einloft S, Olivier H. Catalytic dimerization of propene by nickel-phosphine complexes in 1-butyl-3-methylimidazolium chloride/AlEtxCl3-x (x =0,1) ionic liquids. Ind. Eng. Chem. Res.1995,34(4):1149-1155.
    [79]Chauvin Y, Olivier H, Wyrvalski C N, Simon L C, De Souza R F. Oligomerization of n-butene catalyzed by nickel complexes dissolved in organochloroaluminate ionic liquids. J. Catal.1997,165(2):275-278.
    [80]Seddon K R. Ionic liquids:A taste of the future. Nat. Mater.2003,2:363-365.
    [81]Aggarwal V K, Emme I, Mereu A. Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction. Chem. Commun.2002, (15):1612-1613.
    [82]Finke R G, in:Feldheim D L, Foss Jr. C A (Eds.). Metal nanoparticles:Synthesis, characterization, and applications. Marcel Dekker, New York,2001.
    [83]Bradley J S, in:G. Schmid (Ed.). Clusters and colloids:From theory to applications. VCH, New York,1994,459-544.
    [84]Lewis L N. Chemical catalysis by colloids and clusters. Chem. Rev.1993,93(8): 2693-2730.
    [85]Bonnemann H, Braun G, Brijoux G B, Brinkman R, Tilling A S, Seevogel K, Siepen K. Nanoscale colloidal metals and alloys stabilized by solvents and surfactants preparation and use as catalyst precursors. J. Organomet. Chem.1996,520(1): 143-162.
    [86]Pool R. Clusters:Strange Morsels of Matter:When metals or semiconductors are shrunk down to clumps only 10 or 100 atoms in size, they become a "totally new class of materials" with potentially valuable applications. Science.1990,248,1186-1188.
    [87]Aiken III J D, Finke R G. A review of modern transition-metal nanoclusters:their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A.1999, 145(1):1-44.
    [88]Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts:The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed.2005, 44(48):7852-7872.
    [89]Hamlin J E, Hirai K, Gibson V C, Maitlis P M. Pentamethylcyclopentadienyl-rhodium and-iridium complexes:Part 35. Hydrogenation catalysts based on [(RhC5Me5)2(OH)3]+ and the border between homogeneous and heterogeneous systems. J. Mol. Catal.1982,15(3):337-347.
    [90]Foley P, DiCosimo R, Whitesides G M. Mechanism of thermal decomposition of dineopentyl bis(triethylphosphine) platinum(II):Formation of bis(triethylphosphine)-3,3-dimethyl platinacyclobutane. J. Am. Chem. Soc.1980, 102(22):6713-6725.
    [91]Crabtree R H, Mellea M F, Mihelcic J M, Quirk J M. Alkane dehydrogenation by iridium complexes. J. Am. Chem. Soc.1982,104(1):107-113.
    [92]Collman J P, Kosydar K M, Bressan M, Lamanna W, Garrett T. Polymer-bound substrates:A method to distinguish between homogeneous and heterogeneous catalysis. J. Am. Chem. Soc.1984,106(9):2569-2579.
    [93]Lewis L N, Lewis N. Platinum-catalyzed hydrosilylation-colloid formation as the essential step. J. Am. Chem. Soc.1986,108(23):7228-7231.
    [94]Lin Y, Fink R G. A more general approach to distinguishing "homogeneous" from "heterogeneous" catalysis:Discovery of polyoxoanion-and Bu4N+-stabilized, isolable and redissolvable, high-reactivity Ir-190-450 nanocluster catalysts. Inorg. Chem. 1994,33(22):4891-4910.
    [95]Halpern J. Mechanistic aspects of homogeneous catalytic hydrogenation and related processes. Inorg. Chim. Acta.1981,50:11-19.
    [96]Blum J, Amer I, Vollhardt K P C, Schwarz H, Hoehne G. Hydrogenation of arenes by the RhC13-Aliquat 336 catalyst.4. Hydrogen-deuterium exchange and other mechanistic features. J. Org. Chem.1987,52(13):2804-2813.
    [97]Maitlis P M. (Pentamethylcyclopentadienyl)rhodium and-iridium complexes: Approaches to new types of homogeneous catalysts. Acc. Chem. Res.1978,11(8): 301-307.
    [98]Bennett M A, Huang T N, Turney T W. Dinuclear arene hydrido-complexes of ruthenium(II):Reactions with olefins and catalysis of homogeneous hydrogenation of arenes. J. Chem. Soc. Chem. Commun.1979, (7):312-314.
    [99]Whitesides G M, Hackett M, Brainard R L, Lavalleye J P P M, Sowinski A F, Izumi A N, Moore S S, Brown D W, Staudt E M. Suppression of unwanted heterogeneous platinum(0)-catalyzed reactions by poisoning with mercury(0) in systems involving competing homogeneous reactions of soluble organoplatinum compounds:Thermal decomposition of bis(triethylphosphine)-3,3,4, 4-tetramethylplatinacyclopentane. Organometallics.1985,4(10):1819-1830.
    [100]Fujimoto T, Terauchi S, Umehara H, Kojima I, Henderson W. Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem. Mater. 2001,13(3):1057-1060.
    [101]Wilcoxon J P, Martin J E, Provencio P. Size distributions of gold nanoclusters studied by liquid chromatography. Langmuir.2000,16(25):9912-9920. [102] Hunter R J. Foundations of Colloid Science. Vol.1. Oxford University Press. New York,1986.
    [103]Bard A J, Faulkner L R. Electrochemical methods:Fundamentals and applications. Wiley. New York,1980.
    [104]Templeton A C, Wuelfing W P, Murray R W. Monolayer-protected cluster molecules. Acc. Chem. Res.2000,33(1):27-36.
    [105]Liu H, Toshima N. Transferring colloidal metal particles from an organic to an aqueous medium and vice versa by ligand coordination. J. Chem. Soc. Chem. Commun.1992, (16):1095-1096.
    [106]Gittins D I, Caruso F. Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed.2001,40(16):3001-3004.
    [107]De Caro D, Bradley J S. Investigation of the surface structure of colloidal platinum by infrared spectroscopy of adsorbed CO. New. J. Chem.1998,22(11): 1267-1273.
    [108]Schmid G, Maihack V, Lantermann F, Peschel S. Ligand-stabilized metal clusters and colloids:properties and applications. J. Chem. Soc. Dalton. Trans.1996, (5):589-595.
    [109]Howard J A, Preston K F, Mile B. Cryochemical studies.1. ESR spectrum of silver (Ag3). J. Am. Chem. Soc.1981,103(20):6266-6227.
    [110]Amiens C, De Caro D, Chaudret B, Bradley J S, Mazel R, Roucau C. Selective synthesis, characterization, and spectroscopic studies on a novel class of reduced platinum and palladium particles stabilized by carbonyl and phosphine ligands. J. Am. Chem. Soc.1993,115(24):11638-11639.
    [111]Watzky M A, Fink R G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant:Slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc.1997, 119(43):10382-10400.
    [112]Reetz M T, Westermann E. Phosphane-free palladium-catalyzed coupling reactions:The decisive role of Pd nanoparticles. Angew. Chem. Int. Ed.2000,39(1): 165-168.
    [113]Klingelhofer S, Heitz W, Greiner A, Oestreich S, Forster S, Antonietti M. Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the heck reaction. J. Am. Chem, Soc.1997,119(42):10116-10120.
    [114]Reetz M T, Lohmer G. Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck. Chem. Commun.1996, (16):1921-1922.
    [115]Beller M, Fischer H, Kiihlein K, Reisinger C P, Herrmann W A. First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems. J. Organomet. Chem.1996,520(2):257-259.
    [116]Le Bars J, Specht U, Bradley J S, Blackmond D G. A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir. 1999,15(22):7621-7625.
    [117]Gates B C. Catalytic chemistry. Wiley. New York,1992,396-403.
    [118]Templeton A C, Hostetler M J, Warmoth E K, Chen S, Hartshorn C M, Krishnamurthy V J, Forbes M D E, Murray R W. Gateway reactions to diverse, polyfunctional monolayer-protected gold clusters. J. Am. Chem. Soc.1998,120(19): 4845-4849.
    [119]Templeton A C, Hostetler M J, Kraft C T, Murray R W. Reactivity of monolayer-protected gold cluster molecules:Steric effects. J. Am. Chem. Soc.1998, 120(8):1906-1911.
    [120]Bartz M, Kuther J, Seshadri R, Tremel W. Colloid-bound catalysts for ring-opening metathesis polymerization:A combination of homogenous and heterogeneous properties. Angew. Chem. Int. Ed.1998,37(18):2466-2468.
    [121]Liz-Marzan L M, Giersig M, Mulvaney P. Homogeneous silica coating of vitreophobic colloids. Chem. Commun.1996, (6):731-732.
    [122]Horvath IT, Rabai J. Facile catalyst separation without water:Fluorous biphase hydroformylation of olefins. Science.1994,266,72-75.
    [123]Gladysz J A. Are teflon "ponytails" the coming fashion for catalysts? Science. 1994,266,55-56.
    [124]Wan K T, Davis M E. Design and synthesis of a heterogeneous asymmetric catalyst. Nature.1994,370,449-450.
    [125]Arhancet J P, Davis M E, Merola J S, Hanson B E. Hydroformylation by supported aqueous-phase catalysis:A new class ofheterogeneous catalysts. Nature. 1989,339,454-455.
    [126]Dupont J, Fonseca G S, Umpierre A P, Fichtner P F P, Teixeira S R. Transition-metal nanoparticles in imidazolium ionic liquids:Recycable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc.2002,124(16):4228-4229.
    [127]Aiken III J D, Fink R G. Polyoxoanion-and tetrabutylammonium-stabilized Rh(0)n nanoclusters:Unprecedented nanocluster catalytic lifetime in solution. J. Am. Chem. Soc.1999,121(38):8803-8810.
    [128]Scheeren C W, Machado G, Teixeira S R, Morais J, Domingos J B, Dupont J. Synthesis and characterization of Pt(0) nanoparticles in imidazolium ionic liquids. J. Phys. Chem. B.2006,110(26):13011-13020.
    [129]Cha J H, Kim K S, Choi S, Yeon S H, Lee H, Lee C S, Shim J J. Size-controlled electrochemical synthesis of palladium nanoparticles using morpholinium ionic liquid. Korean J. Chem. Eng.2007,24(6):1089-1094.
    [130]Deshmukh R R, Rajagopal R, Srinivasan K V. Ultrasound promoted C-C bond formation:Heck reaction at ambient conditions in room temperature ionic liquids. Chem. Commun.2001, (17):1544-1545.
    [131]Gao S Y, Zhang H J, Wang X M, Mai W P, Peng C Y, Ge L H. Palladium nanowires stabilized by thiol-functionalized ionc liquid:Seed-mediated synthesis and heterogeneous catalyst for Sonogashira coupling reaction. Nanotechnology.2005, 16(8):1234-1237.
    [132]Durand J, Teuma E, Malbosc F, Kihn Y, Gomez M. Palladium nanoparticles immobilized in ionic liquid:An outstanding catalyst for the Suzuki C-C coupling. Catal. Commun.2008,9(2):273-275.
    [133]Huang J, Jiang T, Han B, Gao H, Chang Y, Zhao G, Wu W. Hydrogenation of olefins using ligand-stabilized palladium nanoparticles in an ionic liquid. Chem. Commun.2003, (14):1654-1655.
    [134]Umpierre A P, Machado G, Fecher G H., Morais J, Dupont J. Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv. Synth. Catal.2005,347(10):1404-1412.
    [135]Huang J, Jiang T, Gao H, Han B, Liu Z, Wu W, Chang Y, Zhao G. Pd nanoparticles immobilized on molecular sieves by ionic liquids:Heterogeneous catalysts for solvent-free hydrogenatio. Angew. Chem. Int. Ed.2004,43(11): 1397-1399.
    [136]张晟卯,张春丽,吴志申.室温离子液体介质中尺寸、结构可控Ni纳米微粒的制备及结构表征.化学学报.2004,62(15):1443-1446.
    [137]Xu D Q, Hu Z Y, Li W W, Luo S P, Xu Z Y. Hydrogenation in ionic liquids:An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. J. Mol. Catal. A:Chem.2005,235(1-2):137-142.
    [138]王雪涛,余林,彭兰乔,孙明,许洁瑜,余倩,余坚.离子液体[bmim]PF6中制备纳米金属Ni及其催化苯乙烯加氢的研究.功能材料.2008,39(3):519-522.
    [139]Fonseca G S, Machado G, Teixeira S R, Fecher G H, Morais J, Alves M C M, Dupont J. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J. Colloid Inter. Sci.2006,301(1):193-204.
    [140]Migowski P, Machado G, Texeira S R, Alves M C M, Morais J, Traverse A, Dupont J. Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids. Phys. Chem. Chem. Phys.2007,9(34):4814-4821.
    [141]Migowski P, Teixeira S R, Machado G, Alves M C M, Geshev J, Dupont J. Structural and magnetic characterization of Ni nanoparticles synthesized in ionic liquids. J. Electron Spectrosc. Relat. Phenom.2007,156-158:195-199.
    [142]Larionova J, Guari Y, Sayegh H, Guerin C. Synthesis of soluble coordination polymer nanoparticles using room-temperature ionic liquid. Inorg. Chim. Acta.2007, 360(13):3829-3836.
    [143]Fan Q, Liu Y, Zheng Y, Yan W. Preparation of Ni/SiO2 catalyst in ionic liquids for hydrogenation. Front. Chem. Eng. China.2008,2(1):63-68.
    [144]Kernchen U, Etzold B, Korth W, Jess A. Solid catalyst with ionic liquid layer (SCILL)-A new concept to improve selectivity illustrated by hydrogenation of cyclooctadiene. Chem. Eng. Technol.2007,30(8):985-994.
    [145]Bauer K, Garbe D. Common fragrance and flavor materials. VCH. New York, 1985.
    [146]Sajiki H, Hattori K, Hirota K. The formation of a novel Pd/C-ethylenediamine complex catalyst:Chemoselective hydrogenation without deprotection of the O-benzyl and N-cbz groups. J. Org. Chem.1998,63(22):7990-7992.
    [147]Sajiki H, Hattori K, Hirota K. Highly chemoselective hydrogenation with retention of the epoxide function using a heterogeneous Pd/C-ethylenediamine catalyst and THF. Chem. Eur. J.2000,6(12):2200-2204.
    [148]Downing R S, Kunkeler P J, Van Bekkum H. Catalytic syntheses of aromatic amines. Catal. Today.1997,37(2):121-136.
    [149]Kratky V, Kralik M, Mecarova M, Stolcova M, Zalibera L. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes. Appl. Catal. A.2002, 235(1-2):225-231.
    [150]Cardenas-Lizana F, Gomez-Quero S, Keane M A. Clean production of chloroanilines by selective gas phase hydrogenation over supported Ni catalysts. Appl. Catal. A.2008,334(1-2):199-206.
    [151]Du Y, Chen H, Chen R, Xu N. Synthesis of p-aminophenol from p-nitrophenol over nono-sized nickel catalysts. Appl. Catal. A.2004,277(1-2):259-264.
    [152]Li H, Zhao Q, Wan Y,Dai W, Qiao M. Self-assembly of mesoporous Ni-B amorpohous alloy catalysts. J. Catal.2006,244(2):251-254.
    [153]Leger B, Denicourt-Nowicki A, Roucoux A, Olivier-Bourbigou H. Synthesis of bipyridine-stabilized rhodium nanoparticles in non-aqueous ionic liquids:A new efficient approach for arene hydrogenation with nanocatalysts. Adv. Synth. Catal. 2008,350(1):153-159.
    [154]Calo V, Nacci A, Monopoli A. Regio-and stereo-selective carbon-carbon bond formation in ionic liquids. J. Mol. Cat. A:Chem.2004,214(1):45-56.
    [155]Bruss A J, Gelesky M A, Machado G, Dupont J. Rh(0) nanoparticles as catalyst precursors for the solventless hydroformylation of olefins. J. Mol. Cat. A:Chem. 2006,252(1-2):212-218.
    [156]Li J, Tang B, Tao L, Xie Y, Liang Y, Zhang M. Resuable copper-catalyzed cross-coupling reactions of aryl halides with organotins in inexpensive ionic liquids. J. Org. Chem.2006,71(19):7488-7490.
    [157]Yang X, Yan N, Fei Z F, Crespo-Quesada R M, Laurenczy G, Kiwi-Minsker L, Kou Y, Li Y D, Dyson P J. Biphasic hydrogenation over PVP stabilized Rh nanoparticles in hydroxyl functionalized ionic liquid. Inorg. Chem.,2008,47(17): 7444-7446.
    [158]Reziq R A, Wang D S, Post M, Alper H. Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles:Selective hydrogenation catalysts. Adv. Synth. Catal.2007,349(13):2145-2150.
    [159]Manikandan D, Divakar D, Sivakumar T. Utilization of clay minerals for developing Pt nanoparticles and their catalytic activity in the selective hydrogenation of cinnamaldehyde. Catal. Commun.2007,8(11):1781-1786.
    [160]Ma H X, Wang L C, Chen L Y, Dong C, Yu W C, Huang T, Qian Y T. Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde. Catal. Commun.2007,8(3):452-456.
    [161]Li Y, Zhu P F, Zhou R X. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with carbon nanotubes supported Pt-Co catalysts. Appl. Sur. Sci. 2008,254(9):2609-2614.
    [162]Semagina N, Joannet E, Parra S, Sulman E, Renken A, Kiwi-Minsker L. Palladium nanoparticles stabilized in block-copolymer micelles for highly selective 2-butyne-1,4-diol partial hydrogenation. Appl. Catal. A:Gen.2005,280(2):141-147.
    [163]Bras J L, Mukherjee D K, Gonzalez S, Tristany M, Ganchegui B, Manas M M, Pleixats R, Henin F, Muzart J. Palladium nanoparticles obtained from palladium salts and tributylamine in molten tetrabutylammonium bromide:their use for hydrogenolysis-free hydrogenation of olefins. New J. Chem.2004,28(12): 1550-1553.
    [164]Callis N M, Thiery E, Bras J L, Muzart J. Palladium nanoparticles-catalyzed chemoselective hydrogenations, a recyclable system in water. Tetrahedron Lett.2007, 48(46):8128-8131.
    [165]Hu Y, Yu Y Y, Hou Z S, Li H, Zhao X G, Feng B. Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles. Adv. Synth. Catal.2008,350(13):2077-2085.
    [166]Hu Y, Yang H M, Zhang Y.C, Hou Z S, Wang X R, Qiao Y X, Li H, Feng B, Huang Q F. The functionalized ionic liquid-stabilized palladium nanoparticles catalyzed selective hydrogenation in ionic liquid. Catal. Commun.2009,10(14): 1903-1907.
    [167]Besson C, Finney E E, Finke R G. A Mechanism for transition-metal nanoparticle self-assembly. J. Am. Chem. Soc.2005,127(22):8179-8184.
    [168]Reetz M T, De Vries J G._Ligand-free Heck reactions using low Pd-loading. Chem. Commun.2004, (14):1559-1563.
    [169]Clerac R, Cotton F A, Dunbar K R, Murillo C A, Pascual I, Wang X. Further study of the linear trinickel(Ⅱ) complex of dipyridylamide. Inorg. Chem.1999,38(11): 2655-2657.
    [170]Zawartka W, Trzeciak A M, Ziolkowski J J, Lis T, Ciunik Z, Pernak J. Methoxycarbonylation of iodobenzene in ionic liquids. A case of inhibiting effect of imidazolium halides. Adv. Synth. Catal.2006,348(12):1689-1698.
    [171]Kume Y, Qiao K, Tomida D, Yokoyama C. Selective hydrogenation of cinnamaldehyde catalyzed by palladium nanoparticles immobilized on ionic liquids modified-silica gel. Catal. Commun.2008,9(3):369-375.
    [172]Altman M, Shukla A D, Zubkov T, Evmenenko G, Dutta P, Van Der Boom M E. Controlling structure from the bottom-up:Structural and optical properties of layer-by-layer assembled palladium coordination-based multilayers. J. Am. Chem. Soc.2006,128(22):7374-7382.
    [173]Shen C, Haryono M, Grohmann A, Buck M, Weidner T, Ballav N, Zharnikov M. Self-assembled monolayers of a bis(pyrazol-1-yl)pyridine-substituted thiol on Au(111). Langmuir.2008,24(12):12883-12891.
    [174]Lockett V, Sedev R, Bassell C, Ralston J. Angle-resolved X-ray photoelectron spectroscopy of the surface of imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2008,10(9):1330-1335.
    [175]Hou Z S, Theyssen N, Brinkmann A, Klementiev K V, Grunert W, Buhl M, Schmidt W, Spliethoff B, Tesche B, Weidenthaler C, Leitner W. Supported palladium nanoparticles on hybrid mesoporous silica:Structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide. J. Catal.2008,258(2): 315-323.
    [176]Steinhoff B A, Guzei I A, Stahl S S. Mechanistic characterization of aerobic alcohol oxidation catalyzed by Pd(OAc)2/pyridine including identification of the catalyst resting state and the origin of nonlinear [catalyst] dependence. J. Am. Chem. Soc.2004,126(36):11268-11278.
    [177]Wilson O M, Knecht M R, Martinez J C G, Crooks R M. Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. J. Am. Chem. Soc. 2006,128 (14):4510-4511.
    [178]Toshima N, Shiraishi Y, Teranishi T, Miyake M, Tominaga T, Watanabe H, Brijoux W, Bonnemann H, Schmid G. Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl. Organometal. Chem.2001,15(3):178-196.
    [179]Mahmoud S, Hammoudeh A, Gharaibeh S, Melsheimer J. Hydrogenation of cinnamaldehyde over sol-gel Pd/SiO2 catalysts:kinetic aspects and modification of catalytic properties by Sn, Ir and Cu additives. J. Mol. Catal. A:Chem.2002,178 (1-2):161-167.
    [180]Aramendia M A, Borau V, Jimenez C, Marinas J M, Porras A, Urbano F J. Selective liquid-phase hydrogenation of citral over supported palladium. J. Catal. 1997,172(1):46-54.
    [181]Rideout D C, Breslow R. Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc.1980,102(26):7816-7817.
    [182]Breslow R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res.1991,24(6):159-164.
    [183]Kim K S, Demberelnyamba D, Lee H. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir.2004, 20(3):556-560.
    [184]Schrekker H S, Gelesky M A, Stracke M P, Schrekker C M L, Machado G, Teixeira S R, Rubim J C, Dupont J. Disclosure of the imidazolium cation coordination and stabilization mode in ionic liquid stabilized gold(0) nanoparticles. J. Colloid Interface Sci.2007,316(1):189-195.
    [185]Zhang H, Cui H. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir.2009,25(5):2604-2612.
    [186]Wang Z J, Zhang Q X, Kuehner D, Ivaska A, Niu L. Green synthesis of 1-2 nm gold nanoparticles stabilized by amine-terminated ionic liquid and their electrocatalytic activity in oxygen reduction. Green Chem.2008,10(9):907-909.
    [187]Dai C, Zhang S M, Li J, Wu Z S, Zhang Z. Preparation and structure characterization of Pd nanoparticles in hydroxyl-functionalized ionic liquids. Chinese J. Inorg. Chem.2007,23(9):1653-1656.
    [188]陈日志,杜艳,陈长林.纳米镍与骨架镍催化性能比较.化工学报.2003,54(5):704-706.
    [189]周海安,史鸿鑫,项菊萍.W/O微乳液体系稳定条件与纳米镍的制备.工业催化.2005,13(5):46-49.
    [190]王来军,张明慧,李伟.非晶态合金催化剂NiB、NiB/TiO2的制备、表征及其环丁烯砜加氢催化活性的研究.分子催化,2003,17(6):450-455.
    [191]Meng X C, Cheng H Y, Akiyama Y, Hao Y F, Qiao W B, Yu Y C, Zhao F Y, Fujita S, Arai M. Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3:Significance of molecular interactions. J. Catal.2009, 264(1):1-10.
    [192]Xu D Q, Hu Z Y, Li W W, Luo S P, Xu Z Y. Hydrogenation in ionic liquids:An alternative methodology toward highly selective catalysis of halonitrobenzenes to corresponding haloanilines. J. Mol. Catal. A.2005,235(1-2):137-142.
    [193]Samantaray M K, Shaikh M M, Ghosh P. Rare [(NHC)2Ni-OH]-type terminal nickel hydroxo and [(NHC)2Ni]-type complexes of N/O-functionalized N-heterocyclic carbenes as precatalysts for highly desirable base-free Michael reactions in air at ambient temperature. Organometallics.2009,28(7):2267-2275.
    [194]Normand A T, Hawkes K J, Clement N D, Cavell K J, Yates B F. Atom-efficient catalytic coupling of imidazolium salts with ethylene involving Ni-NHC complexes as intermediates:A combined experimental and DFT study. Organometallics.2007, 26(22):5352-5363.
    [195]Leleu A, Fort Y, Schneider R. Nickel(0)/imidazolium carbene catalyst system for efficient cross-coupling of aryl bromides and chlorides with organomanganese reagents. Adv. Synth. Catal.2006,348(9):1086-1092.
    [196]Devred F, Hoffer B W, van Langeveld A D, Kooyman P J, Zandbergen H W. The genesis of the active phase in Raney-type catalysts:The role of leaching parameters. Appl. Catal. A.2003,244(2):291-300.
    [197]Bunten K A, Kakkar A K. Synthesis, optical absorption, fluorescence, quantum efficiency, and electrical conductivity studies of pyridine/pyridinium dialkynyl organic and Pt(Ⅱ)-σ-acetylide monomers and polymers. Macromolecules.1996,29(8): 2885-2893.
    [198]Zhao Z F, Wu Z J, Zhou L X, Zhang M H, Li W, Tao K Y. Synthesis of a nano-nickel catalyst modified by ruthenium for hydrogenation and hydrodechlorination. Catal. Commun.2008,9(13):2191-2194.
    [199]Ely T O, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto J M. Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties. Chem. Mater. 1999,11(3):526-529.
    [200]Cui H, Wang W, Duan C F, Dong Y P, Guo J Z. Synthesis, characterization, and electrochemiluminescence of luminol-reduced gold nanoparticles and their application in a hydrogen peroxide sensor. Chem. Eur. J.2007,13(24):6975-6984.
    [201]McIntyre N S, Cook M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem.1975,47(13):2208-2213.
    [202]Couto G G, Klein J J, Schreiner W H, Mosca D H, De Oliveira A J A, Zarbin A J G. Nickel nanoparticles obtained by a modified polyol process:Synthesis, characterization, and magnetic properties. J. Colloid Inter. Sci.2007,311(2):461-468.
    [203]Winnischofer H, Rocha T C R, Nunes W C, Socolovsky L M, Knobel M, Zanchet D. Chemical synthesis and structural characterization of highly disordered Ni colloidal nanoparticles. ACS Nano.2008,2(6):1313-1319.
    [204]Hoffer B W, Crezee E, Devred F, Mooijmana P R M, Sloof W G, Kooyman P J, Van Langeveld A D, Kapteijn F, Moulijn J A. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to D-sorbitol. Appl. Catal. A.2003,253(2):437-452.
    [205]Arras J, Steffan M, Shayeghi Y, Claus P. The promoting effect of a dicyanamide based ionic liquid in the selective hydrogenation of citral. Chem. Commun.2008, (34):4058-4060.
    [206]Anderson K, Goodrich P, Hardacre C, Rooney D W. Heterogeneously catalysed selective hydrogenation reactions in ionic liquids. Green Chem.2003,5(4):448-453.
    [207]Li H, Li H X, Dai W L, Wang W J, Fang Z G, Deng J F. XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties. Appl. Surf. Sci.1999,152(1-2):25-34.
    [208]Chen R Z, Wang Q Q, Du Y, Xing W H, Xu N P. Effect of initial solution apparent pH on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem. Eng.J.2009,145(2):371-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700