功能化离子液体的合成及在金属催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了一系列功能化离子液体,包括腈基功能化离子液体,醚基功能化离子液体,羟基功能化离子液体,并考察了其作为绿色溶剂在金属催化的Suzuki, Heck, Stille和加氢反应中对反应催化效果的影响并研究了反应机理。
     由腈基功能化离子液体为溶剂,咪唑基离子聚合物(IP)为保护剂和被两者稳定的钯纳米粒子构筑了代替传统的以乙腈为溶剂的催化体系。透射电子显微镜(TEM)研究表明,体系中钯纳米粒子是大小为5.0±0.2 nm,分布均匀的椭圆形颗粒。在Suzuki, Heck, Stille反应中,该体系在低负载量的情况下实现了高的催化活性和循环性。通过与核生长方法制备的大尺寸钯纳米粒子催化性能对比研究和紫外可见光谱(UV-Vis)表征,阐述了腈基离子液体中纳米催化的偶联反应机理。其催化行为遵循传统的有机溶剂中的金属催化,但在氧化加成后经历催化剂溶解,然后是转移、还原消去、催化剂重生。由于功能化离子液体和聚合物的双重保护作用,该体系十分稳定,因此有望作为传统钯/碳催化剂的替代品使用在碳-碳偶联反应中。
     论文也考察了咪唑基和吡啶基两类醚基功能化离子液体在Suzuki反应中的应用。总的来说,侧链氧可以提供一个合适的配位环境,提高催化剂的稳定性,因此它是一个合适的Suzuki反应溶剂。但是,咪唑基离子液体侧链烷基取代基上氧的位置强烈地影响反应结果,而吡啶基离子液体并非如此。通过对咪唑基卡宾衍生物合成、分离,结合单晶衍射(X-ray)和氢核磁(1H NMR)的研究,发现侧链上氧位置不同所引起的其稳定性差异可能是导致在相应离子液体中不同反应结果的原因。
     论文还研究了羟基功能化离子液体作为溶剂在Suzuki反应中的效果。分子尺度上的核磁研究表明,官能基团羟基可以与氯离子形成氢键,是其对氯离子高溶剂化能的主要原因。在Suzuki反应中,高的溶剂化能可以从帮助催化剂活性中心产生、促进底物氧化加成、加速卤素亲核转移、抑制催化剂中毒四方面加速催化循环和提高产率。
     羟基功能化离子液体也同样作为溶剂在聚乙烯吡咯烷酮(PVP)保护的铑纳米粒子催化的加氢反应中被考察。PVP在羟基功能化离子液体中的溶解度是传统离子液体的10倍以上,提高的PVP含量使得纳米粒子被更好地稳定在离子液体中,达到更高的催化活性。在加氢反应中咪唑基阳离子和四氟硼酸阴离子提供了一个最佳的组合,是多种双键和三键化合物加氢的高效溶剂,并在苯乙烯加氢反应中实现了多达9次的循环使用。红外(IR)光谱研究显示,在多次的循环实验中聚苯乙烯生成,这可能是导致在后几次循环中催化剂活性稍有下降的主要原因。
A series of functionalized ionic liquids (IL), including nitrile, ether, and hydroxyl-functionalized, have been synthesized and were evaluated as solvents in Suzuki, Heck, Stille and hydrogenation reactions.
     Highly stable palladium nanoparticles (Pd NPs), protected by an imidazolium-based ionic polymer (IP) in a functionalized IL, have been prepared. Transmission electron microscopy (TEM) analysis reveals that the Pd NPs have elliptical shape with average size of 5.0±0.2 nm. These Pd NPs are excellent pre-catalysts for Suzuki, Heck and Stille coupling reactions. For comparison, coupling reactions were catalyzed by lager Pd NPs synthesized by seeding growth method. On the basis of evidences by UV-Vis the mechanism catalyzed Pd NPs in ILs was proposed which follows classic catalytic cycle, involved oxidative addition, chemical etching, transmetalation, reductive elimination. The system may therefore be considered as an alternative to the traditional palladium on carbon (Pd/C) pre-catalyst employed in many C-C coupling reactions, also allowing reactions to be conducted under‘solvent-free’conditions.
     Imidazolium- and pyridinium-based ILs with ether/polyether substituents have been evaluated as solvents for palladium catalyzed Suzuki C-C coupling reactions. In general, reactions proceed more efficiently in these solvents compared to other ILs, which is believed to be due to better stabilization of the palladium catalyst, involving weak interactions with the ether groups. Both position and the number of the oxygen atoms in the ether side-chain strongly influence the outcome of the coupling reactions in the imidazolium-based ILs, whereas for the pyridinium-based liquids no influence is observed. Carbene derivatives, generated from the imidazolium-based ILs, are synthesized, isolated, characterized by X-ray single crystal diffraction from stoichiometric reactions and believed to play a role by terminating the catalytic cycle.
     A highly efficient system for the Suzuki reaction based on hydroxyl- functionalized ILs has been established. 1H NMR analysis reveals that hydroxyl group has strong interaction with Br- and Cl- which leads to higher solvation of halide than in unfunctionalized ILs. The role of the OH group appears to be multifactoral, with facilitating oxidative addition and generation of the catalytic active Pd(0), enhancing the metathesis step between base and halide, preventing catalyst poisoning by solvation, decreasing its nucleophilicity.
     PVP stabilized rhodium nanoparticles are highly soluble in hydroxyl-functionalized ILs, providing an effective and highly stable catalytic system. Solubility of PVP is enhanced more than ten times by hydroxyl-functionalized ILs therefore provides an ability of Rh NPs to catalyze more efficiently in hydrogenation of unsaturated double and triple bonds. The combination of imidazolium-based cation and tetrafluoroborate is found to be the most efficient one in hydrogenation reactions. This system can be recycled more than nine times without significantly decreasing of catalytic activity in hydrogenation of styrene. However the slight drop of yields from seven batches is not due to catalyst leaching or decomposition which appears to be due to the formation of polystyrene identified by IR spectroscopy.
引文
[1] Anastas P. T., Warner J. C., Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998.
    [2] Anastas P. T.,Williamson T. C., Green Chemistry: Frontiers in Chemical Synthesis and Processes. Oxford Unicersity Press, New York, 1998.
    [3] Sheldon R. A., Consider the environmental quotient, Chem. Tech., 1994, 38-47.
    [4] Wilkes J. S., A short history of ionic liquids-from molten salts to neoteric solvents, Green Chem., 2002, 4: 73-80.
    [5] Wasserscheid P., Welton T., Ionic Liquids in Synthesis (Second Edition). Wein-heim: Wiley-VCH, 2002.
    [6] Dupont J., de Souza R. F., Suarez P. A. Z., Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev., 2002, 102 (10): 3667-3692.
    [7] Forrester K. J., Merrigan T. L., Davis J. H. Jr, Novel organic ionic liquids (OILs) incorporating cations derived from the antifugal drug miconazle, Tetrahedron Lett., 1998, 39: 8955-8958.
    [8] MacFarlane D., Forsyth M., The Handbook of Ionic Liquids, Wiley, John & Sons Press, 2008.
    [9] Bonh?te P., Dias A.-P., Papageorgiou N., et al., Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 1996, 35(5): 1168-1178.
    [10] Ye C., Liu W., Chen Y., et al., Room-temperature ionic liquids: a novel versatile lubricant, Chem. Commun., 2001, 21: 2244-2245.
    [11] Yoshida Y., Muroi K., Otsuka A., et al., 1-Ethyl-3-methylimidazolium based ionic liquids containing cyano groups: synthesis, characterization, and crystal structure, Inorg. Chem. 2004, 43(4): 1458-1462.
    [12] Handy S. T., Okello M., Dickenson G., Solvents from biorenewable sources: ionic liquids based on fructose, Org. Lett. 2003, 5(14): 2513-2515.
    [13] Davis J. H. Jr, Forrester K. J., Thiazolium-ion based Organic Ionic Liquids (OIL). Novel OILs which promote the benzoin condensation, Tetrahedron Lett., 1999, 40: 1621-1622.
    [14] Shibagaki M., Matsushita H., Kaneko H., Heterocycles, 1983, 20: 497-500.
    [15]邓友全,李冬梅,石峰,一种离子液体的制备方法,中国发明专利,申请号: 200510126589.0, 2005.
    [16] Gathergood N., Garci M.T., Scammells P. J., Biodegradable ionic liquids: Par I. Concept, preliminary targets and evaluation, Green Chem., 2004, 6: 166-175.
    [17] Herrmann W. A., K?cher C., Goossen L. J., et al., Heterocyclic carbenes: a high-yielding synthesis of novel, functionalized N-heterocyclic carbenes in liquid ammonia, Chem-Eur. J., 1996, 2 (12): 1627-1636.
    [18] Branco L. C., Rosa J. N., Moura Ramos J. J., et al., Preparation and characterization of new room temperature ionic liquids, Chem-Eur. J., 2002, 8 (16): 3671-3677.
    [19] Fei Z., Ang W. H., Zhao D., et al., Revisiting ether-derivatized imidazolium-based ionic liquids, Phys. Chem. B., 2007, 111 (34): 10095-10108.
    [20] Visser A. E., Swatloski R. P., Reichert W. M., et al., Task-specific ionic liquids for the extraction of metal ions from aqueous solutions, Chem. Commun., 2001, 135-136.
    [21] Fei Z., Zhao D., Geldbach T. J., et al., A synthetic zwitterionic water channel: characterization in the solid state by X-ray crystallography and NMR spectroscopy, Angew. Chem. Int. Ed., 2005, 44 (35): 5720-5725.
    [22] Fei Z., Geldbach T. J., Scopelliti R, et al., Metal-organic frameworks derived from imidazolium dicarboxylates and group I and II salts, Inorg. Chem., 2006, 45 (16): 6331-6337.
    [23] Cole A. C., Jensen J. L., Ntai I, Novel br?nsted acidic ionic liquids and their use as dual solvent-catalysts, J. Am. Chem. Soc., 2002, 124 (21): 5962-5963.
    [24] Holbrey J. D., Reichert W. M., Tkatchenko I., et al., 1,3-Dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct, Chem. Commun., 2003, 28-29.
    [25]李雪辉,江燕斌,张磊,等, N-酯基取代吡啶功能化离子液体的合成与表征,物理化学学报, 2006, 22 (6): 107-111. Li Xuehui, Jiang Yanbin, Zhang Lei, et al., Synthesis and characterization of N-ester appended pyridine task-specific ionic liquids, Acta Phys.-Chem. Sin., 2006, 22 (6): 747-751.
    [26] Fei Z., Geldbach T. J., Zhao D., et al., From dysfunction to bis-function: On the design and applications of functionalised ionic liquids, Chem. Eur. J., 2006, 12 (8): 2122–2130.
    [27] Pernak J., Czepukowicz A., New ionic liquids and their antielectrostatic properties, Ind. Eng. Chem. Res., 2001, 40: 2379-2383.
    [28] Kimizuka N., Nakashima T., Spontanneous self-assembly of glycolipid bilayer membranes in sugar-philic ionic liquids and formation of ionogels, Langmuir, 2001, 17(22): 6759-6761.
    [29] Du Z., Li Z., Guo S., et al., Investigation of physicochemical properties oflactambased br?nsted acidic ionic liquids, J. Phys. Chem. B, 2005, 109(41): 19542-19546.
    [30] Demherelnyamba D., Shin B. K., Lee H., Ionic liquids based on N-vinyl-γ-butyrolactam: potential liquid electrolytes and green solvents, Chem. Commun., 2002, 1538-1539.
    [31] Lall S. I., Mancheno D., Castro S., et al., Polycations. part X. LIPs, a new category of room temperature ionic liquid based on polyammonium salts, Chem. Commun., 2000, 24: 2413-2414.
    [32] Mateus N. M. M., Branco L. C., Louren?o N. M. T., et al., Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids, Green Chem., 2003, 5: 347-348.
    [33] Xie H., Zhang S., Duan H., An ionic liquid based on a cyclic quanidinium cation is an efficient medium for the selective oxidation of benzyl alcohols, Tetrahedron Lett. 2004, 45: 2013-2015.
    [34] Brown R. J. C., Dyson P. J., Ellis D. J., et al., 1-Butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]: a catalytically active organometallic ionic liquid, Chem. Commun., 2001, 1862-1863.
    [35] Dyson P. J., McIndoe J. S., Zhao D., Direct analysis of catalysts immobilized in ionic liquids using electrospray ionisation ion trap mass spectrometry, Chem. Commun., 2003, 508-509.
    [36] Bicak N., A new ionic liquid: 2-hydroxy ethylammonium formate, J. Mol. Liq., 2004, 116(1): 15-18.
    [37] Carter E. B., Culver S. L., Fox P. A., et al., Sweet success: ionic liquids derived from non-nutritive sweeteners, Chem. Commun., 2004, 6: 630-631.
    [38] Kim H. S., Kim Y., Lee H., et al., Ionic liquids containing anionic selenium species: applications for the oxidative carbonylation of aniline, Angew. Chem. Int. Ed., 2002, 41(22): 4300-4303.
    [39] Larsen A. S., Holbrey J. D., Tham F. S., et al., Designing ionic liquids: imidazolium melts with inert carborane anions, J. Am. Chem. Soc., 2002, 122(30): 7264-7272.
    [40] Katritzky K. R., Singh S., Kirichenko K., et al., 1-Butyl-3-methylimidazolium 3,5-dinitro-1,2,4-triazolate: a novel ionic liquid containing a rigid, planar energetic anion, Chem. Commun., 2005, 7: 868-870.
    [41] Ohno H., Yoshizawa M., Ogihara W., Development of new class of ion conductive polymers based on ionic liquids. Electro-chim Acta, 2004, 50(2-3): 255-261.
    [42] van den Broeke J., Winter F., Deelman B.-J., et al., A highly fluorous room-temperature ionic liquid exhibiting fluorous biphasic behavior and its use incatalyst recycling, Org. Lett., 2002, 4(22): 3851-3854.
    [43] Howarth J., Hanlon K., Fayne D., et al., Moisture stable dialkylimidazolium salts as heterogeneous and homogenous lewis acids in the Diels-Alder reaction, Tetrahedron Lett., 1997, 38(17): 3097-3100.
    [44] Biedron T., Kubisa P., Ionic liquids as reaction media for polymerization processes: atom transfer radical polymerization (ATRP) of acrylates in ionic liquids, Polym. Int., 2003, 52(10): 1584-1588.
    [45] Wasserscheid P., B?smann A. Bolm C., Synthesis and properties of ionic liquids derived from the chiral pool , Chem. Commun., 2002, 3: 200-201.
    [46] Clavier H., Boulanger L., Audic N., et al., Design and synthesis of imidazolinium salts derived from (L)-valine. Investigation of their potential in chiral molecular recognition, Chem. Commun., 2004, 10: 1224-1225.
    [47] Bao W., Wang Z., Li Y., Synthesis of chiral ionic liquids from natural amino acids, J. Org. Chem., 2003, 68(2): 591-593.
    [48] Tosoni M., Laschat S., Baro A., Synthesis of novel chiral ionic liquids and their phase behavior in mixtures with smectic and nematic liquid crystals, Helv Chim Acta, 2004, 87(11): 2742-2749.
    [49] Ma H. Y., Wan X. H., Chen X. F., et al., Design and synthesis of novel chiral ionic liquids and their application in free radical polymerization of methyl methacrylate, Chin. J. Polym. Sci., 2003, 21 (3): 265-270.
    [50] Ding J., Desikan V., Han X., et al., Use of chiral ionic liquids as solvents for the enantioselective photoisomerization of dibenzobicyclo[2.2.2]octatrienes, Org. Lett., 2005, 7(2): 335-337.
    [51] Gadenne B., Hesemann P., Moreau J. J. E., Ionic liquids incorporating camphorsulfonamide units for the Ti-promoted asymmetric diethylzinc addition to benzaldehyde, Tetrahedron Lett., 2004, 45(44): 8157-8160.
    [52] Thanh G. V., Pegot B., Loupy A., Solvent-free microwave-assisted preparation of chiral ionic liquids from (-)-N-Methylephedrine, Eur. J. Org. Chem., 2004, 5: 1112-1116.
    [53] Tao G.-h., He L., Sun N. et al., New generation ionic liquids: cations derived from amino acids, Chem. Commun., 2005, 28: 3562-3564.
    [54] Ishida Y., Miyauchi H., Saigo K., Design and synthesis of a novel imidazolium-based ionic liquid with planar chirality, Chem. Commun., 2002, 19: 2240-2241.
    [55] Ishida Y., Sasaki D., Miyauchi H., et al., Design and synthesis of novel imidazolium-based ionic liquids with a pseudo crown-ether moiety: diastereomeric interaction of a racemic ionic liquid with enantiopure europium complexes, Tetrahedron Lett., 2004, 45(51): 9455-9459.
    [56] Baudoux J., Judeinstein P., Cahard D., et al., Design and synthesis of novel ionic liquid/liquid crystals (IL2Cs) with axial chirality, Tetrahedron Lett., 2005, 46(7): 1137-1140.
    [57] Astruc D., Lu F., Aranzaes J. R., Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 2005, 44 (48): 7852-7872.
    [58] Dupont J., Fonseca G. S., Umpierre A. P., et al. Transition-metal nanoparticles in imidazolium ionic liquids: recycable catalysts for biphasic hydrogenation reactions, J. Am. Chem. Soc., 2002, 124 (16): 4228-4229.
    [59] Ott L. S., Cline M. L., Deetlefs M., et al., Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by 2H NMR, J. Am. Chem. Soc., 2005, 127 (16): 5758-5759.
    [60] Toshima N., Yonezawa T., Bimetallic nanoparticles - novel materials for chemical and physical applications, New J. Chem., 1998, 22 (11): 1179-1201.
    [61] Mu X., Meng J., Li Z., et al. Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation, J. Am. Chem. Soc., 2005, 127(27): 9694-9695.
    [62] Zhao D., Fei Z., Scopelliti R., et al., Synthesis and characterization of ionic liquids incorporating the nitrile functionality, Inorg. Chem., 2004, 43 (6): 2197-2205.
    [63]李雪辉,赵东滨,费兆福,等,离子液体的功能化及其应用,中国科学B辑化学,2006,36(3):181-196. Li Xuehui, Zhao Dongbin, Fei Zhaofu, et al., Applications of functionalized ionic liquids, Sci. China Ser. B-Chem., 2006, 49 (5): 385-401.
    [64] Miyaura N., Suzuki A., Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev., 1995, 95 (7): 2457-2483.
    [65] Bolliger J. L., Blacque O., Frech C. M., Short, facile, and high-yielding synthesis of extremely efficient pincer-type Suzuki catalysts bearing aminophosphine substituents, Angew. Chem. Int. Ed., 2007, 46 (34): 6514-6517.
    [66] Maegawa T., Kitamura Y., Sako S., et al, Heterogeneous Pd/C-catalyzed ligand-free, room-temperature Suzuki–Miyaura coupling reactions in aqueous media, Chem. Eur. J., 2007, 13 (20): 5937-5943.
    [67] Mathews C. J., Smith P. J., Welton T., Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids, Chem. Commun., 2000, 1249-1250.
    [68] Zhao D., Fei Z., Geldbach T. J., et al., Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions, J. Am. Chem. Soc., 2004, 126 (48): 15876-15882.
    [69] Fei Z., Zhao D., Pieraccini D., et al., Development of nitrile-functionalized ionic liquids for C-C coupling reactions: implication of carbene and nanoparticle catalysts,Organometallics, 2007, 26 (7): 1588-1598.
    [70] Cassol C. C., Umpierre A. P., Machado G., et al., The role of Pd nanoparticles in ionic liquid in the Heck reaction, J. Am. Chem. Soc., 2002, 127(10): 3298-3299.
    [71] CalòV., Nacci A., Monopoli A., et al., Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids, J. Org. Chem., 2005, 70 (15): 6040-6044.
    [72] Li X., Zeng Z., Garg S., et al., Fluorine-containing ionic liquids from N-alkylpyrrolidine and N-methylpiperidine and fluorinated acetylacetones: low melting points and low viscosities, Eur. J. Inorg. Chem., 2008, 3353-3358.
    [73] Xiao J., Shreeve J. M., Synthesis of 2,2'-biimidazolium-based ionic liquids: use as a new reaction medium and ligand for palladium-catalyzed Suzuki cross-coupling reactions, J. Org. Chem., 2005, 70 (8): 3072-3078.
    [74] Wang R., Piekarski M. M., Shreeve J. M., Pyrazolyl-functionalized 2-methylimidazolium- based ionic liquids and their palladium(II) complexes as recyclable catalysts, Org. Biomol. Chem., 2006, 4 (10): 1878-1886.
    [75] Wang R., Jin C., Twamley B., et al., Syntheses and characterization of unsymmetric dicationic salts incorporating imidazolium and triazolium functionalities, Inorg. Chem., 2006, 45 (16): 6396-6403.
    [76] Wang R., Zeng Z., Twamley B., et al., Synthesis and characterization of pyrazolyl-functionalized imidazolium-based ionic liquids and hemilabile (carbene)palladium(II) complex catalyzed Heck reaction, Eur. J. Org. Chem., 2007, 655-661.
    [77] Li S., Lin Y., Xie H., et al., Br?nsted guanidine acid-base ionic liquids: novel reaction media for the palladium-catalyzed Heck reaction, Org. Lett., 2006, 8 (3): 391-394.
    [78] Chiappe C., Pieraccini D., Zhao D., et al., Remarkable anion and cation effects on Stille reactions in functionalised ionic liquids, Adv. Synth. Catal., 2006, 348 (1): 68-74.
    [79] Mathews C. J., Smith P. J., Welton T., et al., In situ formation of mixed phosphine-imidazolylidene palladium complexes in room-temperature ionic liquids, Organometallics, 2001, 20 (18): 3848-3850.
    [80] Lee S.-g., Zhang Y., Piao J., et al., Catalytic asymmetric hydrogenation in a room temperature ionic liquid using chiral Rh-complex of ionic liquid grafted 1,4-bisphosphine ligand, Chem. Commun., 2003, 2624-2625.
    [81] Zhu Y., Carpenter K., Bun C. C., et al., (R)-Binap-mediated asymmetric hydrogenation with a rhodacarborane catalyst in ionic-liquid media, Angew. Chem. Int. Ed., 2003, 42 (32): 3792-3795.
    [82] Anjaiah S., Chandrasekhar S., Grée R., Synthesis and preliminary use of novelacrylic ester-derived task-specific ionic liquids, Tetrahedron Lett., 2004, 45 (3): 569-571.
    [83] Zhang S., Sun N., He X., et al., Physical properties of ionic liquids: database and evaluation, J. Phys. Chem. Ref. Data., 2006, 35 (4): 1475-1517.
    [84] Dupont J., Suarez P. A. Z., Physico-chemical processes in imidazolium ionic liquids, Phys. Chem. Chem. Phys., 2008, 8 (21): 2441-2452.
    [85] Zhang Z., Xie Y., Li W., et al., Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid, Angew. Chem. Int. Ed., 2008, 47 (6): 1127-1129.
    [86] Ranu B. C., Banerjee S., Homocoupling of terminal alkynes to 1,4-disubstituted 1,3-diynes promoted by copper(I) iodide and a task specific ionic liquid , [bmim]OH- a green procedure, Lett. Org. Chem., 2006, 3 (8): 607-609.
    [87] Bian M., Xu F., Ma C., Anion-functionalized ionic liquids enhance the CuI-catalyzed cross-coupling reaction of sulfinic acid salts with aryl halides and vinyl bromides, Synthesis, 2007, 2951-2956.
    [88] Evans D. F., Wennerstr?m H., In The Colloidal Domain, 2nd ed.; Wiley-VCH: New York, 1999.
    [89] Tatumi R.,Fujihara H., Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid, Chem. Commun., 2005, 83-85.
    [90] Kim K.-S., Demberelnyamba D., Lee H., Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids, Langmuir, 2004, 20(3): 556-560.
    [91] Itoh H., Naka K., Chujo Y., Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation, J. Am. Chem. Soc., 2004, 126(10): 3026-3027.
    [92] Mu Z., Liu W., Zhang S., et al., Functional room-temperature ionic liquids as lubricants for an aluminum-on-steel system, Chem. Lett., 2004, 33(5): 524-525.
    [93] Cooper E. R., Andrews C. D., Wheatley P. S., et al., Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues, Nature, 2004, 430(7003): 1012-1016.
    [94] Liao J.-H., Wu P.-C., Bai Y.-H., Eutectic mix-ture of choline chloride/urea as a green solvent in synthesis of a coordination polymer: [Zn(O3PCH2CO2)]NH4, Inorg. Chem. Commun, 2005, 8(4): 390-392.
    [95] Fei Z., Geldbach T. J., Zhao D., et al., A nearly planar water sheet sandwiched between strontium-imidazolium carboxylate coordination polymers, Inorg. Chem. 2005, 44(15): 5200-5202.
    [96] Mehnert C. P., Cook R. A., Dispenziere N. C., et al., Supported ionic liquid catalysis - a new concept for homogeneous hydroformylation catalysis, J. Am. Chem.Soc., 2002, 124(44): 12932-12933.
    [97]邹鸣,牟新东,颜宁,等,离子液体中离子型共聚高分子保护的铂纳米粒子催化剂催化肉桂醛选择性加氢,催化学报, 2007, 28 (5): 389-391. Zou Ming, Mu Xindong, Yan Ning, et al., Selective hydrogenation of cinnamaldehyde by ionic copolymer-stabilized Pt nanoparticles in ionic liquids, Chin. J. Catal., 2007, 28 (5): 389-391.
    [98] Umpierre A. P., Machado G., Fecher G. H., et al., Selective hydrogenation of 1,3-butadiene to 1-butene by nanoparticles embedded in imidazolium ionic Liquids, Adv. Synth. Catal., 2005, 347 (10): 1404-1412.
    [99]张庆华,王瑞峰,李作鹏,等,离子液体在绿色催化和清洁合成中应用的进展,石油化工,2007,36 (10) : 975-984. Zhang Qinghua, Wang Ruifeng, Li Zuopeng, et al., Advances of ionic liquid application in green catalysis and clean synthesis, Petrochem. Technol., 2007, 36 (10) : 975-984.
    [100] Stille J. K., Palladium-catalyzed coupling reaction of organic electrophiles with organic tin compounds, Angew. Chem., 1986, 98(6): 504-519.
    [101] Heck R. F., Nolley J. P. Jr., Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides, J. Org. Chem., 1972, 37(14): 2320-2322.
    [102] Heck R. F, Palladium-catalyzed reactions of organic halides with olefins, Acc. Chem. Res., 1979, 12(4): 146-151.
    [103] Sonogashira K., Tohda Y., Hagihara N., Convenient synthesis of acetylenes. Catalytic substitutions of acetylenic hydrogen with bromo alkenes, iodo arenes, and bromopyridines, Tetrahedron Lett., 1975, 50: 4467-4470.
    [104] Yin L., Liebscher J., Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts, Chem. Rev., 2007, 107(1): 133-173.
    [105] Phan N. T. S., Sluys M. V. D., Jones C. W., On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings-homogeneous or heterogeneous catalysis, a critical review, Adv. Synth. Catal., 2006, 348(6): 609-679.
    [106] Hao F., Bhanage B. M., Shirai M., et al., Effect of triphenylphosphine concentration on the kinetics of homogeneous Heck reaction in different solvents, J. Mol. Catal. A: Chem., 1999, 142(3): 383-388.
    [107] Dieck H. A., Heck R. F., Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions, J. Am. Chem. Soc., 1974, 96(4): 1133-1136.
    [108] Farina V., High-turnover palladium catalysts in cross-coupling and Heck chemistry: A critical overview, Adv. Syn. Catal., 2004, 346(13-15): 1553-1582.
    [109] Littke A. F., Fu G. C., Palladium-catalyzed coupling reactions of aryl chlorides,Angew. Chem. In. Ed., 2002, 41(22): 4176-4211.
    [110] Ben-David Y., Portnoy M., Gozin M., et al., Palladium-catalyzed vinylation of aryl chlorides. Chelate effect in catalysis, Organometallics, 1992, 11(6): 1995-1996.
    [111] Shen W., Palladium catalyzed coupling of aryl chlorides with arylboronic acids, Tetrahedron lett., 1997, 38(32): 5575-5578.
    [112] Portnoy M., Ben-David Y., Milstein D., Clarification of a remarkable chelate effect leads to palladium-catalyzed base-free olefin arylation, Organometallics, 1993, 12(12): 4734-4135.
    [113] Grasa G. A., Hillier A .C., Nolan S. P., Convenient and efficient Suzuki-Miyaura cross-coupling catalyzed by a palladium/diazabutadiene system, Org. lett., 2001, 3(7): 1077-1080.
    [114] Mazet C., Gade L. H., [Bis(oxazolinyl)pyrrole]palladium complexes as catalysts in Heck- and Suzuki-type C-C coupling reactions, Eur. J. Inorg. Chem., 2003, (6): 1161-1168.
    [115] Heng J., Wang F., Xu J.-H., et al., Palladium-catalyzed Suzuki-Miyaura reaction using aminophosphine as ligand, Tetrahedron Lett., 2003, 44(37): 7095-7098.
    [116] Li G. Y., The first phosphine oxide ligand precursors for transition metal catalyzed cross-coupling reactions: C-C, C-N, and C-S bond formation on unactivated aryl chlorides, Angew. Chem. In. Ed., 2001, 40(8): 1513-1516.
    [117] Li G. Y, Zheng G., Noonan A. F., Highly active, air-stable versatile palladium catalysts for the C-C, C-N, and C-S bond formations via cross-coupling reactions of aryl chlorides, J. Org. chem., 2001, 66(25): 8677-8681.
    [118] lechkova N. V., Seddon K. R., Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 2008, 37(1): 123-150.
    [119] Greaves T. L., Drummond C. J., Protic inic lquids: poperties and applications, Chem. Rev., 2008, 108(1): 206-237.
    [120] Smiglak M., Metlen A., Rogers R. D., The second evolution of ionic liquids: from solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook, Acc. Chem. Res., 2007, 40(11): 1182-1192.
    [121] Miao W., Chan T. H., Ionic-liquid-supported synthesis: a novel liquid-phase strategy for organic synthesis, Acc. Chem. Res., 2006, 39(12): 897-908.
    [122] Astruc D., Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view, Inorg. Chem., 2007, 46(6): 1884-1894.
    [123] Mazille F., Fei Z., Kuang D., et al., Influence of ionic liquids bearing functional groups in dye-sensitized solar cells, Inorg. Chem., 2006, 45(4): 1585-1590.
    [124] Wang R., Twamley B., Shreeve J. M., A highly efficient, recyclable catalyst for C-C Coupling reactions in ionic liquids: pyrazolyl-functionalized N-heterocycliccarbene complex of palladium(II), J. Org. Chem., 2006, 71(1): 426-429.
    [125] Joaquin C. G., Raphael L., Richard M. C., Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the Stille reaction, J. Am. Chem. Soc., 2005, 127(14), 5097-5103.
    [126] Bumagin N. A., Nikitin K. V., Beletskaya I. P., Palladium-catalyzed carbonylation of aryl iodides in aqueous media, J. Organomet. Chem., 1988, 358: 563-565.
    [127] Jeffery T., Recent improvements and developments in Heck-type reactions and their potential in organic synthesis, In Advances in Metal-Organic Chemistry, Liebeskind, L. S., Ed., JAI Press: Greenwich, CT, 1996, 5, pp 153-260.
    [128] Bumagin N. A., More P. G., Beletskaya I. P., Synthesis of substituted cinnamic acids and cinnamonitriles via palladium-catalyzed coupling reactions of aryl halides with acrylic acid and acrylonitrile in aqueous media, J. Organomet. Chem., 1989, 371: 397-401.
    [129] Irin P. B., Palladium catalyzed C-C and C-heteroatom bond formation reactions, Pure Appl. Chem., 1997, 69(3): 471-476.
    [130] Xu L., Chen W., Xiao J.,Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium, organometallics, 2000, 19(6): 1123-1127.
    [131] Hagiwara H., Shimizu Y., Hoshi T., et al., Heterogeneous Heck reaction catalyzed by Pd/C in ionic liquid, Tetrahedron Lett., 2001, 42: 4349-4351.
    [132] Wan Q.-X., Liu Y., Lu Y., et al., Palladium-catalyzed Heck reaction in the multi-functionalized ionic liquid compositions, Catal. Lett., 2008, 121(3-4): 331-336.
    [133] Dubbaka S. R., Zhao D., Fei Z., et al., Palladium-catalyzed desulfitative Mizoroki-Heck coupling reactions of sulfonyl chlorides with olefins in a nitrile-functionalized ionic liquid, Synlett, 2006, 18: 3155-3157.
    [134] Reetz M. T., Westermann E., Phosphane-free palladium-catalyzed coupling reactions: the decisive role of Pd nanoparticles, Angew. Chem. Int. Ed., 2000, 39: 165-168.
    [135] de Vries A. H. M., Mulders J. M. C. A., Mommers J. H. M., et al., Homeopathic ligand-free palladium as a catalyst in the Heck reaction. A comparison with a palladacycle, Org. Lett., 2003, 5: 3285-3288.
    [136] de Vries A. H. M., Parlevliet F. J., Schmieder-Van De Vondervoort L., et al., A practical recycle of a ligand-free palladium catalyst for Heck reactions, Adv. Synth. Catal., 2002, 344: 996-1002.
    [137] Liu Q.-X., Xu F.-B., Li Q.-S., et al., Formation of the fluorescent complexes [(carbene)2MII(CN)2] (M: Ni, Pd, Pt) by C-C bond cleavage of CH3CN, Organometallics, 2004, 23(3): 610-614.
    [138] Evans J., O'Neill L., Kambhampati V. L., et al., Structural characterisation of solution species implicated in the palladium-catalysed Heck reaction by Pd K-edge X-ray absorption spectroscopy: palladium acetate as a catalyst precursor, J. Chem. Soc., Dalton Trans., 2002, 2207-2212.
    [139]赖卡特(Reichardt, C.),有机化学中的溶剂效应,北京:化学工业出版社,1987.
    [140] Daguenet C., Dyson P. J., Inhibition of catalytic activity in ionic liquids: implications for catalyst design and the effect of cosolvents, Organometallics, 2004, 23 (26): 6080-6083.
    [141] Weing?rtner H., The static dielectric constant of ionic liquids, Zeitschrift für Physikalische Chemie, 2006, 220(10-11): 1395-1405.
    [142] Angelini G., Chiappe C., Maria P. D., et al., Determination of the polarities of some ionic liquids using 2-nitrocyclohexanone as the probe, J. Org. Chem., 2005, 70 (20): 8193-8196.
    [143] Daguenet C., Dyson P. J., A metallacage encapsulating chloride as a probe for a solvation scale in ionic liquids, Inorg. Chem., 2007, 46 (2): 403-408.
    [144] Fialkov Y. Y., Gorbachev V. Y., Kamenskaya T. A., Calculation of the thermodynamic characteristics of ionic association processes in individual solvents, J. Mol. Liq., 2000, 89: 159-167.
    [145] Brookhart M., Grant B., Volpe A. F., Jr. [(3,5-(CF3)2C6H3)4B]-[H(OEt2)2]+: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes, Organometallics, 1992, 11(11): 3920-3922.
    [146]对于咪唑氯盐: Saha S., Hayashi S., Kobayashi A., et al., Crystal structure of 1-butyl-3-methylimidazolium chloride. A clue to the elucidation of the ionic liquid structure, Chem. Lett., 2003, 32(8): 740-741.
    [147] Kaerkkaeinen J., Asikkala J., Laitinen R. S., et al., Naturforsch. B, 2004, 59: 763.
    [148] Holbrey J. D., Reichert W. M., Nieuwenhuyzen M., et al., Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallization, Chem. Commun., 2003, 14: 1636-1637.
    [149]对于咪唑碘盐: Ozawa R., Hayashi S., Saha S., et al., Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state, Chem. Lett., 2003, 32(10): 948-949.
    [150] Vygodskii Y. S., Lozinskaya E. I., Shaplov A. S., et al., Implementation of ionic liquids as activating media for polycondensation processes, Polymer, 2004, 45(15): 5031-5045.
    [151] Nakakoshi M., Shiro M., Fujimoto T., et al., Crystal structure of 1-butyl-3-methylimidazolium iodide, Chem. Lett., 2006, 35(12): 1400-1401.
    [152] Steed J. W, First- and second-sphere coordination chemistry of alkali metal crown ether complexes, Coord. Chem. Rev., 2001, 215: 171-221.
    [153] Moreno-Na?as M., Pleixats R., Formation of carbon-carbon bonds under catalysis by transition-metal nanoparticles, Acc. Chem. Res., 2003, 36(8): 638-643.
    [154] Danek V., Physico-chemical analysis of molten electrolytes, Amsterdam ? Boston ?Heidelberg ? London ? New York ? Oxford ? Paris ? San Diego ? San Francisco ? Singapore ?Sydney ? Tokyo: Elsevier, 2006.
    [155] Corma A., García H., Leyva A., Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling, Tetrahedron, 2005, 61(41): 9848-9854.
    [156] Lois S., Flores J.-C., Lere-Porte J.-P., et al., How to build fullyπ-conjugated architectures with thienylene and phenylene fragments,Eur. J. Org. Chem., 2007, 24, 4019-4031.
    [157] Holbrey J. D., Reichert W. M., Swatloski R. P., et al., Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions, Green Chem., 2002, 4(5): 407-413.
    [158] Diaz P., Mingos D. M. P., Vilar R., et al., Anion-templated synthesis of metallacages as a means for the colorimetric detection of chlorides,Ionrg. Chem., 2004, 43(24): 7597– 7604.
    [159] Albisson D. A., Bedford R. B., Scully P. N., et al., Orthopalladated triaryl phosphite complexes as highly active catalysts in biaryl coupling reactions, Chem. Commun., 1998, 19: 2095-2097.
    [160] Parshall G. W., Catalysis in molten salt media, J. Am. Chem. Soc., 1972, 94(25): 8716-8719.
    [161] JoóF., Beck M. T., Magy. Kém. Folyòirat, 1973, 79: 189.
    [162] Manassen J., In Catalysis: Progress in Research, Bassolo F., Burwell R. L., Eds., Plenum Press: London, 1973.
    [163] Freitas E.R., Gum C.R., Shell’s higher olefin process, Chem. Eng. Prog, 1979, 1 : 73-76.
    [164] Kuntz E. G., Recherches R.-P., Fr. Pat. 2314910, 1975.
    [165] Cornils B., Bulk and fine chemicals via aqueous biphasic catalysis, J. Mol. Catal. A, 1999, 143(1): 1-10.
    [166] Tzschucke C. C., Markert C., Bannwarth W., et al., Modern separation techniques for the efficient workup in organic synthesis, Angew. Chem. Int. Ed., 2002, 41(21): 3964-4000.
    [167] Zhao C., Wang H.-z., Yan N., et al., Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids II. rhodium-catalyzed hydrogenation of arenas, J. Catal.,2007, 250(1): 33-40.
    [168] Abu-Reziq R., Wang D., Post M., et al., Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles: selective hydrogenation catalysts, Adv. Synth. Catal., 2007, 349(13): 2145-2150.
    [169] Fonseca G. S., Silveira E. T., Gelesky M. A., et al., Competitive hydrogenation of alkyl-substituted arenes by transition-metal nanoparticles: correlation with the alkyl-steric effect, Adv. Synth. Catal., 2005, 347(6): 847-853.
    [170] Migowski P., Machado G., Texeira S. R., et al., Synthesis and characterization of nickel nanoparticles dispersed in imidazolium ionic liquids, Phys.Chem.Chem.Phys., 2007, 9(34): 4814-4821.
    [171] Ott L. S., Finke R. G., Transition-metal nanocluster stabilization for catalysis: A critical review of ranking methods and putative stabilizers, Coord. Chem. Rev., 2007, 251 (9-10): 1075-1100.
    [172] Scheeren C. W., Machado G., Dupont J., et al., Nanoscale Pt(0) particles prepared in imidazolium room temperature ionic liquids: synthesis from an organometallic precursor, characterization, and catalytic properties in hydrogenation reactions, Inorg. Chem., 2003, 42(15): 4738-4742.
    [173] Anthony J. L., Maginn E. J., Brennecke J. F., Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate, J. Phys. Chem. B, 2002, 106(29): 7315-7320.
    [174] Anthony J. L., Maginn E. J., Brennecke J. F., Solution thermodynamics of imidazolium-based ionic liquids and water, J. Phys. Chem. B, 2001, 105(44): 10942-10949.
    [175] Dyson P. J., Laurenczy G., Ohlin C. A., et al., Determination of hydrogen concentration in ionic liquids and the effect (or lack of) on rates of hydrogenation, Chem. Commun., 2003, 2418-2419.
    [176] Napper D. H., In Polymeric Stabilization of Colloidal Dispersions, Academic Press: London, 1983.
    [177] Miao S., Liu Z., Han B., et al., Ru Nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene, Angew. Chem. Int. Ed., 2006, 45(2): 266-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700