钒氧化物纳米管的表面修饰与气敏特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米材料由于其特殊的结构和优越的性能,吸引了广大学者的关注。钒氧化物纳米材料存在大量与气体选择性作用的活性位点,可用于制作高灵敏度气体传感器。在众多的钒氧化物纳米材料中,钒氧化物纳米管(VONTs)具有更大的比表面积,更利于气体的吸附,对于提高气敏材料的灵敏度、稳定性、选择性等性能有很大潜能。本文选择钒氧化物纳米管为研究对象,对其进行表面修饰,从材料结构控制和气敏机理研究两方面出发,系统研究钒氧化物纳米管结构、组成与气敏性能的关系,取得了一些创新性研究结果。具体如下:
     1.将钒氧化物纳米管材料制作成旁热式气敏元件,通过静态配气法测试其气敏性能。研究发现钒氧化物纳米管气敏元件对乙醇气体具有较高的灵敏度和较短的响应恢复时间,且最佳工作温度为270℃。330℃时对1000 ppm乙醇气体的灵敏度高达2.3,探测极限低至50ppm。通过纳米管结构与性能相关性的分析,指出一维钒氧化纳米管独特的层状形状形成大量气体通道,具有较高的比表面积、自身易发生氧化还原反应可能是其灵敏度较高的原因。
     2.利用二次水热法合成了表面负载Fe203纳米颗粒的钒氧化物纳米管。通过研究溶剂、反应温度、耦合剂等因素对表面负载Fe203纳米颗粒钒氧化物纳米管的结构与性能的影响,发现经Fe203纳米颗粒表面修饰的钒氧化物纳米管气敏性能得到大幅度提高。在190℃,表面负载Fe203纳米颗粒的钒氧化物纳米管对乙醇气体的探测极限为10 ppm。在330℃,对1000 ppm乙醇气体的灵敏度高达7.4。根据复合结构的电阻-温度曲线、灵敏度-温度曲线,Fe203颗粒尺寸对纳米管灵敏度的影响等结果推断其气敏机理为表面吸附氧控制模型,Fe203颗粒的存在相当于增加了活性位点,纳米管的-维形貌为电子的转移提供了快速通道,两者共同作用的结果导致灵敏度得到大幅度改善。
     3.采用微波辐照法分别在钒氧化物纳米管表面负载了形状均一、分散均匀的Ag和Pd纳米颗粒,粒径约10 nm。与纯钒氧化物纳米管相比,贵金属表面修饰的钒氧化物纳米管气敏元件具有更好的稳定性和更低的工作温度。Ag纳米粒子表面修饰可以明显提高钒氧化物纳米管对乙醇的气体选择性。Pd纳米粒子表面修饰可以提高钒氧化物纳米管对氨气的灵敏度。元件气敏性能得到改善的主要原因是贵金属的“电子增敏作用”。
     4.采用聚合物单体的原位化学聚合制备了包覆厚度5-20 nm的钒氧化物纳米管/聚苯胺核-壳结构和包覆层厚度为40 nm的钒氧化物纳米管/聚吡咯核-壳结构。通过聚合物的包覆,实现了钒氧化物纳米管气敏元件对气体的室温检测,极大拓宽了钒氧化物纳米管气敏材料的应用范围。其中钒氧化物纳米管/聚苯胺核-壳结构气敏元件在室温下对1000 ppm氨气的灵敏度高达6.2。钒氧化物纳米管/聚吡咯核-壳结构在室温下对1000 ppm乙醇气体的灵敏度为2.4。通过一系列结构与性能表征,发现聚合物与钒氧化物纳米管并不是简单的混合,两者之间存在协同作用。两者之间的协同作用导致P型聚合物与N型钒氧化物纳米管之间形成p-n结,降低耗尽层势垒高度,使其灵敏度得到提高。
In recent years, great attention has been focused on the nanostructured materials due to their special structures and excellent properties. Vanadium oxide nano-materials have a large number of selective effects with gas sites that can be used in the production of high-sensitivity gas sensor. Among various kinds of them, vanadium oxide nanotubes has great potential for improving gas materials sensitivity, stability selectivity, and other properties because of the larger surface area and more suitable for gas absorption. Thus, we selected vanadium oxide nanotubes (VONTs) as our research objects, and modified the surface morphology, systemically studied the synthesis, the relations of materials structure, morphology and gas sensing properties. Some progresses were gained. The details of our research works are presented as follows:
     1. The gas sensing properties of VONTs were measured by mixing detected gas and air in static state. The test results showed that VONTs have good gas sensitivity to ethanol and shorter response and recovery time. The best working temperature for VONTs is 270℃. The sensitivity can reach 2.4 for 1000 ppm ethanol at 300℃and the threshold value is 50 ppm. It can be known that one dimensional nanomaterials can formed a large number of gas channel by crossing each other, more big surface volume ratio is the reason caused a higher gas sensitivity of VONTs.
     2. Fe2O3 nanoparticles surface modified VONTs was synthesized by means of hydrothermal methods. The effects of the factors such as solvent, reactive temperature, reactive time on the structure and gas sensing properties of the samples were studied. The results of gas sensing properties showed that Fe2O3 modified VONTs gas sensor has higher sensitivity than VONTs gas sensor. The threshold value is as low as 10 ppm, and the sensitivity can reach 7.4 for 1000 ppm ethanol at 300℃. It can be guessed that Fe2O3 modified VONTs belongs to surface-controlled sensing mechanism according to the curves of resistance vs temperature and sensitivity vs temperature as well as Fe2O3 size effect of VONTs gas sensitivity. The appearance of Fe2O3 supply more active sites, and VONTs can provide a channel for charge transfer, lead to an improvement of sensitivity.
     3. Ag or Pd surface modified VONTs was synthesized by microwave heating method. The gas sensing properties showed that have the best stability and lower working temperature among the tested VONTs. Modified VONTs with Ag can improve the selectivity to ethanol, and modified with Pd can improve the sensitivity to NH3. This is to take advantage of the spillover effects afforded by the metal nanoparticles as a result of the "electronic sensitization" mechanism.
     4. VONTs/polyaniline (VONTs/PANI) and VONTs/polypyrrole (VONTs/PPY) core-shell structure with have been synthesized through an in situ polymerization of poly monomers in the presence of prepared VONTs. The thickness of PANI and PPY coatings are 20 and 40 nm, respectivly. The hybrids were characterized by TEMS SEM、XRD、IR、TG. Experimental data showed certain synergetic interaction existed in the hybrids, probably resulting in the enhanced thermal stability of polymer coatings. Gas sensing tests showed that the core-shell structure possessed very fast response and high sensitivity at room temperature, implying its potential application for gas sensor. Especially, the sensitivity of VONTs/PANI to 1000 ppm NH3 is as high as 6.4, and the sensitivity of VONTs/PPY to 1000 ppm ethanol is 2.4. The very fact that the synergic interaction between intimately contacted p-type Polymer and n-type VONTs form p-n junctions. The p-n junctions formed in the donor-acceptor system could increase the depletion barrier height, thus leading to an improved response of the sensor.
引文
[1]Gopel W, Hesse J, Zemel J N. Sensors:a comprehensive survey. New York:VCH,1995, p. 1-7.
    [2]Moseley P T, Tofield B C, editors. Solid-state gas sensors. Bristol/Philadelphia:Hilger,1987.
    [3]Sberveglieri G, editor. Gas sensors:principles, operation and developments. Boston:Kluwer, 1992.
    [4]Mandelis A, Christofides C. Physics, chemistry and technology of solid state gas sensor devices. New York:Wiley-Interscience,1993.
    [5]Appell D. Nanotechnology:wired for success. Nature,2002,419:553-555.
    [6]Samuelson L. Self-forming nanoscale devices, Materials Today,2003,6:22-31.
    [7]Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature,2001,409:66-69.
    [8]Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science,2001,293:1289-1292.
    [9]Xia YN, Yang PD, Sun YG, et al. One-dimensional nanostructures:synthesis, characterization, and applications. Advanced Materials,2003,15:353-389.
    [10]Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters,2002,81:1869-1871.
    [11]Law M, Kind H, Messer B, et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chemical Internation Engl,2002,41:2405-2408.
    [12]Wang Z L. Characterizing the structure and properties of individual wire-like nanoentities. Advanced Materials,2000,12:1295-1298.
    [13]Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annual Review of Materials Research,2004,34:151-180.
    [14]Kolmakov A. The effect of morphology and surface doping on sensitization of quasi-ID metal oxide nanowire gas sensors. Proceedings of SPIE,2006,6370:63700X1-X8.
    [15]Hevesi I, Kiss L B, Torok M I, et al. The 1/f noise of point contacts between substances of anisotropic conductivity. Physica Status Solidi,1984, A81:K67.
    [16]Yin X L, Han H M, Miyamoto A. Active site and mechanism of the selective catalytic reduction of NO by NH3 over V2O5:A periodic first-principles study. Physical Chemistry Chemical Physics,2000,2:4243-4248.
    [17]Raible I, Burghard M, Schlecht U, et al. V2O5 nanofibres:novel gas sensors with extremely high sensitivity and selectivity to amines. Sensors and Actuators B,2005,106:730-735.
    [18]Liu J F, Wang X, Peng Q, et al. Vanadium pentoxide nanobelts:highly selective and stable ethanol sensor materials. Advanced Materials,2005; 17:764-767.
    [19]Grigorieva A V, Tarasov A B, Goodilin E A, et al. Sensor properties of vanadium oxide nanotubes. Mendeleev Communications,2008,18:6-7.
    [20]Raj A D, Pazhanivel T, Kumar P S, et al. Self assembled V2O5 nanorods for gas sensors. Current Applied Physics,2010,10:531-537.
    [21]Liu J F, Wang X, Peng Q, et al. Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides. Sensors and Actuators B,2006,115:481-487.
    [22]Sberveglieri G, Baratto C, Comini E, et al. Synthesis and characterization of semiconducting nanowires for gas sensing. Sensors and Actuators B,2007,121:208-213.
    [23]Ying Z, Wan Q, Song Z T, et al. SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology,2004,15:1682-1684.
    [24]Kolmakov A. The effect of morphology and surface doping on sensitization of quasi-ID metal oxide nanowire gas sensors. Proceedings of SPIE,2006,6370:63700X1-X8.
    [25]Wan Q, Wang T H. Single-crystalline Sb-doped SnO2 nanowires:synthesis and gas sensor application. Chemical Communications,2005,3841-3843.
    [26]Bie L J, Yan X N, Yin J, et al. Nanopillar ZnO gas sensor for hydrogen and ethanol. Sensors and Actuators B,2007,126:604-608.
    [27]Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters,2004,84:3 654-656.
    [28]Chu X F, Jin D L, Djurisic A B, et al. Gas-sensing properties of thick film based on ZnO nano-tetrapods. Chemical Physics Letters,2005,401:426-429.
    [29]Xu J, Chen Y, Li Y, et al. Gas sensing properties of ZnO nanorods prepared by hydrothermal method. Journal of Materials Science,2005,40:2919-2921.
    [30]Wang C, Chu X, Wu M. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sensors and Actuators B,2006,113:320-323.
    [31]Wang H T, Kang B S, Ren F, et al. Hydrogen selective sensing at room temperature with ZnO nanorods. Applied Physics Letters,2005,86:243503.
    [32]Tien L C, Sadik P W, Norton D P, et al. Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Applied Physics Letters,2005,87:222106.
    [33]Rout C S, Hari Krishna S, Vivekchand S R C, et al. Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chemical Physics Letters,2006,418:586-590.
    [34]Vomiero A. Bianchi S, Commini E, et al. Controlled growth and sensing properties of In2O3 nanowires. Crystal Growth and Design,2007,7:2500-2504
    [35]Polleux J, Gurlo A, Barsan N, et al. Template-free synthesis and assembly of single crystalline tungsten oxide nanowires and their gas sensing properties. Angewandte Chemie International Edition,2006,45:261-265.
    [36]Liu F, Bao M, Wang K L, et al. Low T one-dimensional transport of In2O3 nanowires. Applied Physics Letters,2005,86:213101.
    [37]Yun Y S, Park J Y, Oh H, et al. Electrical transport properties of size-tuned ZnO nanorods. Journal of Materials Research,2006,21:132-136.
    [38]Hong W K, Hwang D K, Park I K, et al. Realization of highly reproducible ZnO nanowire field effect transistors with n-channel depletion and enhancement modes. Applied Physics Letters,2007,90:243103.
    [39]Dattoli E N, Wan Q, Guo W, et al. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Letters,2007,7:2463-2469.
    [40]Chang P C, Fan Z, Chien C J, et al. High-performance ZnO nanowire field effect transistors. Applied Physics Letters,2006,89:133113.
    [41]Park W I, Kim J S, Yi G C, et al. Fabrication and electrical characteristics of high-performance ZnO nanorod fieldeffect transistors. Applied Physics Letters,2004,85:5052-5054.
    [42]Jo G, Maeng J, Kim T W, et al. Channel-length and gate-bias dependence of contact resistance and mobility for In2O3 nanowire field effect transistors. Journal of Applied Physics,2007,102:084508.
    [43]Li C, Zhang D H, Liu X L, et al. In2O3 nanowires as chemical sensors. Applied Physics Letters,2003,82:1613-1615.
    [44]Zhang D J, Li C, Liu X L, et al. Doping dependent NH3 sensing of indium oxide nanowires. Applied Physics Letters,2003,83:1845-1847.
    [45]Li C, Zhang D H, Lei B, et al. Surface treatment and doping dependence of In2O3 nanowires as ammonia sensors. Journal of Physial Chemistry B,2003,107:12451-12455.
    [46]Zhang D H, Liu Z Q, Li C, et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Letters,2004,4:1919-1924.
    [47]Zhang Y, Kolmakov A, Chretien S, et al. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Letters,2004,4:403-407.
    [48]Zhang Y, Kolmakov A, Lilach Y, et al. Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. Journal of Physical Chemistry B,2005,109: 1923-1929.
    [49]Kolmakow A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostrucutres. Annual Review of Materials Research,2004,34:151-180
    [50]Fan Z Y, Wang D W, Chang P C, et al. ZnO nanowire field-effect transistor and oxygen sensing property. Applied Physics Letters,2004,85:5923-5925.
    [51]Chowdhuri A, Gupta V, Sreenivas K, et al. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Applied Physics Letters,2004,84:1180-1182.
    [52]Kumar V, Sen S, Muthe K P, et al. Study of H2S Sensitivity of pure and Cu doped SnO single nanowire sensors. AIP Conference Proceedings,2009,1147:275-281.
    [53]Tsuda N, Nasu K, Fujimori A, et al. Electronic conduction in oxides.2nd ed. Berlin: Springer,2000.
    [54]Samson S, Fonstad C G. Defect structure and electronic donor. Levels in stannic oxide crystal. Journal of Applied Physicas,1973,44:4618-4621.
    [55]Wolkenstein T. Electronic processes on semiconductor surfaces during chemisorption. New York:Plenum press,1991. p.31-34.
    [56]Orton J W, Powell M J. The Hall effects in polycristalline and powdered semiconductors. Reports on Progress in Physics,1980,43:1265-306.
    [57]Morrison S R. The chemical physics of surfaces. New York:Plenum Press,1978.
    [58]Madou M J, Morrison S R. Chemical sensing with solid state devices. San Diego:Academic Press Inc.,1989.
    [59]Barsan N, Weimar U. Conduction model of metal oxide gas sensors. J Electroceramics,2001, 7:143-167.
    [60]Barsan N, Weimar U. Understanding the fundamental principles of metal oxide based gas sensors, the example of CO sensing with SnO2 sensors in the presence of humidity. Journal of Physics:Condensed Matter,2003,15:R813-39.
    [61]Hahn S H, Barsan N, Weimar U, et al. CO sensing with SnO2 thick film sensors:role of oxygen and water vapour. Thin Solid Films,2003,436:17-24.
    [62]徐滨士.纳米表面工程.北京:化学工业出版社,2003.94
    [63]Kenton D B. Encapsulated elect roluminescent phosphor and met hod for making same. USP 5908698,1999206201.
    [64]Yumoto A, Shiota H F. In situ synthesis of titanium aluminides in coating with supersonic free jet PVD using Ti and Al nanoparticles. Surface and Coatings Technology,2003,170: 499-503.
    [65]吴峰.ZnS:Cu电致发光粉表面包覆Si02的研究:[硕士学位论文].河北:河北大学,2003
    [66]Kim J M, Chang S M, Kim S, et al. Design of SiO2/ZrO2 core-shell particles using the sol-gel process. Ceramic International,2009,35:1243-1247.
    [67]Chung C N. Coated phosphor articles [P]. USP 5 196 229,1993-03-23.
    [68]Hardikar, Vishwas V, Matijevic. Coating of nanosize silver particles with silica. Journal of Colloid and Interface Science,2000,221:133-136.
    [69]Miguel A, Correa D, Michael G. Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chemical Physics Letters,1998,286:497-501.
    [70]Hanprasopwattana A, Srinivasan S, Sault A G. Titania coatings on monodisperse silica spheres (characterization using 2-propano dehydration and TEM). Langmuir,1996,12: 3173-3179.
    [71]Zhang L Y, Li Z W. Synthesis and characterization of SrFe12O19/CoFe2O4 nanocomposites with core-shell structure. Journal of Alloys Compounds,2009,469:422-426.
    [72]Kobayashi Y, Imai J, Nagao D, et al. Fabrication of Eu-coated silica particles by homogeneous precipitation method. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,326:109-114.
    [73]Castillo R, Koch B, Ruiz P, et al. Influence of preparation methods on the texture and structure of titania supported on silica. Journal of Materials Chemistry,1994,4:903-906.
    [74]Karunakaran C, Senthilvelan S. Vanadia-catalyzed solar photooxidation of aniline. Journal of Colloid and Interface Science,2005,289:466-471.
    [75]Ancona M G, Kooi S E, Kruppa W, et al. Patterning of narrow au nanocluster lines using V2O5 nanowire masks and ion-beam milling. Nano Letters.2003,3:135-138.
    [76]Krusin-Elbaum L, Newns D M, Zeng H, et al. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 2004,431,672-676.
    [77]Schilling O, Colbow K. A mechanism for sensing reducing gases with vanadium pentoxide films. Sensors and Actuators B,1994,21:151-157.
    [78]Manno D, Serra A, Giulio M D, et al. Structural and electrical properties of sputtered vanadium oxide thin films for applications as gas sensing material. Journal of Applied Physics,1997,81:2709-2714.
    [79]Wollenstein J, Scheulin M, Herres N, et al. Gas sensitive behaviour and morphology of reactive egasated V2O5 thin films. Sensors Materials,2003,15:239-246.
    [80]汤兆胜,孙玉琴,范正修.V205薄膜用作SO2气敏传感器,功能材料,2002,33:52-55.
    [81]童茂松,戴国瑞,何秀丽,等.溶胶-凝胶法制备V205薄膜的气敏特性研究.传感技术学报,2000,13:225-229.
    [82]Shimizu K, Chinzei I, Nishiyama H, et al. Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sensors and Actuators B,2009, 141:410-416.
    [83]Zhuiykov S, Wlodarski W, Li Y. Nanocrystalline V2O5-TiO2 thin-films for oxygen sensing prepared by sol-gel process. Sensors and Actuators B,2001,77:484-490.
    [84]童茂松,戴国瑞,何秀丽,等.Ti02/V205双层薄膜的TMA气敏特性研究.传感器技术,2000,19:5-6,10.
    [85]Imawan C, Steffes H, Solzbacher F, et al. Structural and gas-sensing properties of V2O5-MoO3 thin films for H2 detection. Sensors and Actuators B,2001,77:346-351.
    [86]He X L, Li J P, Gao X G. Effect of V2O5 coating on NO2 sensing properties of WO3 thin films. Sensors and Actuators B,2005,108:207-210.
    [87]Jiang Y, Song W L, Xie C S, Wang A H, et al. Electrical conductivity and gas sensitivity to VOCs of Ⅴ-doped ZnFe2O4 nanopartic. Materials Letters,2006,60:1374-1378.
    [88]Das S, Chakraborty S, Parkash O, et al. Vanadium doped tin dioxide as a novel sulfur dioxide sensor. Talanta,2008,75:385-389.
    [89]Wang C T, Chen M T. Synthesis of vanadium-doped tin oxide nanocrystallites for CO gas sensing. Materials Letters,2009,63:389-390.
    [90]Wang C T, Chen M T. Vanadium-promoted tin oxide semiconductor carbon monoxide gas sensors. Sensors and Actuators B,2010,150:360-366.
    [91]Mai L Q, Chen W, Xu Q, et al. Cost-savint synthesis of vanadium oxide nanotubes. Solid State Communications,2003,126:541-543.
    [92]徐甲强,陈玉萍,李亚栋,等.一维纳米材料在气体传感器中的应用.传感器技术,2005,24:4-6.
    [93]Wang X Q, Liu L M, Bontchev R, et al. Electrochemical-hydrothermal synthesis and structure determination of a layered mixed-valence oxide:BaV7O16·nH2O. Chemical Communications,1998:1009-1010.
    [94]Scott R W J, Yang S M, Chabanis G, et al. Tin dioxide opals and inverted opals:Near-ideal microstructure for gas sensors. Advanced Materials,2001,13:1468-1472.
    [95]颐惕人,朱抄瑶,李外郎,等.表面化学.北京:科学出版社,1994.
    [96]肖衍繁,李文斌.物理化学.天津:天津大学出版社,1997.
    [97]麦立强.低维钒氧化物纳米材料制备、结构与性能研究:[博士学位论文].武汉:武汉理工大学,2005.
    [98]Tan O K, Zhu W, Yan Q, et al. Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1-x)Fe2O3 ethanol sensors. Sensors and Actuators B,2000,65: 361-365.
    [99]Ivanovskaya M, Kotikov D, Faglia G, et al. Influence of chemical composition and structure of factor of Fe2O3/In2O3 sensors on their selectivity and sensitivity to ethanol. Sensors and Actuators B,2003,96:503-598.
    [100]Si S F, Li C H, Wang X, et al. Fe2O3/ZnO core-shell nanorods for gas sensors. Sensors and Actuators B,2006,119:52-56.
    [101]牛新书,徐荭.Fe203基气敏材料研究新进展.化学传感器.2000,20:17-25.
    [102]Matijevic E. Preparation and properties of monodispered colloidal metal hydrous oxides. Pure and Applied Chemistry,1978,50:1193-1210.
    [103]张玉亭.醇对均匀胶体粒子形成的影响.物理化学学报,1994,10:50-53.
    [104]Li Z J, Shen W Z, Zhang X, et al. Controllable growth of SnO2 nanoparticles by citric acid assisted hydrothermal process, Colloids Surface A,2008,327:17-20.
    [105]Yang Z, Liu Q H, Yang L. The effects of addition of citric acid on the morphologies of ZnO nanorods, Materials Research Bulletin,2007,42:221-227.
    [106]Dillen A J V, Terorde R J A M, Lensveld D J, et al. Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes, Journal of Catalysis, 2003,216:257-264.
    [107]Lattuada M, Hatton TA. Functionalization of monodisperse magnetic nanoparticles. Langmuir,2007,23:2158-2168.
    [108]Zhu J, Tan O K, Lee Y C, et al. Hierarchical porous/hollow tin oxide nanostructures mediated by polypeptide:surface modification, characterization, formation mechanism and gas-sensing properties. Journal of Nanotechnology,2006,17:5960-5969.
    [109]Odenbach S. Ferrofluids-magnetically controlled suspensions. Colloids Surface A,2003, 217:171-178.
    [110]Hajdu A, Illes E, Tombacz E, et al. Surface charging, polyanionic coating and colloid stability of magnetite nanoparticles. Colloids Surface A,2009,347:104-108.
    [111]Hajdu A, Tombacz E, Illes E, et al. Magnetite nanoparticles stabilized under physiological conditions for biomedical application, Progress in Colloid and Polymer Science,2008,135: 29-37.
    [112]Jin W, Dong B T, Chen W, Zhao C X, et al. Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes, Sensors and Actuators B,2010,145(1):211-215.
    [113]Yamazoe N. New approaches for improving semiconductor gas sensors. Sensors and Actuators B,1991,5:7-9.
    [114]张强,管自生.电阻式半导体气体传感器.仪表技术与传感器.2006,7:6-9.
    [115]Liao L, Mai H X, Yuan Q, et al. Single CeO2 nanowire gas sensor supported with Pt nanocrystals:Gas sensitivity, surface bond states, and chemical mechanism. Journal of Physical Chemistry C,2008,112:9061-9065.
    [116]Qian L H, Wang K, Li Y, et al. CO sensor based on Au-decorated SnO2 nanobelt. Materials Chemistry and Physics,2006,100:82-84.
    [117]Chen Y X, He B L, Liu H F. Preparation and characterization of palladium colloidal nanoparticles by t hermal decomposition palladium acetate with microwave irradiation. Journal of Nanoscience and Nanotechnology,2005,21 (2):187-190.
    [118]Gou L F, Chipara M, Zaleski J, et al. Rapid synthesis of Ag nanowires. Chemical Materials, 2007,19.(7):1755-1760.
    [119]Komarneni S, Li D S, Newalkar B, et al. Microwave-polyolprocess for Pt and Ag nanoparticles. Langmuir,2002,18(15):5959-5962.
    [120]于灵敏,朱长纯,岳苗,等.Ag掺杂ZnO纳米线酒敏性能的研究.功能材料,2008,5:867-870.
    [121]Sun Z P, Liu L, Zhang L, et al. Rapid synthesis of ZnO nanorods by onestep, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology,2006, 17:2266-2270.
    [122]Tjeng L H, Meinders M B J, Elp J V, et al. Electronic structure of Ag2O. Physical Review B,1990,41:3190-3199.
    [123]http://www.odcad.com/ChangingContents/DevicePhysics/LED/DevicePhysicsLED.html.
    [124]Toumus F, Charlier J C. Ab initio study of benzene adsorption on carbon nanotubes. Physical Review B,2005,71:165421(1-8).
    [125]才春利,付蔷,王黎东,等.关于气体报警器稳定性的探讨.传感器世界,2006,2:15-20.
    [126]薛严冰,唐祯安,魏广芬.金属催化剂对CO气敏薄膜特性影响的密度泛函法分析.测试技术学报,2006,1:15-20.
    [127]Kolmakov A, Klenov D O, Lilach Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Letters,2005,5: 667-673.
    [128]Yamazoe N, KurokawaY, Seiyama T. Effects of additives on semiconductor gas sensors. Sensors and Actuators,1983,4:283-286.
    [129]Yamazoe N. New approaches for improving semiconductor gas sensors. Sensors and Actuators B,1991,5:7-19.
    [130]Joshi R K, Kruis F E. Influence of Ag particle size on ethanol sensing of SnO1.8:Ag nanoparticle films:A method to develop parts per billion level gas sensors. Applied Physics Letters,2006,89:153116.
    [131]Jang J S, Choi S H, Kim D H, et al. Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube. Journal of Physical Chemistry C,2009,113:8990-8996.
    [132]Xin B F, Jing L Q, Ren Z Y, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. Journal of Physical Chemistry B, 2005,109:2805-2809..
    [133]Tamaki J. High Sensitivity Semiconductor Gas Sensors. Sensor Letters,2005,3:89-98.
    [134]Lange U, Roznyatovskaya N V, Mirsky V M. Conducting polymers in chemical sensors and arrays. Analytica Chimi Acta,2008,614:1-26.
    [135]Lu X F, Zhan W J, Wang C, et al. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Progress in Polymer Science,2010, inpress.
    [136]Gen L N. Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synthetic Metals,2010,160:1708-1711.
    [137]Joshi S S, Lokhande C D, Han S H. A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction. Sensors and Actuators B, 2007,123:240-245.
    [138]Klein L C, Wojcik A B. Polymer-ceramic nanocomposites:Polymer overview. Encyclopedia of Materials:Science and Technology,2008, p7577-7584.
    [139]Cheng Q L, Pavlinek V, Li C Z, et al. Synthesis and structural properties of polypyrrole/nano-Y203 conducting composite. Applied Surface Science,2006,253:1736-1740.
    [140]Chen T, Colver P J, Bon S A F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization. Advanced Materials,2007,19:2268-2289.
    [141]Strohm H, Sgraja M, Bertling J, et al. Preparation of TiO2-polymer hybrid microcapsules. Journal of Materials Science,2003,38:1605-1609.
    [142]Ma X F, Wang M, Li G, et al. Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Materials Chemistry and Physics,2006,98:241-247.
    [143]Geng L N, Wang S R, Zhao Y Q, et al. Study of the primary sensitivity of polypyrrole/y-Fe2O3 to toxic gases. Materials Chemistry and Physics,2006,99:15-19.
    [144]Ballav N, Biswas M. Conductive composites of polyaniline and polypyrrole with Mo03. Materials Letters,2006,60:514-517.
    [145]Zhang W X, Wen XG, Yang SH. Synthesis and characterization of uniform arrays of copper sulfide nanorods coated with nanolayers of polypyrrole. Langmuir,2003,19:4420-4426.
    [146]Hong L J, Li Y, Yang M J. Fabrication and ammonia gas sensing of palladium/polypyrrole nanocomposite. Sensors and Actuators B,2010,145:25-31.
    [147]Xu J, Li X L, Liu J F, et al. Solution route to inorganic nanobelt-conducting organic polymer core-shell nanocomposites. Journal of Polymer Science, Part A 2005,43:2892-2900.
    [148]Chen A H, Xie H X, Wang H Q, et al. Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Metals,2006,156:346-350.
    [149]Jiang Y D, Wang T, Wu Z M, et al. Study on the NH3 gas sensitive properties and sensitive mechanism of polypyrrole. Sensors and Actuators B,2000,66:280-282.
    [150]Benjamin P J, Phillip E, Richard J E, et al. Novel composite organic-inorganic semiconductor sensors for the quantitative detection of target organic vapours. Journal of Materials Chemistry,1996,6:289-294.
    [151]Jain K, Pant R P, Lakshmikumar S T. Effect of Ni doping on thick film SnO2 gas sensor. Sensors and Actuators B,2006,113:823.
    [152]Olson D C, Shaheen S E, Collins R T, et al. The effect of atmosphere and ZnO morphology on the performance of hybrid poly (3-hexylthiophene)/ZnO nanofiber photovoltaic devices. Journal of Physical Chemistry C,2007,111:16670-16678.
    [153]Dhawale D S, Salunkhe R R, Patil U M, et al. Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors and Actuators B,2008, 134:988-992.
    [154]Potje-Kamloth K. Semiconductor junction gas sensors. Chemical Reviwe.2008,108:367-399.
    [155]Lou X W, Archer L A, Yang Z. Hollow Micro-/Nanostructures:Synthesis and Applications. Advanced Materials,2008,20:3987-4019.
    [156]Sun X M, Li X L, Li Y D. Use of carbonaceous ploysaccharide microsphere as templates for fabricating metal oxide hollow spheres. Chemistry-A European Journal,2006,12: 2039-2047.
    [157]Zhang J, Wang S, Wang Y, et al. NO2 sensing performance of SnO2 hollow-sphere sensor. Sensors and Actuators B,2009,135:610-617.
    [158]Kemp N T, Mcgrouther D, Cochrane J W, et al. Bridging the gap:polymer nanowire devices. Advanced Materials,2007,19:2634-2638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700