绿色介质中的催化选择氧化/脱氢反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先合成出双齿氮配体功能化的聚乙二醇作为Pd纳米粒子的稳定剂,采用不同的还原方法制备出一系列Pd纳米粒子,在绿色溶剂(聚乙二醇、水相)中进行醇类的需氧氧化反应,通过一系列表征手段如UV-Vis, XRD, TEM, XPS等和催化活性的测试,探索Pd纳米粒子的性质与其催化活性之间的关系;同时,将功能化的聚乙二醇与醋酸钯形成络合物催化剂用于端烯烃的氧化反应中,调控其氧化产物的选择性,详细考查其反应动力学,并对反应机理进行探索;然后,以PVP为稳定剂制备出水溶性的Ru纳米粒子,以碱性离子液体为添加剂,在水相中实现醇类的脱氢反应。通过研究主要得出以下结论:
     (1)双齿氮配体功能化的聚乙二醇对稳定Pd活性物种(Pd(0)纳米粒子和Pd(II))起着至关重要的作用。用其作为保护剂稳定的Pd纳米粒子在PEG和水相中醇类的氧化反应中,至少可以循环四次,并未发现Pd纳米粒子的聚集和流失;其与Pd(II)形成的络合物在烯烃的氧化反应中也表现出很好的稳定性,可循环使用十二次,仍能保持其络合物的结构。通过UV-Vis光谱和XPS分析发现,PEG负载的双齿氮配体与Pd物种之间存在比较强的电子相互作用,从而导致了Pd催化剂的高稳定性。
     (2)Pd纳米粒子的性质(颗粒大小和表面性质)可以通过改变配体保护剂的用量和还原剂的种类来控制,并且其性质对催化活性有很大的影响。以功能化的聚乙二醇为稳定剂,通过改变还原条件(还原剂的种类、稳定剂的量)制备出一系列的Pd纳米粒子。TEM、XPS分析发现,还原剂的种类对Pd纳米粒子的表面氧化态有很大的影响,采用强还原剂如H2和NaBH4时,Pd纳米粒子的表面主要呈现出还原态的Pd(0),而采用乙醇和苯甲醇作为还原剂时,Pd纳米粒子的表面有很大部分未还原的Pd(II)。通过改变稳定剂的量可以控制Pd纳米粒子的大小,随着稳定剂的增加,Pd纳米粒子的尺寸逐渐减小。通过将Pd纳米粒子的性质与其催化氧化醇类的活性相关联,发现在目前的体系中,Pd(0)是催化活性物种;Pd纳米粒子的催化活性是其颗粒大小、表面氧化态和稳定剂的量共同作用的结果。
     (3)实现了无氯无碱中性条件下水相中催化氧化苯乙烯及其衍生物生成相应的醛的反应。双齿氮配体功能化的聚乙二醇与Pd(OAc)2形成的络合物催化氧化苯乙烯生成苯甲醛,转化率可达98.0%,选择性为82.0%。通过对反应动力学、氧气压力对反应的影响以及氧气消耗量与底物转化量之间的关系的详细考察,发现Pd(11)是催化活性物种,同时推测出不同于传统Wacker氧化的反应机理,生成醛类的主要原因是形成的环状中间物种的不同的降解路径导致。
     (4)首次实现了水相中醇类的脱氢反应。以PVP稳定的Ru纳米粒子作为催化剂,碱性离子液体作为添加剂,水相作为反应介质,在N2气氛下,回流条件下,对芳香醇类和烯丙基醇类都有比较高的催化活性,但对于脂肪醇类活性比较低;催化剂循环使用六次,活性并未降低,仍然能够保持比较好的稳定性。
     (5)本论文涉及的几个催化体系均为环境友好的绿色催化体系,从催化剂的设计、溶剂的选择、反应的原子经济性以及产物的分离和催化剂的循环使用角度都符合绿色化学发展的要求,为绿色反应体系的设计提供了一定的理论基础。
This work included the design, characterization and catalytic application of the soluble metal salt/nanoparticles coordinated/stabilized by the functionalized-poly(ethylene glycol) molecules. Firstly, the palladium nanoparticles catalysts were demonstrated for aerobic oxidation of alcohols in poly(ethylene glycol) and aqueous phase; the relationship between the catalytic performance of Pd nanoparticles and its properties was investigated in detailed. Second, an environmentally benign water-soluble Pd(II) complex was developed as a catalyst for the selective aerobic oxidation of styrene to benzaldehyde in high selectivity without any additives in the aqueous phase. Finally, PVP-stabilized ruthenium nanoparticles with [BMMIM]OAc as an additive were utilized as an efficient and reusable catalyst for the oxidant-free dehydrogenation of alcohols in water.
     (1) The bidentate nitrogen ligand-functionalized-PEG played an important role in stabilizing and immobilizing catalytically active palladium(0) and Pd(Ⅱ) species. Pd species stabilized by the functionalized PEG showed superior stability, and could be reused several times in the oxidation of alcohols or olefins without losing catalytic activities. The excellent stability attributed to the strong electronic interaction between the bidentate nitrogen ligand and Pd species.
     (2) The particle size and surface properties of the generated palladium nanoparticles can be controlled by varying the amount of protective ligand and the kinds of reducing agents and its properties played very important roles in affecting catalytic performance. The particle size decreased with increasing the amount of the functionalized PEG. The surface composition of the nanoparticles can also be tuned by adopting appropriate reducing agents in the preparation of nanoparticles. By relating catalytic activity to the properties of Pd nanoparticles, we found that the metallic palladium was the active species for benzyl alcohol oxidation in the present system, moreover, the catalytic performance depended strongly on the properties (size and oxidation state) of Pd nanoparticles.
     (3) Selective oxidation of styrene to benzaldehyde was carried out in aqueous phase by using a green and water-soluble palladium(Ⅱ) complex as a catalyst under neutral, chloride and base-free conditions. The water-soluble Pd(Ⅱ) complex was proved to be stable and highly catalytically active under the present conditions. In particular, the catalyst was easily recovered and could be reused at least twelve times without significant decrease in catalytic performance. UV-Vis spectra indicated that Pd(Ⅱ) complex might serve as the true catalytically active species in the present system and the reaction mechanism different from Wacker Oxidation was proposed.
     (4) The oxidant-free dehydrogenation of alcohols was developed in water for the first time. The Ru nanoparticles were active for the reaction under N2 atmosphere at reflux conditions for 24 h, giving benzaldehyde in 99% yield together with the generation of H2, where RuCl3 exhibited lower catalytic activity for benzyl alcohol dehydrogenation under the same reaction conditions. The base additive played an important role in effecting catalytic activies. The catalyst could be reused six times without losing catalytic activities, but showed poor activities in the dehydrogenation of aliphatic alcohols.
     (5) The several catalytic system designed were green, and these results will also contribute to the development of efficient and environmentally friendly catalysts for various organic reactions.
引文
[1]Sheldon R A, Arends I, Hanefeld U. Green Chemistry and Catalysis. WILEY-VCH, Weinheim, Germany,2007.
    [2]Loupy A. Solvent-free reactions. Topics in current chemistry.1999,206,153-208.
    [3]Tanaka K, Toda F. Solvent-free organic synthesis. Chem. Rev.2000,100,1025-1047.
    [4]Desimone J M. Practical approaches to green solvents. Science.2002,297,799-803.
    [5]Poliakoff M, Fitzpatrick J M, Farren T R, Anastas P T. Green chemistry:Science and politics of change. Science.2002,297,807-810.
    [6]Andrade C K Z, Alves L M. Environmentally benign solvents in organic synthesis: Current topics. Curr. Org. Chem.2005,9,195-218.
    [7]Horvath I T. Solvents from nature. Green Chem.2008,10,1024-1028.
    [8]Luo Z Y, Zhang Q S, Oderaotoshi Y, Curran D P. Fluorous mixture synthesis:A fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science.2001,291,1766-1769.
    [9]Horvath I T. Fluorous biphase chemistry. Acc. Chem. Res.1998,31,641-650.
    [10]Oakes R S, Clifford A A, Rayner C M. The use of supercritical fluids in synthetic organic chemistry. J. Chem. Soc, Perkin Trans.1,2001,917-941.
    [11]Leitner W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc. Chem. Res.2002,35,746-756.
    [12]岳晓东,何良年,超临界二氧化碳参与的两相体系及其在有机合成反应中的应用.有机化学.2006,26(5),610-617.
    [13]Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev.1999,99,2071-2083.
    [14]Dupont J, Souza R F, Suarez P A Z. Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev.2002,102,3667-3692.
    [15]Wasserscheid P, Welton T. Ionic liquids in synthesis. Wiley-VCH, Weinheim, Germany, 2003.
    [16]Welton T. Ionic liquids in catalysis. Coordin. Chem. Rev.2004,248,2459-2477.
    [17]Rogers R D, Seddon K R. Ionic liquids-Solvents of the future? Science.2003,302, 792-793.
    [18]张岩,王梅祥,王东,黄志镗.水相中金属有机化学反应的研究进展.化学进展.1999,11(4),394-402.
    [19]Pratt L R, Division T. Introduction:water. Chem. Rev.2002,102,2625-2626.
    [20]Li C J, Chen L. Organic chemistry in water. Chem. Soc. Rev.2006,35,68-82.
    [21]鲁亚东,王艳华,金子林.以聚乙二醇为载体的催化剂及为反应介质的催化反应体系.有机化学.2006,26(2),181-188.
    [22]Heldebrant D J, Witt H N, Walsh S M, Ellis T, Rauscher J, Jessop P G. Liquid polymers as solvents for catalytic reductions. Green Chem.2006,8,807-815.
    [23]Chen J, Spear S K, Huddleston J G, Rogers R D. Polyethylene glycol and solutions of polyethylene glycol as green reaction Media. Green Chem.2005,7,64-82.
    [24]韩布兴.超临界流体科学与技术.中国石化出版社,2006.
    [25]邓友全.离子液体-性质、制备与应用.中国石化出版社,2006.
    [26]周海峰,范青华,何艳梅,古练权,陈新滋.液态聚乙二醇作为绿色反应介质在有机反应中的应用.化学进展.2007,19(10),1517-1528.
    [27]Leininger N F, Clontz R, Gainer J L, Kirwan D J. Alternative media for chemical reactions and processing in clean solvents, ed. M. A. Abraham and L. Moens, ACS Symposium Series 819, American Chemical Society, Washington, DC,2002; p.208.
    [28]Chandrasekhar S, Narsihmulu C, Sultana S S, Reddy N R. Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the Heck reaction. Org. Lett.2002,4,4399-4401.
    [29]Xu L J, Chen W P, Ross J, Xiao J L. Palladium-catalyzed regioselective arylation of an electron-rich olefin by aryl halides in ionic liquids. Org. Lett.2001,3,295-297.
    [30]Cabri W, Candiani I. Recent developments and new perspectives in the Heck reaction. Acc. Chem. Res.1995,28,2-7.
    [31]Chandrasekhar S, Narsihmulu C, Sultana S S, Reddy N R. Osmium tetroxide in poly(ethylene glycol) (PEG):A recyclable reaction medium for rapid asymmetric dihydroxylation under Sharpless conditions. Chem. Commun.2003,1716-1717.
    [32]Chandrasekhar S, Narsihmulu C, Saritha B, Sultana S. S. Poly(ethyleneglycol) (PEG):A rapid and recyclable reaction medium for the DABCO-catalyzed Baylis-Hillman reaction. Tetrahedron Lett.2004,45,5865-5867.
    [33]Kumar R, Chaudhary P, Nimesh S, Chandra R. Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes. Green Chem.2006,8, 356-358.
    [34]Ma X M, Jiang T, Han B X, Zhang J C, Miao S D, Ding K L, An G M, Xie Y, Zhou Y X, Zhu A L. Palladium nanoparticles in polyethylene glycols:Efficient and recyclable catalyst system for hydrogenation of olefins. Catal. Commun.2008,9,70-74.
    [35]冯博,胡玉,李欢,侯震山.超临界二氧化碳/聚乙二醇两相体系的性质及其在催化反应中的应用.有机化学.2008,28,381-389.
    [36]Li X G, Chen W P, Hems W, King F, Xiao J L. Asymmetric hydrogenation of ketones with polymer-supported chiral 1,2-diphenylethylenediamine. Org. Lett.2003,5,4559-4561.
    [37]Mai W P, Gao L X. PEG-supported dipyridyl ligand for palladium-catalyzed Suzuki and Suzuki-type reactions in PEG and aqueous media. Synlett.2006,2553-2558.
    [38]Breuzard J A J, Tonunasino M L, Bonnet M C, Lemaire M. Chiral rhodium(I)-(polyether-phosphite) complexes for the enantioselective hydroformylation of styrene:Homogeneous and thermoregulated phase-transfer catalysis. J. Organomet. Chem. 2000,616,37-43.
    [39]Pozzi G, Cavazzini M, Quici S, Benaglia M, DeliAnna G, Poly(ethylene glycol)-supported TEMPO:An efficient, recoverable metal-free catalyst for the selective oxidation of alcohols. Org. Lett.2004,6,441-443.
    [40]Roger T S, Janda K D. Polymer-supported (salen) Mn catalysts for asymmetric epoxidation:A comparison between soluble and insoluble matrices. J. Am. Chem. Soc.2000, 122,6929-6934.
    [41]Breslow R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res. 1991,24,159-164.
    [42]Clark J H, Tavener S J. Alternative solvents:Shades of green. Org. Process Res. Dev. 2007,11,149-155.
    [43]Herrerias C I, Yao X Q, Li Z P, Li C J. Reactions of C-H bonds in water. Chem. Rev. 2007,107,2546-2562.
    [44]Hailes H C. Reaction solvent selection:The potential of water as a solvent for organic transformations. Org. Process Res. Dev.2007,11,114-120.
    [45]Hughes M D, Xu Y J, Jenkins P, Mcmorn P, Landon P, Enache D I, Carley A F, Attard G A, Hutchings G J, King F, Stitt E H, Johnston P, Griffin K, Kiely C J. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature,2005,437, 1132-1135.
    [46]纪红兵,钱宇.清洁氧化反应关键技术基础研究的进展.自然科学进展.2005,14,132-140.
    [47]Tojo G, Fernandez M. Oxidation of alcohols to aldehydes and ketones:A guide to current common practice, Springer Science Business Media, Inc,2006.
    [48]Stahl S S. Palladium oxidase catalysis:Selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew. Chem. Int. Ed.2004,43,3400-3420.
    [49]Schultz M J, Sigman M S. Recent advances in homogeneous transition metal-catalyzed aerobic alcohol oxidations. Tetrahedron.2006,62,8227-8241.
    [50]Sheldon R A, Arends I W C E, Brink G-J T, Dijksman A. Green, catalytic oxidations of alcohols. Ace. Chem. Res.2002,35,774-781.
    [51]Zhan B Z, Thompson A. Recent developments in the aerobic oxidation of alcohols. Tetrahedron.2004,60,2917-2935.
    [52]王嘉瑞,邓维,王晔峰,刘磊,郭庆祥.Pd催化的需氧氧化反应的新进展.有机化学.2006,26(4),397-412.
    [53]Caspi D D, Ebner D C, Bagdanooff J T, Stoltz B M. The resolution of important pharmaceutical building blocks by palladium-catalyzed aerobic oxidation of secondary alcohols. Adv. Synth. Catal.2004,346,185-189.
    [54]Shelden R A, Arends I W C E, Dijksman A A. New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal. Today.2000,57,157-166.
    [55]Sigman M S, Schultz M. The renaissance of palladium(II)-catalyzed oxidation chemistry. Org. Biomol. Chem.2004,2,2551-2554.
    [56]G-Bengoa E, Noheda P, Echavarren A M. Formation of a, β-unsaturated carbonyl compounds by palladium-catalyzed oxidation of allylic alcohols. Tetrahedron Lett.1994,35, 7097-7098.
    [57]Kaneda K, Fujii M, Morioka K. Highly Selective oxidation of allylic alcohols to a, P-unsaturated aldehydes using Pd cluster catalysts in the presence of molecular oxygen. J. Org. Chem.1996,61,4502-4503.
    [58]Kaneda K, Fujie Y, Ebitani K. Catalysis of giant palladium cluster complexes. Highly selective oxidations of primary allylic alcohols to a, β-unsaturated aldehydes in the presence of molecular oxygen. Tetrahedron Lett.1997,38,9023-9026.
    [59]Peterson K P, Larock R C. Palladium-catalyzed oxidation of primary and secondary allylic and benzylic alcohols. J. Org. Chem.1998,63,3185-3189.
    [60]Nishimura T, Onoue T, Ohe K, Uemura S. Pd(OAc)2-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen. Tetrahedron Lett.1998,39,6011-6014.
    [61]Steinhoff B A, Stahl S S. Ligand-modulated palladium oxidation catalysis:Mechanistic insights into aerobic alcohol oxidation with the Pd(OAc)2/pyridine catalyst system. Org. Lett. 2002,4,4179-4181.
    [62]Nishimura T, Onoue T, Ohe K, Uemura S. Palladium(Ⅱ)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen. J. Org. Chem.1999,64,6750-6755.
    [63]Kakiuchi N, Maeda Y, Nishimura T, Uemura S. Pd(IⅡ)-hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air. J. Org. Chem.2001, 66,6620-6625.
    [64]Schultz M J, Park C C, Sigman M S. A convenient palladium-catalyzed aerobic oxidation of alcohols at room Temperature. Chem. Commun.2002,3034-3035.
    [65]Schultz M J, Adler R S, Zierkiewicz W, Privalov T, Sigman M S. Using mechanistic and computational studies to explain ligand effects in the palladium-catalyzed aerobic oxidation of alcohols. J. Am. Chem. Soc.2005,127,8499-8507.
    [66]Jensen D R, Schultz M J, Mueller J A, Sigman M S. A well-defined complex for palladium-catalyzed aerobic oxidation of alcohols:Design, synthesis, and mechanistic considerations. Angew. Chem. Int. Ed.2003,42,3810-3813.
    [67]Iwasawa T, Tokunaga M, Obora Y, Tsuji Y. Homogeneous palladium catalyst suppressing Pd black formation in air oxidation of alcohols. J. Am. Chem. Soc.2004,126, 6554-6555.
    [68]Karimi B, Abedi S, Clark J H, Budarin V. Highly efficient aerobic oxidation of alcohols using a recoverable catalyst:The role of mesoporous channels of SBA-15 in stabilizing palladium nanoparticles. Angew. Chem. Int. Ed.2006,45,4776-4779.
    [69]Karimi B, Zamani A, Abedi S, Clark J H. Aerobic oxidation of alcohols using various types of immobilized palladium catalyst:The synergistic role of functionalized ligands, morphology of support, and solvent in generating and stabilizing nanoparticles. Green Chem. 2009,11,109-119.
    [70]Kwon M S, Kim N, Park C M, Lee J S, Kang K Y, Park J. Palladium nanoparticles entrapped in aluminum hydroxide:Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation. Org. Lett.2005,7,1077-1079.
    [71]Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K. Hydroxyapatite-supported palladium nanoclusters:A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J. Am. Chem. Soc.2004,126,10657-10666.
    [72]Yang J, Guan Y J, Verhoeven T, Santen R, Li C, Hensen E J M. Basic metal carbonate supported gold nanoparticles:Enhanced performance in aerobic alcohol oxidation. Green Chem.2009,11,322-325.
    [73]Seddon K R, Stark A. Selective catalytic oxidation of benzyl alcohol and alkylbenzenes in ionic liquids. Green Chem.2002,4,119-123.
    [74]Hou Z S, Theyssen N, Brinkmann A, Klementiev K V, Grunertb W, Bühl M, Schmidta W, Spliethoff B, Tesche B, Weidenthaler C, Leitner W. Supported palladium nanoparticles on hybrid mesoporous silica:Structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide. J. Catal.2008,258,315-323.
    [75]Seki T, Baiker A. Catalytic oxidations in dense carbon dioxide. Chem. Rev.2009,109, 2409-2454.
    [76]Haimov A, Neumann R. Polyethylene glycol as a non-ionic liquid solvent for polyoxometalate catalyzed aerobic oxidation. Chem. Commun.2002,876-877.
    [77]Hou Z S, Theyssen N, Brinkmann A, Leitner W. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew. Chem. Int. Ed.2005,44,1346-1349.
    [78]Hou Z S, Theyssen N, Leitner W. Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide. Green Chem.2007,9,127-132.
    [79]Brink G J, Arends I W C E, Sheldon R A. Green, catalytic oxidation of alcohols in water. Science.2000,287,1636-1639.
    [80]Buffin B P, Belitz N L, Verbeke S L. Electronic, steric, and temperature effects in the Pd(II)-biquinoline catalyzed aerobic oxidation of benzylic alcohols in water. J. Mol. Catal. A: Chem.2008,284,149-154.
    [81]Uozumi Y, Nakao R. Catalytic oxidation of alcohols in water under atmospheric oxygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst. Angew. Chem. Int. Ed. 2003,42,194-197.
    [82]Yamada Y M A, Arakawa T, Hocke H, Uozumi Y. A nanoplatinum catalyst for aerobic oxidation of alcohols in water. Angew. Chem. Int. Ed.2007,46,704-706.
    [83]Jamwal N, Gupta M, Paul S. Hydroxyapatite-supported palladium(0) as a highly efficient catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols in water. Green Chem.2008,10,999-1003.
    [84]Hou W B, Dehm N A, Scott R W J. Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. J. Catal.2008,253,22-27.
    [85]Biffis A, Minati L. Efficient aerobic oxidation of alcohols in water catalysed by microgel-stabilised metal nanoclusters. J. Catal.2005,236,405-409.
    [86]Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc.2005,127,9374-9375.
    [87]Wang T, Shou H, Kou Y, Liu H C. Base-free aqueous-phase oxidation of non-activated alcohols with molecular oxygen on soluble Pt nanoparticles. Green Chem.2009,11,562-568.
    [88]Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S. Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angew. Chem. Int. Ed.2007,46, 4151-4154.
    [89]Miyamura H, Matsubara R, Kobayashi S. Gold-platinum bimetallic clusters for aerobic oxidation of alcohols under ambient conditions. Chem. Commun.2008,2031-2033.
    [90]Wang X G, Kawanami H, Islam N M, Chattergee M, Yokoyama T, Ikushima Y. Amphiphilic block copolymer-stabilized gold nanoparticles for aerobic oxidation of alcohols in aqueous solution. Chem. Commun.2008,4442-4444.
    [91]Ng Y H, Ikeda S, Harada T, Morita Y, Matsumura M. An efficient and reusable carbon-supported platinum catalyst for aerobic oxidation of alcohols in water. Chem. Commun.2008,3181-3183.
    [92]Kanaoka S, Yagi N, Fukuyama Y, Aoshima S, Tsunoyama H, Tsukuda T, Sakurai H. Thermosensitive gold nanoclusters stabilized by well-defined vinyl ether star polymers: Reusable and durable catalysts for aerobic alcohol oxidation. J. Am. Chem. Soc.2007,129, 12060-12061.
    [93]Wang L, Meng X J, Wang B, Chi W Y, Xiao F S. Pyrrolidone-modified SBA-15 supported Au nanoparticles with superior catalytic properties in aerobic oxidation of alcohols. Chem. Commun.2010,46,5003-5005.
    [94]Fridman V Z, Davydov A A. Dehydrogenation of cyclohexanol on copper-containing catalysts I. the influence of the oxidation state of copper on the activity of copper sites. J. Catal.2000,195,20-30.
    [95]Ooi T, Otsuka H, Miura T, Ichikawa H, Maruoka K. Practical oppenauer (OPP) oxidation of alcohols with a modified aluminum catalyst. Org. Lett.2002,4,2669-2672.
    [96]Matsumoto T, Ueno M, Wang N W, Kobayashi S. Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols. Chem. Asian J.2008,3,196-214.
    [97]Hayashi M, Yamada K, Nakayama S, Hayashi H, Yamazaki S. Environmentally benign oxidation using a palladium catalyst System. Green Chem.2000,2,257-260.
    [98]Keresszegi C, Mallat T, Baiker A. Selective transfer dehydrogenation of aromatic alcohols on supported Palladium. New J. Chem.2001,25,1163-1167.
    [99]Zaccheria F, Ravasio N, Psaro R, Fusi A. Anaerobic oxidation of non-activated secondary alcohols over Cu/Al2O3. Chem. Commun.2005,253-255.
    [100]Shi R J, Wang F, Mu X L, Li Y, Huang X M, Shen W J. MgO-supported Cu nanoparticles for efficient transfer dehydrogenation of primary aliphatic alcohols. Catal. Commun.2009,11,306-309.
    [101]Shi R J, Wang F, Tana, Li Y, Huang X M, Shen W J. A highly efficient Cu/La2O3 catalyst for transfer dehydrogenation of primary aliphatic alcohols. Green Chem.2010,12, 108-113.
    [102]Friedrich A, Schneider S. Acceptorless dehydrogenation of alcohols:Perspectives for synthesis and H2 storage. ChemCatChem.2009,1,72-73.
    [103]Choi J H, Kim N, Shin Y J, Park J H, Park J. Heterogeneous Shvo-type ruthenium catalyst:dehydrogenation of alcohols without hydrogen acceptors. Tetrahedron Lett.2004,45, 4607-4610.
    [104]Kim W-H, Park In S, Park J. Acceptor-free alcohol dehydrogenation by recyclable ruthenium catalyst. Org. Lett.2006,8,2543-2545.
    [105]Adair G R A, Williams J M J. Oxidant-free oxidation:Ruthenium catalysed dehydrogenation of alcohols. Tetrahedron Lett.2005,46,8233-8235.
    [106]Fujita K-I, Tanino N. Yamaguchi R. Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols. Org. Lett.2007,9,109-111.
    [107]Mitsudome T, Mikami Y, Funai H, Mizugaki T, Jitsukawa K, Kaneda K. Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angew. Chem. Int. Ed.2008,47,138-141.
    [108]Mitsudome T, Mikami Y, Ebata K, Mizugaki T, Jitsukawaa K, Kaneda K. Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Chem. Commun.2008,4804-4806.
    [109]Fang W H, Zhang Q H, Chen J, Deng W P, Wang Y. Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols. Chem. Commun.2010,46,1547-1549.
    [110]Shimizu K-I, Sugino K, Sawabe K, Satsuma A. Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chem. Eur. J.2009,15,2341-2351.
    [111]Bruin B, Budzelaar P H M, Gal A W. Functional models for rhodium-mediated olefin-oxygenation catalysis. Angew. Chem. Int. Ed.2004,43,4142-4157.
    [112]Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Ruttinger R, Kojer H. Katalytische umsetzungen von olefinen an platinmetall-verbindungen das consortium-verfahren zur herstellung von acetaldehyd. Angew. Chem.1959,71,176-182.
    [113]奚祖威,杜文,张铭俊,均相催化进展,钱延龙,廖世健主编,北京,化学工业出版社,1990,189-232.
    [114]李华明,舒火明.钯配合物催化烯烃氧化合成酮类物质的研究进展.化学进展,2001,13(6),461-471.
    [115]Clement W H, Selwitz C M. Improved procedures for converting higher a-olefins to methyl ketones with palladium chloride. J. Org. Chem.1964,29,241-243.
    [116]Miller D G, Wayner D D M. Improved method for the Wacker oxidation of cyclic and internal olefins. J. Org. Chem.1990,55,2924-2927.
    [117]Cihova M, Hrusovsky M, Voitko J, Matveev K I. Catalytic oxidation of octene-1 in the presence of palladium(Ⅱ) salts and heteropolyacids. Catal Lett.1981,16,383-386.
    [118]Ali B E, Bregeault J M, Martin J. Oxydation catalytique de octene-1 en presence de complexes de rhodium(Ⅲ) ou de palladium(Ⅱ) associes a des acides phosphomolybdovanadiques at au dioxygene. J. Organometal. Chem.1987,327, C9-C14.
    [119]Nishimura T, Kakiuchi N, Onoue T, Ohe K, Uemura S. Palladium(Ⅱ)-catalyzed oxidation of terminal alkenes to methyl ketones using molecular oxygen. J. Chem. Soc. Perkin Trans.12000,(12),1915-1918.
    [120]Cornell C N, Sigman M S. Recent progress in Wacker oxidations:Moving toward molecular oxygen as the sole oxidant. Inorg. Chem.2007,46,1903-1909.
    [121]Mimoun H, Charpentier R, Mitschler A, Fischer J, Weiss R. Palladium(Ⅱ) tert-butyl peroxide carboxylates. New reagents for the selective oxidation of terminal olefins to methyl ketones. On the role of peroxymetalation in selective oxidative processes. J. Am. Chem. Soc. 1980,102,1047-1054.
    [122]Brink G-J, Arends I W C E, Papadogianakis G, Sheldon R A. Catalytic conversions in water Part 13. Aerobic oxidation of olefins to methyl ketones catalysed by a water-soluble palladium complex-mechanistic investigations. Appl. Catal. A.2000,194-195,435-442.
    [123]Brink G-J, Arends I W C E, Papadogianakis G, Sheldon R A. Catalytic conversions in water. Part 10.(?) Aerobic oxidation of terminal olefins to methyl ketones catalysed by water soluble palladium complexes. Chem. Commun.1998,2359-2360.
    [124]Mitsudome T, Umetani T, Nosaka N, Mori K, Mizugaki T, Ebitani K, Kaneda K. Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant. Angew. Chem. Int. Ed.2006,45,481-485.
    [125]Cornell C N, Sigman M S. Discovery of a practical direct O2-coupled Wacker oxidation with Pd[(-)-sparteine]C12. Org. Lett.2006,8,4117-4120.
    [126]Jiang H F, Jia L Q, Li J H. Wacker reaction in supercritical carbon dioxide. Green Chem.2000,2,161-164.
    [127]Hou Z S, Han B X, Gao L, Jiang T, Liu Z M, Chang Y H, Zhang X G, He J. Wacker oxidation of 1-hexene in 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]), supercritical (SC)CO2, and SCCO2/[bmim][PF6] mixed solvent. New J. Chem.2002,26, 1246-1248.
    [128]Wang X G, Venkataramanan N S, Kawanami H, Ikushima Y. Selective oxidation of styrene to acetophenone over supported Au-Pd catalyst with hydrogen peroxide in supercritical carbon dioxide. Green Chem.2007,9,1352-1355.
    [129]Drago R S, Corden B B, Barnes C W. Novel cobalt(Ⅱ)-catalyzed oxidative cleavage of a carbon-carbon double bond. J. Am. Chem. Soc.1986,108,2453-2455.
    [130]Lee D G, Chen T, Wang Z. Heterogeneous permanganate oxidations.5. The preparation of aldehydes by oxidative cleavage of carbon-carboa double bonds. J. Org. Chem.1993,58, 2918-2919.
    [131]Dhakshinamoorthy A, Pitchumani K. Clay-anchored non-heme iron-salen complex catalyzed cleavage of C=C bond in aqueous medium. Tetrahedron.2006,62,9911-9918.
    [132]Xing D, Guan B T, Cai G X, Fang Z, Yang L P, Shi Z J. Gold(Ⅰ)-Catalyzed Oxidative Cleavage of a C-C Double Bond in Water. Org. Lett.2006,8,693-696.
    [133]Kogan V, Quintal M M, Neumann R. Regioselective alkene carbon-carbon bond cleavage to aldehydes and chemoselective alcohol oxidation of allylic alcohols with hydrogen peroxide catalyzed by [cis-Ru(Ⅱ)(dmp)2(H2O)2]2+(dmp=2,9-dimethylphenanthroline). Org. Lett.2005,7,5039-5042.
    [134]Travis B R, Narayan R S, Borhan B. Osmium tetroxide-promoted catalytic oxidative cleavage of olefins:an organometallic ozonolysis. J. Am. Chem. Soc.2002,124,3824-3825.
    [135]Wang J Q, Cai F, Wang E, He L N. Supercritical carbon dioxide and poly(ethylene glycol):An environmentally benign biphasic solvent system for aerobic oxidation of styrene. Green Chem.2007,9,882-887.
    [136]Aiken Ⅲ J D, Finke R G. A review of modern transition-metal nanoclusters:Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A.1999,145,1-44.
    [137]Astruc D, Lu F, Aranzaes J R. Nanoparticles as recyclable catalysts:The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed.2005,44, 7852-7872.
    [138]Kulkarni A, L-Lapidus R J, Gates B C. Metal clusters on supports:Synthesis, structure, reactivity, and catalytic properties. Chem. Commun.2010,46,5997-6015.
    [139]Yan N, Xiao C X, Kou Y. Transition metal nanoparticle catalysis in green solvents. Coordin. Chem. Rev.2010,254,1179-1218.
    [140]Polshettiwar V, Varma R S. Green chemistry by nano-catalysis. Green Chem.2010,12, 743-754.
    [141]Hu Y, Yu Y Y, Hou Z S, Li H, Zhao X G, Feng B. Biphasic hydrogenation of olefins by functionalized ionic liquid-stabilized palladium nanoparticles. Adv. Synth. Catal.2008,350, 2077-2085.
    [142]Muller J-L, Klankermayera J, Leitner W. Poly(ethylene glycol) stabilized Co nanoparticles as highly active and selective catalysts for the Pauson-Khand reaction. Chem. Commun.2007,1939-1941.
    [143]Srimani D, Sawoo S, Sarkar A. Convenient synthesis of palladium nanoparticles and catalysis of Hiyama coupling reaction in water. Org. Lett.2007,9,3639-3642.
    [144]Luo C C, Zhang Y H, Wang Y G. Palladium nanoparticles in poly(ethyleneglycol):The efficient and recyclable catalyst for Heck reaction. J. Mol. Catal. A:Chem.2005,229,7-12.
    [145]Reetz M T, Vries J G, Ligand-free Heck reactions using low Pd-loading. Chem Commun.2004,1559-1563.
    [146]Kotvun G, Kamenava T, Hladyi S, Starchevsky M, Pzadersky Y, Stolarov 1, Vargaftik M, Moiseev I. Oxidation, redox disproportionation and chain termination reactions catalysed by the Pd-561 giant cluster. Adv. Synth. Catal.2002,344,957-964.
    [147]Choi K M, Akita T, Mizugaki T, Ebitani K, Kaneda K. Highly selective oxidation of allylic alcohols catalysed by monodispersed 8-shell Pd nanoclusters in the presence of molecular oxygen. New J. Chem.2003,27,324-328.
    [148]LindstrOm U M. Organic reactions in water:Principles, strategies and applications. Blackwell, Oxford, UK,2007.
    [149]Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions. Catal. Today.1994,19,247-283.
    [150]Kluytmans J H J, Markusse A P, Kuster B F M, Marin G B, Schouten J C. Engineering aspects of the aqueous noblemetal catalysed alcohol oxidation. Catal. Today.2000,57, 143-155.
    [151]Zhao D B, Wu M, Min E Z, Kou Y. Ionic liquids:Applications in catalysis. Catal. Today.2002,74,157-189.
    [152]Bell A T. The impact of nanoscience on heterogeneous catalysis. Science.2003,299, 1688-1691.
    [153]Li F, Zhang Q H, Wang Y. Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Appl. Catal. A:Gen.2008, 334,217-226.
    [154]Chen J, Zhang Q H, Wang Y, Wan H L. Size-dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols. Adv. Synth. Catal.2008,350, 453-464.
    [155]Toshima N, Shiraishi Y, Teranishi T, Miyake M, Tominaga T, Watanabe H, Brijoux W, BOnnemann H, Schmid G. Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl. Organometal. Chem.2001,15,178-196.
    [156]Teranishi T, Miyake M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater.1998,10,594-600.
    [157]Wang X R, Yang H M, Feng B, Hou Z S, Hu Y, Qiao Y X, Li H, Zhao X G. Functionalized poly(ethylene glycol)-stabilized palladium nanoparticles as an efficient catalyst for aerobic oxidation of alcohols in supercritical carbon dioxide/poly(ethylene glycol) biphasic solvent system. Catal. Lett.2009,132,34-40.
    [158]Feng B, Hua L, Hou Z S, Yang H M, HuY, Li H, Zhao X G. The functionalized poly(ethylene glycol) supported palladium nanoparticles as a highly efficient catalyst for aerobic oxidation of alcohols. Catal. Commu.2009,10,1542-1546.
    [159]Frolov, A. N. Synthesis and photochemical properties of Pd(Ⅱ) complexes of secondary heterocyclic amines. Russ. J. Gen. Chem.2001,71,222-230.
    [160]Ho K Y, Yu W Y, Cheung K K, Che C M. A blue photoluminescent [Zn(L)(CN)2] (L 2,2'-dipyridylamine) material with a supramolecular one-dimensional chain structure. Chem. Commun.1998,2101-2102.
    [161]Anbalagan V, Srivastava T S. Spectral and photochemical behaviour of newly synthesized 2,2r-dipyridylamine complex of Pt(Ⅱ) and Pd(Ⅱ) with various dioxolenes. J. Photochem. Photobiol. A:Chem.1994,77,141-148.
    [162]Lee J R, Liou Y R, Huang W L. Emission studies of hetero-bischelated iridium(Ⅲ)-diimine Complexes. Inorg. Chim. Acta.2001,319,83-89.
    [163]Burgos M, Crespo O, Gimeno M C, Jones P G, Laguna A. Gold, silver and palladium complex with the 2,2'-dipyridylamine ligand. Eur. J. Inorg. Chem.2003,2170-2174.
    [164]Teranishi T, Hosoe M, Tanaka T, Miyake M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B.1999, 103,3818-3827.
    [165]Evangelisti C, Panziera N, Pertici P, Vitulli G, Salvadori P, Battocchio C, Polzonetti G. Palladium nanoparticles supported on polyvinylpyridine:Catalytic activity in Heck-type reactions and XPS structural studies. J. Catal.2009,262,287-293.
    [166]NIST X-ray photoelectron spectroscopy database. NIST standard reference database 20, version 3.5. http://srdata.nist.gov/xps/,1979.
    [167]Jiang L C, Gu H Z, Xu X Z, Yan X H. Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals. J. Mol. Catal. A:Chem.2009,310,144-149.
    [168]Oberli L, Monat R, Matieu H J, Landolt D, Buttet J. Auger and X-ray photoelectron spectroscopy of small Au particles. Surf. Sci.1981,106,301-307.
    [169]Rolison D R. Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science.2003,299,1698-1701.
    [170]El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res.2001,34,257-264.
    [171]Grunwaldt J-D, Caravati M, Baiker A. Oxidic or metallic palladium:Which is the active phase in Pd-catalyzed aerobic alcohol oxidation? J. Phys. Chem. B.2006,110, 25586-25589.
    [172]Murata M, Hara T, Mori K, Ooe M, Mizugaki T, Ebitani K, Kaneda K. Efficient deprotection of N-benzyloxycarbonyl group from amino acids by hydroxyapatite-bound Pd catalyst in the presence of molecular hydrogen. Tetrahedron Lett.2003,44,4981-4984.
    [173]Wu H L, Zhang Q H, Wang Y. Solvent-free aerobic oxidation of alcohols catalyzed by an efficient and recyclable palladium heterogeneous catalyst. Adv. Synth. Catal.2005,347, 1356-1360.
    [174]Li Y, Boone E, El-Sayed M A. Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir.2002,18,4921-4925.
    [175]Bars J L, Specht U, Bradley J S, Blackmond D G. A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir.1999,15,7621-7625.
    [176]Haider P, Kimmerle B, Krumeich F, Kleist W, Grunwaldt J.-D, Baiker A. Gold-catalyzed aerobic oxidation of benzyl Aalcohol:Effect of gold particle size on activity and selectivity in different solvents. Catal. Lett.2008,125,169-176.
    [177]Narayanan R, El-Sayed M A. Effect of catalysis on the stability of metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles. J. Am. Chem. Soc. 2003,125,8340-8347.
    [178]Yin H M, Zhou C Q, Xu C X, Liu P P, Xu X H, Ding Y. Aerobic oxidation of D-glucose on support-free nanoporous gold. J. Phys. Chem. C.2008,112,9673-9678.
    [179]Tsunoyama H, Sakurai H, Tsukuda T. Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol. Chem. Phys. Lett.2006,429,528-532.
    [180]Muzart J. Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron.2003,59,5789-5816.
    [181]Mallat T, Baiker A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev.2004,104,3037-3058.
    [182]Grunwaldt J.-D, Caravati M, Baiker A. In situ extended X-ray absorption fine structure study during selective alcohol oxidation over Pd/A2O3 in supercritical carbon dioxide. J. Phys. Chem. B.2006,110,9916-9922.
    [183]Biffis A, Cunial S, Spontoni P, Prati L. Microgel-stabilized gold nanoclusters:Powerful "quasi-homogeneous" catalysts for the aerobic oxidation of alcohols in water. J. Catal.2007, 251,1-6.
    [184]Takacs J M, Jiang X T. The Wacker reaction and related alkene oxidation reactions. Curr. Org. Chem.2003,7,369-396.
    [185]Arends I W C E, Sheldon R A. Recent developments in selective catalytic epoxidations with H2O2. Top. Catal.2002,19,133-141.
    [186]Chattopadhyay S, Jana P, Mitra A, Sarkar S K, Ganguly T, Mallick P K. Raman excitation profiles and molecular structures in the excited electronic states of 2, 2'-dipyridylamine. J. Raman Spectrosc.1997,28,559-565.
    [187]Azoui H, Baczko K, Cassel S, Larpent C. Thermoregulated aqueous biphasic catalysis of Heck reactions using an amphiphilic dipyridyl-based ligand. Green Chem.2008,10, 1197-1203.
    [188]Antonioli B, Bray D J, Clegg J K, Gloe K, Gloe K, Jager A, Jolliffe K A, Kataeva O, Lindoy L F, Steel P J, Sumby C J, Wenzel M. Interaction of copper(II) and palladium(II) with linked 2,2'-dipyridylamine derivatives:Synthetic and structural studies. Polyhedron.2008, 27,2889-2898.
    [189]Seward C, Jia W L, Wang R Y, Wang S. Palladium(II) complexes of bowls, pinwheels, cages, and N,CN-pincers of starburst ligands 1,3,5-tris(di-2-pyridylamino)benzene and 2,4,6-tris(di-2-pyridylamino)-1,3,5-triazene. Inorg. Chem.2004,43,978-985.
    [190]Steinhoff B A, Stahl S S. Mechanism of Pd(OAc)2/DMSO-catalyzed aerobic alcohol oxidation:Mass-transfer-limitation effects and catalyst decomposition pathways. J. Am.Chem. Soc.2006,128,4348-4355.
    [191]Brink G-J, Arends I W C E, Hoogenraad M, Verspui G, Sheldon R A. Catalytic conversions in water. Part 23:Steric effects and increased substrate scope in the palladium-neocuproine catalyzed aerobic oxidation of alcohols in aqueous solvents. Adv. Synth. Catal.2003,345,1341-1352.
    [192]Keith J A, Nielsen R J, Oxgaard J, Goddard W A. Unraveling the Wacker oxidation mechanisms. J. Am. Chem. Soc.2007,129,12342-12343.
    [193]Hosokawa T, Nakahira T, Takano M, Murahashi S I. Palladium(Ⅱ)-catalyzed oxygenation of the carbon-carbon double bond by molecular oxygen:A probe for involvement of a palladium hydroperoxide species. J. Mol. Catal.1992,74,489-498.
    [194]Hosokawa T, Murahashi S I. New aspects of oxypalladation of alkenes. Acc. Chem. Res.1990,23,49-54.
    [195]Roussel M, Mimoun H. Palladium-catalyzed oxidation of terminal olefins to methyl ketones by hydrogen peroxide. J. Org. Chem.1980,45,5387-5390.
    [196]Cornell C N, Sigman M S. Discovery of and mechanistic insight into a ligand-modulated palladium-catalyzed Wacker oxidation of styrenes using TBHP. J. Am. Chem. Soc.2005,127,2796-2797.
    [197]Sommovigo M, Alper H, Aerobic oxidation of ethers and alkenes catalyzed by a novel palladium complex. J. Mol. Catal.1994,88,151-158.
    [198]王宗延,张云山,王书超,夏道宏,Heck反应最新研究进展,有机化学,2007,27(2),143-152.
    [199]Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn.1971,44,581-581.
    [200]Heck R F, Nolley J P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem.1972,14,2320-2322.
    [201]Beletskaya I P, Cheprakov A V. The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev.2000,100,3009-3066.
    [202]Littke A F, Fu G C. A versatile catalyst for Heck reactions of aryl chlorides and aryl bromides under mild conditions. J. Am. Chem. Soc.2001,123,6989-7000.
    [203]Hill L L, Smith J M, Brown W S, Moore L R, Guevera P, Pair E S, Porter J, Chou J, Wolterman C J, Craciun R, Dixon D A, Shaughnessy K H. Neopentylphosphines as effective ligands in palladium-catalyzed cross-couplings of aryl bromides and chlorides. Tetrahedron. 2008,64,6920-6934.
    [204]H. Doucet, M. Santelli. Cis, Cis, Cis-1,2,3, 4-tetrakia(diphenylphosphinomethyl)cyclopentane:Tedicyp, an effcient ligand in palladium-catalysed reactions. Synlett.2006,13,2001-2015.
    [205]Feng B, Hou Z S, Wang X R, Hu Y, Li H, Qiao Y X. Selective aerobic oxidation of styrene to benzaldehyde catalyzed by water-soluble palladium(II) complex in water. Green Chem.2009,11,1446-1452.
    [206]Mo J, Xu L J, Xiao J L. Ionic liquid-promoted, highly regioselective Heck arylation of electron-rich olefins by aryl halides. J. Am. Chem. Soc.2005,127,751-760.
    [207]Musser M T, Ullmann's encyclopedia of industrial chemistry 6th ed, Vol.10 (Eds.:M. Bonnet), VCH, Weinheim,2003, p.284.
    [208]Karvembua R, Priyaregab S. Ru/γ-Al2O3 as reusable catalyst for dehydrogenation of alcohols without hydrogen acceptor. React. Kinet. Catal. Lett.2006,88,333-338.
    [209]Zhang J, Gandelman M, Shimon L J W, Milstein D, Electron-rich, bulky PNN-type ruthenium complexes:synthesis, characterization and catalysis of alcohol dehydrogenation. Dalton Trans.2007,107-113.
    [210]Yan N, Yuan Y, Dykeman R, Kou Y, Dyson P J, Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with bronsted acidic ionic liquids. Angew. Chem. Int. Ed.2010,49,5549-5553.
    [211]Chakroune N, Viau G, Ammar S, Poul L, Veautier D, Chehimi M M, Mangeney C, Villain F, Fievet F, Acetate-and thiol-capped monodisperse ruthenium nanoparticles:XPS, XAS, and HRTEM studies. Langmuir.2005,21,6788-6796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700