如何针对不同结构的荧光OLED器件提高其发光效率
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:本文针对不同结构的有机电致发光器件,研究了提高其电学性能和发光效率的机制并加以利用。
     1.针对多层结构器件:
     a)利用有机无机复合发光,选用电子传输能力优的材料硫化锌做电子传输层和空穴阻挡层,提高了以MEH-PPV为发光层的器件的电子注入效率,使启亮电压与具有同样能级结构的有机器件相比降低了3V;
     b)针对有机无机界面处相容性差的缺点,对阳极一侧的氧化钼进行紫外臭氧处理,提高了器件ITO/MoO3(5nm)/MEH-PPV/Al的载流子注入效率;
     c)通过在阳极一侧的Mo03与TPD之间插入5nm金属层Au,形成一个小的空穴陷阱,降低了器件中的电流密度,提高了器件ITO/MoO3(5nm)/TPD/AlQ/LiF/Al的发光效率;
     d)以NPB:TphNI的激基复合物发光作为指示器,将三层器件ITO/NPB/NPB:TPhNI(1:1)/TPhNI/LiQ/Al发光复合区控制在器件中间远离电极处,电致发光光谱不随电压的改变而移动。提高了发光色度在改变正向偏压时的稳定性。并相对于同发光材料的双层和单层器件获得了更高的发光效率。
     2.针对叠层结构器件:
     a)加入半透明Au/Al层做阳极,讨论了由Au薄膜特有的光的“选择”透过率造成的器件EL光谱在长波一侧窄化的现象;
     b)通过插入半透明的双金属中间电极,得到结构为ITO/TPD/AlQ:DCJTB(5%)/LiF/Al/Au/TPD/AlQ/LiF/Al的由三个电极和两个独立的发光单元串联组成的叠层器件,其发光色度可以经由向两个发光单元施加不同电压改变光强的配比来精确调制。且由于Al/Au连接层的电荷产生特性,器件整体的发光效率大于两个单元在相同电流密度下的发光效率之和若干倍。
     3.针对单层器件:
     a)对MEH-PPV薄膜热退火的同时施加电场,提高了器件的发光效率;
     b)在掺杂系统PVK:TPB, PVK:C545T, PVK:Rubrene和PVK:DCJTB中,发现延迟荧光的衰减时间长短与主体和客体能级之间的差值ΔEHOMO、 ΔELUMO的大小有关,进而影响了发光效率。ΔEHOMO或ΔELUMO越小时,器件的延迟荧光寿命越短,器件的发光效率越高。本文中共有图78幅,表4个,参考文献128篇。
ABSTRACT:In this paper, OLEDs of all kinds of structures are researched to improve their electrical properties and current efficiency.
     1. for devices of multi-layer structure:
     a) Organic-inorganic composite devices ITO/MEHPPV(-70nm)/ZnS(20nm)/Al was prepared. Compared with the monolayer device ITO/MEHPPV(-70nm)/Al, the spectral red shift and broadening towards the long-wavelength direction in the EL of bilayer devices are observed, due to the exciplex emission in bilayer devices. The current efficiency of organic-inorganic composite device is not higher than that of device ITO/MEHPPV(-70nm)/BCP (20nm)/Al, but the turn-on voltage has been lower3V;
     b) For the poor compatibility of interface of organic and inorganic, using the UV ozone treatment onto molybdenum oxide near to anode, the carrier injection efficiency of the device ITO/MoO3(5nm)/MEH-PPV/A1has been improved;
     c) By inserting5nm of Au layer between MoO3and TPD near to anode, forming a small trap for holes, reducing the current density in the device, the current efficiency of device ITO/MoO3(5nm)/TPD/Alq/LiF/Al has been improved;
     d) Taking exciplex luminous of NPB:TphNI as an indicator, prepared the three-layer device ITO/NPB/NPB:TPhNI (1:1)/TPhNI./LiQ/Al, keep the luminescence area away from two electrodes and are controlled at the middle position of the device, EL spectra does not change with the voltage. Stability of the chromaticity has been improved, and so the current efficiency, compare to the double and single devices with the same luminescent layer.
     2. for devices of tandem structure:
     a) By adding semi-transparent Au/Al layer as anode, the narrowing of EL spectra was discussed, and the reason is the "selected pass" of light-transmissivity in Au thin layer;
     b) By cautiously designing an evaporation mask, tandem OLED consisting of three electrodes and two independent light-emitting units was successfully prepared(ITO/TPD/AlQ:DCJTB(5%)/LiF/Al/Au/TPD/AlQ/LiF/Al). The translucent Al/Au intermediate electrode can be drawn forth and act as cathode and anode. The emission color of this OLED can be controlled by the applied bias. The voltage of the entire device is approximately equals to the sum of units R and G when the current densities are the same. The current efficiency of the entire device is several folds larger than the sum of two components at the same current density. The source of higher current efficiency can be attributed to the charge-generating of the Al/Au intermediate electrode. Besides connecting light-emitting units in series, this kind of intermediate electrode can also generate charge and improve the current efficiency of the tandem OLED, provides an experimental basis for preparation of controllable emission color and high-efficiency OLED.
     3. for devices of single-layer structure:
     a) The efficiency of the single-layer device was improved by thermal annealing while applying an electric field to MEH-PPV thin film;
     b) Prepared doping system of PVK:TPB, PVK:C545T, PVK:Rubrene and PVK: DCJTB, found that the lifetime of delayed fluorescence depends on the gap between the HOMO of host and dopant materials, so as the gap between the LUMO of host and dopant materials, the smaller the ΔELUMO and ΔELUMO are, the shorter the lifetime of delayed fluorescence are, the higher the current efficiency are.
引文
[1]C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes, Applied Physics Letters,51 (1987) 913-915.
    [2]N.F. Colaneri, D.D.C. Bradley, R.H. Friend, P.L. Burn, A.B. Holmes, C.W. Spangler, Photoexcited states in poly(p-phenylene vinylene):Comparison with trans.trans-distyrylbenzene, a model oligomer, Physical Review B,42 (1990) 11670-11681.
    [3]H. Yersin, Triplet emitters for OLED applications. Mechanisms of exciton trapping and control of emission properties, Transition Metal and Rare Earth Compounds Iii,241 (2004) 1-26.
    [4]D. Berner, H. Houili, W. Leo, L. Zuppiroli, Insights into OLED functioning through coordinated experimental measurements and numerical model simulations-Review article, Physica Status Solidi a-Applied Research,202 (2005) 9-36.
    [5]P.T. Chou, Y. Chi, Osmium- and ruthenium-based phosphorescent materials:Design, photophysics, and utilization in OLED fabrication, European Journal of Inorganic Chemistry, (2006) 3319-3332.
    [6]L. Turker, A. Tapan, S. Gumus, ELECTROLUMINESCENT PROPERTIES OF CERTAIN POLYAROMATIC COMPOUNDS:PART 1-CHARACTERISTICS OF OLED DEVICES BASED ON FLUORESCENT POLYAROMATIC DOPANTS, Polycyclic Aromatic Compounds,29 (2009) 123-138.
    [7]W.Y. Wong, C.L. Ho, Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications, Journal of Materials Chemistry,19 (2009) 4457-4482.
    [8]S. Fantacci, F. De Angelis, A computational approach to the electronic and optical properties of Ru(Ⅱ) and Ir(Ⅲ) polypyridyl complexes:Applications to DSC, OLED and NLO, Coordination Chemistry Reviews,255 (2011) 2704-2726.
    [9]李国强,下一代显示明星OLED-产业现状与展望,新材料产业,(2002)14-18.
    [10]中国OLED网,LG55时OLED电视英国上市售价近万英镑,中国OLED网,2013.
    [11]陈金鑫,黄孝文,OLED梦幻显示器:材料与器件,人民邮电出版社,2011.
    [12]王文杰,显示技术之风云再起,记录媒体技术,5(2010)011.
    [13]曲琳,虹彩:OLED开拓者OLED会取代LED吗,创业邦,(2012)100-100.
    [14]王守志,毛兴武,新一代显示器和有机发光二极管,光源与照明,1(2009)002.
    [15]吴空物,用于液晶背光源的白色有机电致发光器件的制备与性能研究,天津理工大学,2006.
    [16]H. Kanno, Y. Hamada, H. Takahashi, Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays, Ieee Journal of Selected Topics in Quantum Electronics,10(2004) 30-36.
    [17]C.C. Yap, M. Yahaya, M.M. Salleh, Influence of thickness of functional layer on performance of organic salt-doped OLED with ITO/PVK:PBD:TBAPF(6)/A1 structure, Current Applied Physics,8 (2008) 637-644.
    [18]S.J. Kim, YD. Zhang, C. Zuniga, S. Barlow, S.R. Marder, B. Kippelen, Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends, Organic Electronics,12 (2011) 492-496.
    [19]N. Juhari, W.H.A. Majid, Z.A. Ibrahim, Degradation of single layer MEH-PPV organic light emitting diode (OLED),2006.
    [20]D.H. Lee, J.S. Choi, H. Chae, C.H. Chung, S.M. Cho, Screen-printed white OLED based on polystyrene as a host polymer, Current Applied Physics,9 (2009) 161-164.
    [21]L. Liao, K. Klubek, C. Tang, High-efficiency tandem organic light-emitting diodes, Applied physics letters,84 (2004) 167-169.
    [22]C.-C. Chang, J.-F. Chen, S.-W. Hwang, C.H. Chen, Highly efficient white organic electroluminescent devices based on tandem architecture, Applied Physics Letters,87 (2005) 253501-253501-253503.
    [23]M. Baldo, S. Lamansky, P. Burrows, M. Thompson, S. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Applied Physics Letters,75 (1999) 4.
    [24]G.F. He, C. Rothe, S. Murano, A. Werner, O. Zeika, J. Birnstock, White stacked OLED with 38 Im/W and 100,000-hour lifetime at 1000 cd/m(2) for display and lighting applications, Journal of the Society for Information Display,17 (2009) 159-165.
    [25]C.W. Han, Y.H. Tak, B.C. Ahn,15-in. RGBW panel using two-stacked white OLED and color filters for large-sized display applications, Journal of the Society for Information Display,19 (2011) 190-195.
    [26]T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D.W. Shin, J. Kido, High-efficiency stacked white organic light-emitting diodes, Applied Physics Letters,92 (2008) 043301.
    [27]K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly efficient organic devices based on electrically doped transport layers, Chemical Reviews-Columbus,107 (2007) 1233-1271.
    [28]L. Liao, K.P. Klubek, Power efficiency improvement in a tandem organic light-emitting diode, Applied Physics Letters,92 (2008) 223311.
    [29]K.S. Yook, S.O. Jeon, S.Y. Min, J.Y. Lee, H.J. Yang, T. Noh, S.K. Kang, T.W. Lee, Highly Efficient p-i- n and Tandem Organic Light- Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant, Advanced Functional Materials,20 (2010) 1797-1802.
    [30]J. Meyer, M. Kroger, S. Hamwi, F. Gnam, T. Riedl, W. Kowalsky, A. Kahn, Charge generation layers comprising transition metal-oxide/organic interfaces:Electronic structure and charge generation mechanism, Applied Physics Letters,96 (2010) 193302.
    [31]D.-S. Leem, J.-H. Lee, J.-J. Kim, J.-W. Kang, Highly efficient tandem< equation> pin organic light-emitting diodes adopting a low temperature evaporated rhenium oxide interconnecting layer, Applied Physics Letters,93 (2008) 103304-103304-103303.
    [32]Y. Chen, J. Chen, D. Ma, D. Yan, L. Wang, F. Zhu, High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer, Applied Physics Letters,98 (2011) 243309.
    [33]Q. Bao, J. Yang, Y. Li, J. Tang, Electronic structures of MoO-based charge generation layer for tandem organic light-emitting diodes, Applied Physics Letters,97 (2010) 063303.
    [34]C.-W. Chu, C.-W. Chen, S.-H. Li, E.H.-E. Wu, Y. Yang, Integration of organic light-emitting diode and organic transistor via a tandem structure, Applied Physics Letters,86 (2005) 253503-253503-253503.
    [35]X. Qi, N. Li, S.R. Forrest, Analysis of metal-oxide-based charge generation layers used in stacked organic light-emitting diodes, Journal of Applied Physics,107 (2010) 014514-014514-014518.
    [36]T. Uchida, Y. Kasahara, T. Otomo, S. Seki, M.H. Wang, Y. Sawada, Transparent conductive electrode deposited by Cs-incorporated RF magnetron sputtering and evaluation of the damage in OLED organic layer, Thin Solid Films,516 (2008) 5907-5910.
    [37]Y.M. Chien, F. Lefevre, I. Shih, R. Izquierdo, A solution processed top emission OLED with transparent carbon nanotube electrodes, Nanotechnology,21 (2010).
    [38]T.H. Gil, C. May, S. Scholz, S. Franke, M. Toerker, H. Lakner, K. Leo, S. Keller, Origin of damages in OLED from Al top electrode deposition by DC magnetron sputtering, Organic Electronics,11 (2010)322-331.
    [39]C. Cioarec, P. Melpignano, N. Gherardi, R. Clergereaux, C. Villeneuve, Ultrasmooth Silver Thin Film Electrodes with High Polar Liquid Wettability for OLED Microcavity Application, Langmuir,27 (2011)3611-3617.
    [40]H. Aziz, Z. Popovic, C.P. Tripp, N.-X. Hu, A.-M. Hor, G. Xu, Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes, Applied physics letters, 72(1998)2642-2644.
    [41]S. Lee, Z. Gao, L. Hung, Metal diffusion from electrodes in organic light-emitting diodes, Applied Physics Letters,75 (1999) 1404-1406.
    [42]J.S. Hong, K.W. Jang, Y.S. Park, H.W. Choi, K.H. Kim, Preparation of ZnO Based Thin Films for OLED Anode by Facing Targets Sputtering System, Molecular Crystals and Liquid Crystals,538 (2011) 103-111.
    [43]S.H. Jeong, B.N. Park, D. Yoo, J. Boo, D. Jung, Al-ZnO thin films as transparent conductive oxides:synthesis, characterization, and application tests, Journal-Korean Physical Society,50 (2007) 622.
    [44]L.S. Li, M. Guan, G.H. Cao, Y.Y. Li, Y.P. Zeng, Low operating-voltage and high power-efficiency OLED employing MoO3-doped CuPc as hole injection layer, Displays,33 (2012) 17-20.
    [45]J. Ohshita, Y. Tada, A. Kunai, Y. Harima, Y. Kunugi, Hole-injection properties of annealed polythiophene films to replace PEDOT-PSS in multilayered OLED systems, Synthetic Metals,159 (2009) 214-217.
    [46]K.T. Wong, R.T. Chen, F.C. Fang, C.C. Wu, Y.T. Lin,4,5-diazafluorene-incorporated ter(9,9-diarylfluorene):A novel molecular doping strategy for improving the electron injection property of a highly efficient OLED blue emitter, Organic Letters,7 (2005) 1979-1982.
    [47]A. Bonucci, J.M. Bertolo, M. Riva, C. Carretti, S. Tominetti, S.H. Kim, J.Y. Lee, Ite, Improvement of OLED performance by using Alkali metals as Electron Injection Layer evaporated from highly stable source,2007.
    [48]H. Hosono, P. East China Normal Unviersity, RT-stable electride and its application to cold electron emitter and electron injection layer in OLED,2007.
    [49]H. Hosono, K. Kim, H. Yanagi, T. Kamiya, H. Hiramatsu, M. Hirano, Ite, Electrode materials for low electron/hole injection barrier formation in OLED,2007.
    [50]Y.M. Kim, G.C. Yu, T.W. Lee, Y.C. Kim, Effects of Organic Lithium Salt Ultrathin Films on the Electron Injection Efficiency in OLED, Molecular Crystals and Liquid Crystals,491 (2008) 109-113.
    [51]H. Nie, B. Zhang, X.Z. Tang, Significant improvement of OLED efficiency and stability by doping both HTL and ETL with different dopant in heterojunction of polymer/small-molecules, Chinese Physics,16 (2007) 730-734.
    [52]U. Giovanella, M. Pasini, C. Freund, C. Botta, W. Porzio, S. Destri, Highly Efficient Color-Tunable OLED Based on Poly(9,9-dioctylfluorene) Doped with a Novel Europium Complex, Journal of Physical Chemistry C,113 (2009) 2290-2295.
    [53]J.G. Jang, H.W. Kim, J.M. Ahn, S.B. Shin, New White OLED Using Selective Doping in a Single Host, Molecular Crystals and Liquid Crystals,498 (2009) 298-305.
    [54]S.H. Yang, B.C. Hong, S.F. Hnang, Influences of Dye Doping and Hole Blocking Layer Insertion on Sky-Blue OLED Performance, Journal of the Electrochemical Society,156 (2009) J41-J45.
    [55]J.C. Jeong, H.S. Kim, J.G. Jang, High Efficient Green Phosphorescent OLED with Emission Layer of TPBI Selectively Doped with Ir(ppy)(3), Molecular Crystals and Liquid Crystals,530 (2010) 259-265.
    [56]L.J. Zhu, J. Wang, T.G. Reng, C.Y. Li, D.C. Guo, C.C. Guo, Effect of substituent groups of porphyrins on the electroluminescent properties of porphyrin-doped OLED devices, Journal of Physical Organic Chemistry,23 (2010) 190-194.
    [57]Q. Yang, Y.Y. Hao, Z.G. Wang, Y.F. Li, H. Wang, B.S. Xu, Double-emission-layer green phosphorescent OLED based on LiF-doped TPBi as electron transport layer for improving efficiency and operational lifetime, Synthetic Metals,162 (2012) 398-401.
    [58]许少鸿,固体发光,清华大学出版社,2011.
    [59]贺庆国,胡文平,白凤莲,分子材料与薄膜器件,化学工业出版社,2010.
    [60]C. Ganzorig, M. Fujihira, A possible mechanism for enhanced electro fluorescence emission through triplet-triplet annihilation in organic electroluminescent devices, Applied physics letters,81 (2002)3137-3139.
    [61]M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. Vardeny, Formation cross-sections of singlet and triplet excitons in π-conjugated polymers, Nature,409 (2001) 494-497.
    [62]J. Wilson, A. Dhoot, A. Seeley, M. Khan, A. Kohler, R. Friend, Spin-dependent exciton formation inn-conjugated compounds, Nature,413 (2001) 828-831.
    [63]黄世华,激光光谱学原理和方法,吉林大学出版社,2001.
    [64]吴世康,汪鹏飞,有机电子学概论,化学工业出版社,2010.
    [65]Y. Luo, H. Aziz, Correlation Between Triplet-Triplet Annihilation and Electroluminescence Efficiency in Doped Fluorescent Organic Light-Emitting Devices, Advanced Functional Materials,20 (2010) 1285-1293.
    [66]T. Nakagawa, S.Y. Ku, K.T. Wong, C. Adachi, Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structurew, Chemical Communications,48 (2012) 9580-9582.
    [67]G. Mehes, H. Nomura, Q.S. Zhang, T. Nakagawa, C. Adachi, Enhanced Electroluminescence Efficiency in a Spiro-Acridine Derivative through Thermally Activated Delayed Fluorescence, Angewandte Chemie-International Edition,51 (2012) 11311-11315.
    [68]Y.C. Luo, H. Aziz, Probing triplet-triplet annihilation zone and determining triplet exciton diffusion length by using delayed electroluminescence, Journal of Applied Physics,107 (2010).
    [69]A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light-Emitting Diodes-A Novel Mechanism for Electroluminescence, Advanced Materials,21 (2009) 4802--
    [70]Z.D. Popovic, H. Aziz, Delayed electroluminescence in small-molecule-based organic light-emitting diodes:Evidence for triplet-triplet annihilation and recombination-center-mediated light-generation mechanism, Journal of Applied Physics,98 (2005).
    [71]V.K. Chandra, B.P. Chandra, Transient electroluminescence in heavy metal complex-based phosphorescent organic light-emitting diodes, Organic Electronics,13 (2012) 329-334.
    [72]城户淳二,有机电致发光-从材料到器件,北京大学出版社,2012.
    [73]J. Huang, Z. Xu, S. Zhao, Y. Li, F. Zhang, L. Song, Y. Wang, X. Xu, Organic/inorganic heterostructures for enhanced electroluminescence, Solid State Communications,142 (2007) 417-420.
    [74]F. Zhang, Z. Xu, S. Zhao, L. Liu, B. Sun, J. Pei, Improvement of rare-earth complex electroluminescence by using organic-inorganic heterostructure, Physica B:Condensed Matter,381 (2006) 256-259.
    [75]H. Yue, R. Hai-Bo, Numerical model of multilayer organic light-emitting devices, Chinese Physics B,18(2009)1627.
    [76]J. Zhi-Qiang, W. Xiao-Ming, H. Yu-Lin, D. Mu-Sen, S. Yue-Ju, S. Li-Ying, Y. Shou-Gen, Improving efficiency of organic light-emitting devices by optimizing the LiF interlayer in the hole transport layer, Chinese Physics B,20 (2011) 107803.
    [77]L. Liao, K. Klubek, J. Madathil, C. Tang, D. Giesen, Recoverable electroluminescence from a contaminated organic/organic interface in an organic light-emitting diode, Applied Physics Letters,96 (2010) 043302-043302-043303.
    [78]J. Bernede, L. Cattin, M. Morsli, Y. Berredjem, Ultra-thin metal layer passivation of the transparent conductive anode in organic solar cells, Solar Energy Materials and Solar Cells,92 (2008) 1508-1515.
    [79]S. Barth, P. Muller, H. Riel, P. Seidler, W. Rieb, H. Vestweber, H. Bassler, Electron mobility in tris (8-hydroxy-quinoline) aluminum thin films determined via transient electroluminescence from single-and multilayer organic light-emitting diodes, Journal of Applied physics,89 (2001) 3711-3719.
    [80]C.-W. Chen, C.-L. Lin, C.-C. Wu, An effective cathode structure for inverted top-emitting organic light-emitting devices, Applied physics letters,85 (2004) 2469-2471.
    [81]J. Feng, T. Okamoto, S. Kawata, Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling, Optics letters, 30 (2005) 2302-2304.
    [82]K.-H. Choi, H.-J. Nam, J.-A. Jeong, S.-W. Cho, H.-K. Kim, J.-W. Kang, D.-G. Kim, W.-J. Cho, Highly flexible and transparent In Zn Sn O x/Ag/In Zn Sn O x multilayer electrode for flexible organic light emitting diodes, Applied Physics Letters,92 (2008) 223302.
    [83]郑华靖,阮政,蒋亚东,蒋泉,芴类有机电致发光器件材料特性的分析,功能材料,42(2011)1698-1703.
    [84]朱飞剑,基于激基复合物发光的白色有机电致发光器件的制备和研究,天津理工大学,2006.
    [85]朱文清,吴有智,郑新友,蒋雪茵,张志林,孙润光,许少鸿,双层有机电致发光器件中多成分激发态发射,物理学报,53(2005)2325-2329.
    [86]T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, J. Kido,27.5 L:Late-News Paper:Multiphoton Organic EL device having Charge Generation Layer, in:SID Symposium Digest of Technical Papers, Wiley Online Library,2003, pp.979-981.
    [87]C.J. Liang, W.C.H. Choy, Tunable full-color emission of two-unit stacked organic light emitting diodes with dual-metal intermediate electrode, Journal of Organometallic Chemistry,694 (2009) 2712-2716.
    [88]张春玉,肖力光,秦丽,林杰,王立艳,李颜涛,蓝色微腔有机发光器件,光学学报,29(2009)1967-1972.
    [89]曹进,刘向,张晓波,委福祥,朱文清,蒋雪茵,张志林,许少鸿,微腔结构顶发射有机发光器件,物理学报,56(2007)1088-1092.
    [90]丁磊,张方辉,马颖,一种新型双空穴注入层微腔OLED,液晶与显示,26(2011)490.
    [91]刘岳峰,腔长周期渐变的微腔顶发射有机电致发光器件的研究,吉林大学,2010.
    [92]魏寅,王秀峰,张麦丽,张方辉,丁磊,金属阳极厚度对OLED微腔器件性能的影响,半导体光电,33(2012)171-174.
    [93]丁磊,张方辉,马颖,一种新型双空穴注入层微腔OLED,液晶与显示,26(2011).
    [94]Y. De-Zhi, S. Heng-Da, C. Jiang-Shan, M. Dong-Ge, High Current Transfer Ratio Organic Optocoupler Based on Tandem Organic Light-Emitting Diode as the Input Unit, Chinese Physics Letters, 29(2012)114216.
    [95]T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D.W. Shin, J. Kido, High-efficiency stacked white organic light-emitting diodes, Applied Physics Letters,92 (2008) 043301-043301-043303.
    [96]X. Qi, M. Slootsky, S. Forrest, Stacked white organic light emitting devices consisting of separate red, green, and blue elements, Applied Physics Letters,93 (2008) 193306-193306-193303.
    [97]P. Tyagi, R. Srivastava, A. Kumar, V.K. Rai, R. Grover, M.N. Kamalasanan, White electroluminescence from stacked organic light emitting diode, Synthetic Metals,160 (2010) 756-761.
    [98]J.X. Sun, X.L. Zhu, H.J. Peng, M. Wong, H.S. Kwok, Effective intermediate layers for highly efficient stacked organic light-emitting devices, Applied Physics Letters,87 (2005) 093504-093504-093503.
    [99]T.-W. Lee, O.O. Park, The effect of different heat treatments on the luminescence efficiency of polymer light-emitting diodes, Advanced materials,12 (2000) 801-804.
    [100]盖欣,退火处理及修饰层对固态阴极射线发光性能影响的研究,北京交通大学,2011.
    [101]X.W. Zhang, Z.X. Wu, B. Jiao, D.D. Wang, D.W. Wang, X. Hou, White organic light-emitting devices with a solution-processed small molecular emission layer, Displays,33 (2012) 129-132.
    [102]L.D. Hou, L.A. Duan, J.A. Qiao, D.Q. Zhang, G.F. Dong, L.D. Wang, Y. Qiu, Efficient solution-processed small-molecule single emitting layer electrophosphorescent white light-emitting diodes, Organic Electronics,11 (2010) 1344-1350.
    [103]Y.H. Lan, C.H. Hsiao, P.Y. Lee, Y.C. Bai, C.C. Lee, C.C. Yang, M.K. Leung, M.K. Wei, T.L. Chiu, J.H. Lee, Dopant effects in phosphorescent white organic light-emitting device with double-emitting layer, Organic Electronics,12 (2011) 756-765.
    [104]X.Y. Jiang, Z.L. Zhang, W.Q. Zhu, S.H. Xu, Highly efficient and stable white organic light emitting diode with triply doped structure, Displays,27 (2006) 161-165.
    [105]C.H. Jeong, J.T. Lim, M.S. Kim, J.H. Lee, J.W. Bae, G.Y. Yeom, Four-wavelength white organic light-emitting diodes using 4,4'-bis-carbazoyl-(9)-stilbene as a deep blue emissive layer, Organic Electronics,8 (2007) 683-689.
    [106]Y.H. Kim, S.H. Lee, H.S. Yoon, J.Y. Choi, S.S. Shin, S.J. Chae, J.H. Seo, J.H. Seo, Y.K. Kim, W.Y. Kim, High Efficient White Organic Light-Emitting Diodes Using BCzVBi as Blue Fluorescent Dopant, Journal of Nanoscience and Nanotechnology,8 (2008) 4579-4583.
    [107]P. Wu, L.G. Yang, X. Liu, H. Ye, H. Yang, D.X. Zhu, M.J. Yang, Green OLED based on doped tetra-methylest& of perylene-3,4,9,10-tetracarboxylicacid emitter,2004.
    [108]R. Bauer, W.J. Finkenzeller, U. Bogner, M.E. Thompson, H. Yersin, Matrix influence on the OLED emitter Ir(btp)(2)(acac) in polymeric host materials-Studies by persistent spectral hole burning, Organic Electronics,9 (2008) 641-648.
    [109]Y. Chen, M. Cai, T. Xiao, E. Hellerich, J. Shinar, Optically Detected Magnetic Resonance (ODMR) Studies of Trions in Organic Light-Emitting Materials and OLEDs, and Their Possible Relation to Long-Term OLED Degradation, in:F. So, C. Adachi (Eds.) Organic Light Emitting Materials and Devices Xii,2008.
    [110]S. Mulani, M. Xiao, S.J. Wang, Y.W. Chen, J.B. Peng, Y.Z. Meng, Structure properties of a highly luminescent yellow emitting material for OLED and its application, Rsc Advances,3 (2013) 215-220.
    [111]J.H. Kim, S. Noh, K. Kim, S.T. Lim, D.M. Shin, Blue light emitting diode with 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), Synthetic Metals,117 (2001) 227-228.
    [112]S.M. Hanagodimath, B. Siddlingeshwar, J. Thipperudrappa, S.K.B. Hadimani, Fluorescence-quenching studies and temperature dependence of fluorescence quantum yield, decay time and intersystem crossing activation energy of TPB, Journal of Luminescence,129 (2009) 335-339.
    [113]J.H. Lee, C.C. Teng, J.H. Lin, T.C. Lin, C.C. Yang, Direct observations of energy transfer and quenching dynamics between Alq3 and C545T in thin films with different doping concentrations, in:G. Yu, C.T. Chen, C.H. Lee (Eds.) Light-Emitting Diode Materials and Devices,2005, pp.66-71.
    [114]H.S. Bang, J. Yun, C. Lee, Improved lifetime and efficiency of green organic light-emitting diodes with a fluorescent dye (C545T)-doped hole transport layer-art. no.66551W, in:Z.H. Kafafi, F. So (Eds.) Organic Light Emitting Materials and Devices Xi,2007, pp. W6551-W6551.
    [115]D.K. Zhang, D.G. Ma, Improved amplified spontaneous emission by doping of green fluorescent dye C545T in red fluorescent dye DCJTB:PS polymer films, Applied Optics,46 (2007) 2996-3000.
    [116]H.P. Lin, F. Zhou, J. Li, X.W. Zhang, L. Zhang, X.Y. Jiang, Z.L. Zhang, J.H. Zhang, White organic light-emitting diodes based on C545T doped emitting system, Physica Status Solidi a-Applications and Materials Science,209 (2012) 401-405.
    [117]H. Kajii, T. Tsukagawa, T. Taneda, K. Yoshino, M. Ozaki, A. Fujii, M. Hikita, S. Tomaru, S. Imamura, H. Takenaka, J. Kobayashi, F. Yamamoto, Y. Ohmori, Transient properties of organic electroluminescent diode using 8-hydroxyquinoline aluminum doped with rubrene as an electro-optical conversion device for polymeric integrated devices, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,41 (2002) 2746-2748.
    [118]C.J. Lee, D.G. Moon, J.I. Han, S. Korean Information Display, White organic light emitting diode with single emission layer DPVBi partially doped with rubrene, in:Imid/Idmc 2006:The 6th International Meeting on Information Display/the 5th International Display Manufacturing Conference, Digest of Technical Papers,2006, pp.1002-1005.
    [119]K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, K. Shibata, High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer, Applied Physics Letters,89 (2006).
    [120]H.H. Huang, S.Y. Chu, P.C. Kao, Y.C. Chen, High efficiency white organic light emitting diodes using Rubrene doped N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine as an emitting layer, Thin Solid Films,516 (2008) 5669-5672.
    [121]Y. Li, YD. Jiang, W. Wen, J.S. Yu, White organic light-emitting diodes based on doped and ultrathin Rubrene layer, in:Y. Jiang, B. Kippelen, J. Yu (Eds.) 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies:Optoelectronic Materials and Devices for Detector, Imager, Display, and Energy Conversion Technology,2010.
    [122]M.S. Kim, C.H. Jeong, J.T. Lim, G.Y. Yeom, White top-emitting organic light-emitting diodes using one-emissive layer of the DCJTB doped DPVBi layer, Thin Solid Films,516 (2008) 3590-3594.
    [123]D.H. Xu, Z.B. Deng, X.F. Li, Z. Chen, Z.Y. Lv, Non-doped red to yellow organic light-emitting diodes with an ultrathin 4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) layer, Physica E-Low-Dimensional Systems & Nanostructures,40 (2008) 2999-3003.
    [124]F.J. Zhang, Z. Xu, D.W. Zhao, S.L. Zhaol, L.W. Wangl, G.C. Yuan, The effect of DCJTB doping concentration in PVK on the chromatic coordinate of electroluminescence, Physica Scripta,77 (2008).
    [125]T.L. Li, W.L. Li, X.A. Li, B. Chu, Z.S. Su, L.L. Han, Y.R. Chen, Z.Z. Hu, Z.Q. Zhang, Improved performances of red organic light-emitting devices by co-doping a rubrene derivative and DCJTB into tris-(8-hydroxyquinoline) aluminum host, Journal of Luminescence,130 (2010) 1676-1679.
    [126]C.C. Yap, M. Yahaya, M.M. Salleh, Influence of tetrabutylammonium hexafluorophosphate (TBAPF(6)) doping level on the performance of organic light emitting diodes based on PVK:PBD blend films, Current Applied Physics,9 (2009) 722-726.
    [127]M. Yahiro, D. Zou, T. Tsutsui, Recoverable degradation phenomena of quantum efficiency in organic EL devices, Synthetic Metals,111-112 (2000) 245-247.
    [128]Y. Luo, H. Aziz, Correlation Between Triplet-Triplet Annihilation and Electroluminescence Efficiency in Doped Fluorescent Organic Light-Emitting Devices, Advanced Functional Materials,20 (2010) 1285-1293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700