钯修饰阵列碳纳米管电极对多氯联苯的电还原脱氯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电还原法处理氯代有机物,因脱氯效率高、操作简便、环境友好等优点,引起了研究者的广泛重视。本论文制备了负载有金属钯催化剂的碳纳米管阵列作为电极用于电催化还原脱氯处理水中难降解的多氯联苯,以降低其生物毒性和提高可生化降解性。主要开展了以下几方面的工作:
     采用化学气相沉积法在金属钛基底上制备有序阵列碳纳米管电极并对其进行纯化,考察了沉积温度、催化剂前驱体(二茂铁)浓度和沉积时间对电极形貌的影响。通过扫描电镜(SEM)和透射电镜(TEM)分析表明,在沉积温度为800℃,二茂铁浓度为24mg/mL,沉积时间为5min的条件下制备的碳纳米管在钛基底上致密均匀生长,阵列性良好,长度适中,外径约为80nm,内径约为15nm。纯化后电极形貌未受到破坏,性能得到改善。
     采用恒电流电沉积法在有序阵列碳纳米管电极上负载钯催化剂,考察了电流密度和沉积时间对电极形貌和性能的影响,通过透射电镜观察发现在电流密度为1.0mA/cm~2、沉积时间为10min时,催化剂颗粒的数量适中,分散均匀,平均粒径约为10nm。对电极进行X-射线衍射(XRD)和能量分散X-射线(EDX)分析证实了钯在电极上的存在。循环伏安分析表明了载钯阵列碳纳米管(Pd/CNTs/Ti)电极优良的电化学性能。
     将用上述方法制备的Pd/CNTs/Ti电极用于对目标物2,4,5-三氯联苯(PCB29)进行电催化还原脱氯降解,考察了电极的制备条件,支持电解质的种类和浓度,工作电压和PCB29初始浓度对降解效果的影响。研究表明,在0.05mol/L硫酸作支持电解质、工作电压为-1.0V时,Pd/CNTs/Ti电极对初始浓度为20mg/L的PCB29电解6h的降解率能达到90%,优于载钯的石墨(Pd/Graphite)电极和钛(Pd/Ti)电极。对降解产物进行定性分析发现降解过程中有一氯联苯、二氯联苯和联苯生成,同时溶液中的氯离子浓度也随着降解的进行逐渐增大,证实了电还原脱氯反应的发生。
     总之,本研究用较简单的方法制备出了载钯阵列碳纳米管电极,优化了电极制备条件,考察了该电极在适宜条件下对多氯联苯的电还原脱氯降解效果,并对降解产物进行了定性分析,为电催化还原法处理水溶液中多氯联苯的实际应用提供了理论基础和实验依据。
The electroreduction process has caused world-wide interest because of its high dechlorination efficicency,simple operation,and environmentally friendly property.In this dissertation,the palladized aligned carbon nanotubes(Pd/CNTs/Ti)electrode is fabricated for electrocatalytic dechlorination of polychlorinated biphenyls(PCBs).
     Well aligned carbon nanotubes are prepared by chemical vapor deposition on the Ti substrate and purified.The effects of deposited temperature,ferrocene concentration and deposited time on the morphology of CNTs are investigated.The scanning electron microscopy(SEM)and transmission electron microscopy(TEM)indicate that the well aligned CNTs have been successfully grow on the Ti surface,and the preparation conductions of deposited temperature,ferrocene concentration and deposited time are 800℃,24 mg/mL and 5 min,respectively.The external diameter of CNTs is about 80 nm while the inner is about 15 nm.After purification,the morphology of CNTs has not been destructed and the properties of the CNTs electrode could be improved.
     The constant current electrodeposition is used to load Pd onto the surface of the CNTs to synthesize the Pd/CNTs/Ti electrode.The effect of current density and depoited time on the morphology and property of the electrode are investigated.The TEM image indicates that Pd particles,whose average diameters are 10 nm,are dispersed uniformly on the surface of CNTs. The preparation conductions of current density and deposited time are 1.0 mA/cm~2 and 10 min,respectively.The X-ray diffraction(XRD)and energy-dispersive X-ray(EDX)have proven that the Pd has been loaded on the CNTs indeed.The excellent electrochemical property of the Pd/CNTs/Ti electrode is shown by the analysis of cyclic voltammetry.
     The electrocatalytic reductive dechlorination of the 2,4,5-trichlorobiphenyl is carried out using the palladized aligned carbon nanotubes.The effect of synthesized conditions of electrode,supporting electrolyte,working voltage and initial concentration of PCB29 on the dechlorinated degradation efficiencies are investigated.After 6 hours electrolysis with Pd/CNTs/Ti electrode,the degradation efficiency of PCB29 was up to 90%while the supporting electrolyte and working voltage were 0.05 mol/L H_2SO_4 and -1.0V,respectively. The performance of the Pd/CNTs/Ti electrode is better than the pallidum-loaded graphite and Ti electrodes.The monochlorobiphenyl,dichlorobiphenyl and biphenyl are detected by the qualitative analysis of the dechlorinated production.Meanwhile,the increasing of the concentration of chloride ion has confirmed in the process of electrocatalytic reductive dechlorination.
     In a word,the optimal conditions for the synthesis of Pd/CNTs/Ti electrode and electrocatalytic reductive dechlorination of PCB29 are investigated,and the dechlorinated productions are qualitatively analysis in this dissertation.The results will provide the theoretical and experimental basis for the application of electrocatalytic reduction using carbon electrodes in treatment of wastewater containing polychlorinated biphenyls.
引文
[1]孟庆显,储少岗.多氯联苯的环境吸附行为研究进展.科学通报,2000,45(15):1572-1583.
    [2]周密,陈正夫.环境样品中多氯联苯分析的新进展.环境监测管理与技术,1995,7(2):12-14.
    [3]Mullin M D,Pochini C M.High-resolution PCB analysis:Synthesis and chromatographic properties of all 209 PCB congeners.Environ.Sci.Technol.,1984,18(6):468-476.
    [4]安晓俊.多氯联苯及其替代物毒性研究和对环境及人群健康的影响.新疆环境保护,1994,16(1):57-62.
    [5]周文敏,傅德黔,孙崇光.水中优先控制污染物黑名单.中国环境监测,1990,6(4):1-4.
    [6]申秀英,许晓路.多氯联苯的生物效应研究概述.农业环境与发展,1995,12(4):26-29.
    [7]宇振东,陈定茂.多氯联苯污染及其毒性.环境科学丛刊,1986,(5):57-61.
    [8]张俊增,张红进,梁爱芝.毛细管柱、电子捕获检测器-气相色谱法测定水和废水中多氯联苯(PCBs).光谱实验室,1999,16(3):329-332.
    [9]李兰廷,解强.多氯联苯污染与治理的研究进展.苏州科技学院学报,2004,17(3):15-20.
    [10]赵英,赵毅,马双忱.亲核取代-热分解法破坏多氯联苯.华北电力大学学报,1997,24(1):61-66.
    [11]张俊增,王兆文,王秀凤.东营市有机污染物(多氯联苯)的污染调查与防治对策.山东环境,1999,(4):22-23.
    [12]于强,李亚明,张华等.近海贻贝、牡蛎中有机氯农药和多氯联苯的气相色谱法测定.分析测试学报,2002,21(2):91-93.
    [13]毕新慧,徐晓白.多氯联苯的环境行为.化学进展,2000,12(2):152-159.
    [14]李森,陈家军,孟占利.多氯联苯处理处置方法国内外研究进展.中国环保产业,2004,(2):26-28.
    [15]Hess P.Critical review of the analysis of Non- and Mono-Ortho-Chlorobiphenyls.J Chromatography A,1995,703:417-465.
    [16]胡劲召,陈少瑾,吴双桃等.多氯联苯污染及其处理方法研究进展.江西化工,2004,(4):1-5.
    [17]Chuang F W,Larson R A,Wessman M S.Zero-valent iron-promoted dechlorination of polychlorinated biphenyls.Environ.Sci.Technol.,1995,29(9):2460.
    [18]Agarwal,S,Al-Abed,S R,Dionysiou,D D.Enhanced corrosion-based Pd/Mg bimetallic systems for dechlirination of PCBs.Environ.Sci.Technol.,2007,41:3722.
    [19]Murena F,Schioppa E,Gioia F.Catalytic Hydrodechlorination of a PCB Dielectric Oil.Environ.Sci.Technol.,2000,34:4382-4385.
    [20]Arienzo M,Chiarenzelli J,Scrudato R et al.Iron-mediated reactions of polychlorinated biphenyls in electrochemical peroxidation process(ECP).Chemosphere,2001,44:1339-1346.
    [21]王雄清,林英,弓加文等.多氯联苯对环境的污染和对动物及人体的危害.乐山师范学院学报,2002,17(4):51-55.
    [22]Avramowicz D A.Aerobic and Anaerobic Biodegradation of PCBs,A Review.Crit.Rev.Biotechnol,1990,10,241-251.
    [23]Parwons,J R et al.Biodegradation of Chlorinated Bipyenyls and Benzoic Acid by a Pseudomonas Strain,Appl.Microbiol.Biotechnol.,1988,29:81-89.
    [24]Daniel R T et al.Mineralization of Biphenyl and PCBs by the White Rot Fungus Phanerochaete Chrysosporium,Biotechnology and Bioengineering,1992,40:1395-1402.
    [25]Avramowicz D A,Brennan M J,Gallagher E L.Factors Influencing the Rate of Polychlorinated Biphenyl Dechlorination in Hudson River Sediments.Environ.Sci.Technol.1993.27:1125-1131.
    [26]施周.表面活性剂溶液中多氯联苯溶解的特性.中国环境科学,2001,21(5):456-459.
    [27]张光明.超声波处理多氯联苯微污染技术研究.给水排水,2003,29(3):30-34.
    [28]王政华,施周.利用紫外光降解多氯联苯(PCBs)的研究进展.环境污染治理技术与设备,2001,2(6):10-14.
    [29]施周,余健,袁玉梅等.表明活性剂溶液中四氯联苯光降解机理研究.环境科学学报,2000.20:110-114.
    [30]Liu,X T,Yu G.Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil,Chemosphere,2006,63,228-235.
    [31]冯玉杰,李晓岩,尤红等.电化学技术在环境工程中的应用.北京:化学工业出版社,2005.
    [32]Electrochim.Acta.ISE-Society news and information,1998,43(23):Ⅵ-ⅩⅤ.
    [33]周明华,吴祖成,汪大晕.电化学高级氧化工艺降解有毒难生化有机废水.化学反应工程与工艺,2001,17(3):263-271.
    [34]Argina O,MacDougall B,Kargin Y et al.Dechlorination of monochlorobenzene using organic mediators.J.Electrochem.Soc.,1997,144(11):3715-3721.
    [35]Ross N C,Spackman R A,nitchman M L et al.An investigation of the electrochemical reduction of pentachlorophenol with analysis by HPLC.J.Appl.Electrochem.,1997,27(1):51-57.
    [36]Rusling J F.Controlling electrochemical catalysis with surfactant microstructures.Accounts.Chem.Res.,1991,24(1):75-81.
    [37]Connors T F,Rusling J F.Removal of chloride from 4,4'-dichlorobiphenyl and 4-chlorobiphenyl by electrocatalytic reduction.J.Electrochem.Soc.,1983,130(4):1120-1121.
    [38]Dabo P,Cyr A,Laplante F et al.Electrocatalytic dehydrogenation of pentachlorophenol to cyclohexanol,Environ.Sci.Technol.,2000,34(7):1265-1268.
    [39]唐电.电化学工业用电极材料.材料科学与工程,1989,7(1):42-45.
    [40]李荻.电化学原理.北京:北京航天大学出版社.1987,7:411-446.
    [41]Ho C C,Chan C Y.The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent.Water Res.,1986,20(12):1523-1527.
    [42]Ho C C,Chan C Y,Khook H.Electrochemical treatment of effluents:a preliminary study of anodic oxidation of simple sugars using lead dioxide-coated titanium anodes.J.Chem.Technol.Blot.,1986,36(1):7-14.
    [43]Comninellis C.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment.Electrochim.Acta.,1994,39(11/12):1857-1862.
    [44]Tahar N B,Savall A.Mechanistic aspects of phenol electorchemical degradation by oxidation by oxidation on a Ta/PbO_2 anode.J.Electrochem.Soc.,1998,145(10):3427-3434.
    [45]Trasatti S,Lodi G.In electrodes of conductive metallic oxides.Parts A & B,Elsevier Amsterdam,1980-1981.
    [46]Trasatti S.Physical electrochemistry of ceramic oxides.Electrochim.Acta,1991,36(2):225-241.
    [47]Ueda M A,Watanabe T,Kameyama Y et al.Characteristics of a new type of lead dioxide-coated titanium anode.J.Appl.Electrochem.,1995,25(8):817-822.
    [48]POCO石墨有限公司.电火花加工(EDM)技术手册,1993.
    [49]Momma T,Liu X,Osaka T et al.Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor.J.Power Sources,1996,60(2):249-253.
    [50]Boudenne J L,Cerclier O.Performance of carbon black-slurry electrodes for 4-chlorophenol oxidation.Water Res.,1999,(33):494-504.
    [51]Polcaro A M,Palmas S.Electrochemical oxidation of chlorophenols.Ind.Eng.Chem.Res.,1997,36(5):1791-1798.
    [52]Borras C,Laredo T,Scharifker B R.Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO_2.Electrochim.Acta.,2003,48(19):2775-2780.
    [53]周明华,吴祖成,汪大翚.几种难生化芳香化合物的电催化降解研究-结构对降解活性的影响.浙江大学学报,2003,37(1):74-77.
    [54]Farwell S O,Beland F A,Greer R D.Electrochemical reduction of halogenated benzenein in N,N-Dimethylformamide.J.Electroanal.chem.Interracial Electrochem.,1975,61(4):303-313.
    [55]Janderka P,Broz P.Electrochemical degradation of polychlorinated biphenyls.Collect.Czech.Chem.Commun.,1995,60(7):917-927.
    [56]Matsunaga A,Yasuhara A.Complete dechlorination of 1-chloronaphthalene by electrochemical reduction with naphthalene radical anion as mediator.Environ.Sci.Technol.,2003,37(15):3435-3441.
    [57]Matsunaga A,Yasuhara A.Dechlorination of PCBs by electrochemical reduction with aromatic radical anion as mediator.Chemosphere.,2005,58:897-904.
    [58]Zhang S P,Rusllng J F.Dechlorination of polychlorinated biphenyls by electrochemical cataiysis in a bicontinuous microemulsion.Environ.Sci.Technol.,1993,27(7):1375-1380.
    [59]Zhang S P,Rusllng J F.Biphenyls on soils and clay by electrolysis in a bicontinuous-microemulsion.Environ.Sci.Technol.,1995,29(5):1195-1199.
    [60]Cheng I F,Fernando Q,Korte N.Electrochemical dechlorination of 4-Chlorophenol to Phenol.Environ.Sci.Technol.,1997,31(4):1074-1078.
    [61]Cheng H,Scott K,Christensen P.A.Electrochemical hydrodehalogenation of chlorinated phenols in aqueous solutions.J.Electrochem.Soc.,2003,150(2):17-24.
    [62]Chen G,Wang Z Y,Xia D G.Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium.Electrochim.Acta.,2004,50(4):933-937.
    [63]Iijima S.Helical microtubules of graphitic carbon.Nature,1991,354(6348):56-58
    [64]赵志伟,张崇才.碳纳米管及其应用研究进展.四川工业学院学报,2004,23:243-245.
    [65]徐幸梓,王必本,刘天模.碳纳米管性能的研究进展.材料导报,2001,15(11):44-45.
    [66]黄辉,张文魁,马淳安等.碳纳米管的制备及其在化学电源中的应用.化学通报,2002,(2):96-100.
    [67]Terrado E,Redrado M,Maser W K et al.Carbon nanotube growth on cobalt-sprayed substrates by themal CVD.Material Scienec and Engineering,2006,26:1185-1188.
    [68]朱宏伟,李雪松,慈立杰等.立式浮动催化裂解法大批量制备单层碳纳米管.科学通报,2001,19(46):1664-1668.
    [69]吴功伟,曹安源,魏秉庆等.工艺参数对碳纳米管定向薄膜生长的影响.清华大学学报,2002,2(42):151-153.
    [70]Huang Z P,Wang D Z,Wen J G et al.Growth of aligned carbon nanotubes with controlled site density.Appl.Phys.Lett.,2002,80(21):4018-4020.
    [71]Sohn J L,Choj C J et al.Growth behavior of carbon nanotubes on Fe-deposited(001)Si substrate,Appl.Phys.Lett.,2001,78(20):3130-3132.
    [72]Lee W Z,Kip S S et al.Large-scale synthesis of aligned carbon nanotubes.Science,1996.274(5293):1701.
    [73]力虎林,王成伟等.用多孔氧化铝模板制备高度取向碳纳米管阵列膜的研究.科字通报,2000,(5).
    [74]Ren Z F,Huang Z P et al.Synthesis of large arrays of well aligned carbon nanotubes on glass.Science,1998,282:1105.
    [75]朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H_2O_2的研究.高等学校化学学报,2004,25(9):1637-1641.
    [76]Che G L,Lskshmi B B,Fisher E R.Carbon nanotubule membranes for electrochemical energy storage and production.Nature,1998,393(6683):346-349.
    [77]Li W Z,Liang C H,Qiu J S et al.Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells.Carbon,2004,42(3):436-439.
    [78]Planeix J M.Application of carbon nanotubes as supports in heterogeneous catalysis.J.Am.Chem.Soc.,1994,116(17):7935-7936.
    [79]彭峰,任艳群,黄碧纯.碳纳米管的制备与催化加氢性能.四川大学学报,2002,3(1):14-16.
    [80]Cheng H M,Li F,Su G et al.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons.Appl.Phys.Lett.,1998,72(25):3282-3284.
    [81]陈萍,王培峰,林国栋等.低温催化裂解烷烃法制备碳纳米管.高等学校化学学报,1995,16(11):1783-1784.
    [82]Andrews R,Jacques D,Rao A M,et al.Continuous production of aligned carbon nanotubes:a step closer to commercial realization.Chem.Phys.Lett.,1999,303:467-474.
    [83]杨翔,陈代璋,方勤方等.碳纳米管分离提纯技术.地学前缘,2000,7(2):527-534.
    [84]杨占红,李新海,王红强等.用空气氧化法高效纯化碳纳米管.新型碳材料,1999,14(2):67-71.
    [85]杨占红,李新海,李晶等.碳纳米管纯化技术研究.中南工业大学学报,1999,30(4):389-391.
    [86]Xue B,Chen P,Qi H,et al.Growth of Pd,Pt,Ag and Au nanoparticles on carbon nanotubes.J.Mater.Chem.,2001,11:2378-2381.
    [87]Rim Y T,Uruga T,Mitani T.Formation of single Pt atoms on thiolated carbon nanotubes using a moderate and large-scale chemical approach.Adv.Mater,2006,18:2634-2638.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700